
PROGRAMMER’S
GUIDE
CRSP US Stock & US Index Databases
CRSP/Compustat Merged Database

Updated July 17, 2023

CENTER FOR RESEARCH IN SECURITY PRICES, LLC
An Affiliate of the University of Chicago Booth School of Business

105 West Adams, Suite 1700
Chicago, IL 60603

Phone: 312.263.6400
Fax: 312.263.6430

Email: support@crsp.org
Website: www.crsp.org

Table of Contents

Chapter 1: Overview ... 5
Overview of CRSPAccess Databases ..5
API Library ..6
Notational Conventions ...7

Chapter 2: Item-Based Access in C .. 8
Introduction ..8
CRSP C API Data Objects ..8
Supporting Information ...11
Generic Data Types ..11
Accessing CRSP Databases ...12
CRSP US Stock Database ..12
CRSP US Index Database ..14
CRSP/Compustat Merged Database ..15
CRSP C API Data Types ...27
Container Objects ..27
Supporting Types ...29

Chapter 3: Item-Based Access in Fortran32
CRSP Fortran 95 API Data Objects ..32
Supporting Information ...35
Generic Data Types ..35
Accessing CRSP Databases ...37
CRSP US Stock Database ..37
CRSP US Index Database ..42
CRSP/Compustat Merged Database ..45
CRSP Fortran 95 API Functions ...59
CRSP Fortran 95 API Data Types ...68
Container Objects ..69
Supporting Types ...71
CRSP_VARSTRING_T Type ...73

Chapter 4: Item-Based Samples ...76
Building and Executing Programs ..76
Visual Studio 2010 - C Compiler Instructions ...85

Chapter 5: Legacy Set Access in C ..96
CRSPAccess C Data Structures ...96
Data Organization for C Programming ..96
Data Objects ..96

Set Structures and Usage ..98
C Sample Programs ...115
CRSPAccess C Library ...116

Chapter 6: Legacy Set Access in Fortran204
FORTRAN-95 Data Structures ...204
Data Organization for FORTRAN-95 Programming204
Data Objects ..204
Set Structures and Usage ..206
FORTRAN-95 Stock Sample Programs and Subroutines226
CRSPAccess FORTRAN-95 Library ..228

PAGE 5

Chapter 1: Overview
The supplied suite of CRSP utilities allows full-featured access to CRSP databases and is intended to cover a variety of
the most typical queries and uses of CRSP data. The features of CRSP tools can often save end-users the whole effort of
programming their own reporting utilities. In other cases the user-program flow can be significantly simplified by the use of
output files produced from CRSP tools in a number of widely accepted formats.

OVERVIEW OF CRSPACCESS DATABASES

A CRSPAccess database is a customized financial database system supporting time-series, event, and header data for

various financial data structures. A single CRSPAccess Database is a set of defined configuration and module files in a

directory. Configuration files track the location of data in the module files.

The basic levels of a CRSPAccess database are:

1. Database (CRSPDB) is the directory containing the database files. A CRSPDB is identified by the database path.

2. Set Type is a predefined type of financial data; stock or indexes. Each set type has its own defined set of data structures,
specialized access functions, and keys. CRSPAccess databases support stock (STK) and index (IND) set types. A CRSPDB
can support multiple set types.

3. Set Identifier (SETID) is a defined subset of a set type. SETIDs of the same set type use the same access functions,
structures, and keys, but have different characteristics within those structures. For example, daily stock sets use the
same data structure as monthly stock sets, but time series are associated with different cal- endars. Multiple SETIDs of
the same set type can be present in one CRSPDB.

4. Modules are the groupings of data found in the data files in a CRSPDB. Multiple data items can be present in a module.
Data are retrieved at a module level, and access functions retrieve data items for keys based on selected modules. A
module corresponds to a single physical data file.

5. Objects are the fundamental data types defined for each set type. There are three fundamental object types: time series
(CRSP_TIMESERIES), event arrays (CRSP_ARRAY), and headers (CRSP_ROW). Objects con- header information such
as counts, ranges, or associated calendars, plus arrays of data for zero or more observations. Some set types allow arrays
of objects of one type. In this case, the number of available objects is determined by the SETID, and each of the objects
in the list has independent counts, ranges, or associated calendars.

6. Arrays are attached to each object. The array contains the set of observations and is the basic level of pro- gramming
access. An observation can be a simple data type, such as an integer for an array of volumes, or a complex structure such
as for a name history. When there is an array of objects, there is a corresponding array of arrays with the data.

Configuration Files contain information about supported sets and modules in the CRSPDB, a list of keys, addresses of data

for each key in different data modules, a set of shared calendars, a set of secondary indexes, and a list of free space within

the module files. Module files contain the data for groups of objects for keys.

MiSSiNG vaLUeSMiSSiNG vaLUeS

Missing values are relevant for time-series with scalar data type elements. Scalar data types are predefined data types used

in C and Fortran. Examples include integer, floating point, real, logical, double precision. Missing values are not meaningful

for arrays, C-LANGUAGE structures, and Fortran-95 TYPES; values used in these cases are merely place-holders.

For all time-series, missing values are stored at index zero. Index values 1 through MAX contain meaningful values of the

time-series. These may be compared against the missing value at index 0 to determine whether they are miss- ing.

A C application programming interface supports access to defined set structures, such as stock security or index data.

CRSP PRogRammeR'S guide | OVERVIEW PAGE 6

A FORTRAN-95 programming interface is also built into the system. The FORTRAN-95 access utilizes direct access by

module and by key.

API LIBRARY

For situations when a user-program requires direct access to CRSP datasets, a CRSP API library is provided. The CRSP

API comprises the platform-specific object library and a set of precompiled modules and include files. Additionally, a set of

sample program sources is supplied along with respective make files and test data to build and test the samples.

iteM-BaSeD aCCeSSiteM-BaSeD aCCeSS

The CRSP API introduces item-based access which generally supersedes the older set-based method of programming

access to CRSP databases.

Conceptually, the item-based access allows uniform access to the whole array of CRSP datasets by presenting them as

collections of items that are instances of a generic item object. Each specific CRSP dataset is represented as an instance

of a generic access-handle object.

In item-access context users are shielded from the internal mechanics of access to the specific structures of CRSP

datasets. This adds more uniformity to your code, especially in cases of accessing a mixed set of CRSP data, thus

simplifying code development and maintenance.

In addition to its dynamic and extensible nature, item-access also introduces a set of derived items that are defined as

parameterized functional combinations of underlying regular items. These items significantly improve code consistency

and simplicity by internally performing all of the necessary calculations that previously had to be coded explicitly in user

programs.

LeGaCY Set-BaSeD aCCeSSLeGaCY Set-BaSeD aCCeSS

The supplied CRSP API contains the needed underlying functions for set-based access. However, mixing the legacy set-

based access and item-access contexts in the same program is not recommended. Any new user programs that access

CRSP data should be implemented in the item-access context. CRSP supplies a set of sample programs that demonstrate

the flow of programs using item-access.

CRSP PRogRammeR'S guide | OVERVIEW PAGE 7

NOTATIONAL CONVENTIONS

• All names that occur within CRSP’s FORTRAN-95 and C sample programs and include files are printed using a con-
stant-width, Courier font. These names include variable names, parameter names, subroutine names, subprogram
names, function names, library names, and keywords. For example, CUSIP refers to the CUSIP Agency identifier, while
CUSIP refers to the variable that the programs use to store this identifier. CRSP’s variable mnemonics, used as names
and in the descriptions, are displayed capitalized using a constant-width font. C and FORTRAN-95 are displayed in
lower case, excepting constants, which are displayed in UPPER CASE.

• All names that refer to the CRSP data utilities, sample programs or include file titles are printed using an italic sans
serif font.

• Names with a similar format are sometimes referenced collectively, using three x’s where the names differ. For ex-
ample, the FORTRAN-95 variables BEGVOL,BEGRET,BEGPRC, etc. are sometimes referred to as BEGxxx.

• In the variable definitions section, the variables i and j are sometimes used in referencing a variable in a FOR- TRAN-
95 or C array. In this case, i refers to a possible range of valid data in this array for this company, where the valid range
is determined by the number of header variables. For example, in FORTRAN-95, the names date is referred to as stk
% names_arr % names(i) % namedt. Here i is an integer between 1 and stk % names_arr % num, which represents the
number of name structures that exist for any specified issue in the CRSP US Stock Database.

• In C, all CRSP-defined data types have names in all capitals beginning with CRSP_.

• The text of this document is in Times New Roman. Italics and bold styles are used to emphasize headings, names,
definitions and related functions.

PAGE 8

Chapter 2: iteM-BaSeD aCCeSS iN C
iNtrODUCtiON
The supplied suite of CRSP utilities allows full-featured access to CRSP databases and is intended to cover a variety of

the most typical queries and uses of CRSP data. The features of CRSP tools can often save end-users the whole effort of

programming their own reporting utilities. In other cases the user-program flow can be significantly simplified by the use of

output files produced from CRSP tools in a number of widely accepted formats.

For situations when a user-program requires direct access to CRSP datasets, a CRSP API library is provided. The CRSP API

comprises the platform-specific object library and a set of precompiled modules and include-files. Additionally, a set of

sample program sources is supplied along with respective make files and test data to build and test the samples.

CrSp C api Data OBJeCtS

Access to CRSP databases is achieved through two principal objects: the access handle – of type CRSP_ITM_HNDL, and the

item – of type CRSP_ITM.

CrSp_itM_hNDLCrSp_itM_hNDL

The item-access handle object type(CRSP_ITM_HNDL) encapsulates the information required to establish and maintain a

single item-access session to a given CRSP database. Additional access sessions (either to the same or to another CRSP

database), concurrent in the same program, require a separate access handle object. All of the item objects available in the

active session are grouped within the respective access handle.

The main properties of the access handle object are listed on the following table:

NaMe C tYpe DeSCriptiON

keytype character(LeN=CrSp_NaMe_LeN) Determines the keys used to select data in read functions. Supported keytypes for the application are
included in the reference data. a default will be set.

keyset_disp_cd character(LeN=CrSp_tYpe_LeN) Determines whether keyset items are labeled by the keyset number (NUM), the keyset tag (taG), or the
expanded list of all items comprising the keyset (eXp). the default display is taG.

fiscal_disp_cd character(LeN=CrSp_tYpe_LeN) Determines whether fiscal-based time series items are reported on a calendar basis (C) or a fiscal basis
(F). the default it C.

curr_disp_cd character(LeN=CrSp_tYpe_LeN) Determines whether monetary values are reported in the currency reported by Compustat (rep) or in US
Dollars (USD). the default currency display code is rep.

grp_fill_cd character(LeN=CrSp_tYpe_LeN) Determines whether group item lists are filled so that every selected item is included for every selected
keyset (Y or N). the default is Yes (Y).

dataset CrSp_itM_Set pointer to descriptor of currently attached CrSp dataset; includes root info for the CrSp dataset.

In a user-program the access handle objects are normally declared and allocated directly then passed to C itm-API

functions as a parameter. The function crsp_itm_init initializes the contents of the access handle and connects it to the

specified CRSP database.

CrSp_itMCrSp_itM

The item object type(CRSP_ITM) represents a generic container for a single data item defined in a given CRSP database.

It unifies the data types defined for each of the supported CRSP databases and allows uniform access to the associated

CRSP data containers from your programs.

The main properties of the item object are listed in the following table:

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 9

NaMe C tYpe DeSCriptiON

itm_name character(LeN=CrSp_NaMe_LeN) name of the item from a CrSp dataset.

keyset integer number of the keyset defined in a CrSp dataset.

itm_info CrSp_itM_iNFO item metadata; includes description, default keyset, and stored data type.

obj CrSp_itM_OBJ describes the underlying CrSp data-object.

arr CrSp_itM_OBJarr describes the C container associated with the defined CrSp data-object.

itmkeyset CrSp_itM_KeYSet describes the details of the keyset (when non-zero and loaded), including its number, name, tag, and
array of composing items of same CrSp_itM type.

itmcal CrSp_itM_CaL for calendar-bound items, describes the details of the attached calendar, including its id, keyset
,frequency, and attached calendar object of CrSp_CaL type. when requested, the calendar may be
‘shifted’, based on the currently loaded company’s FYe to attribute properly the item’s period data.

Item objects are normally declared as C pointers and then attached to the actual defined item objects by calling the crsp_

itm_find function for the given access handle and the specified item name and keyset.

CrSp_itM_OBJCrSp_itM_OBJ

Item data is accessed from the data-object itm->obj and associated to a C container itm->arr. The item data container

object type (CRSP_ITM_OBJ) describes an instance of a CRSP data-object (time-series, array, row) that is defined for the

specific item. Only a single data-object can be defined for a given item, which is identified by the objtype property.

Properties of the item data-object are listed in the following table:

NaMe C tYpe DeSCriptiON

objtype integer type of the defined and allocated object:
CrSp_tS_OtiD: CrSp time-series
CrSp_arraY_OtiD: CrSp array
CrSp_rOw_OtiD: CrSp row

ts CrSp_tS pointer to allocated CrSp time-series data-object.

arr CrSp_arraY pointer to allocated CrSp array data-object.

row CrSp_rOw pointer to allocated CrSp row data-object.

is_empty logical indicates whether the allocated CrSp data-object contains no data.

The item data-object normally has an associated C container, which is either C array or scalar of the data type

corresponding to the actual stored data, as identified by arrtype property. Details of the CRSP container objects types are

listed in the reference section CRSP Container Objects.

CrSp_itM_OBJarrCrSp_itM_OBJarr

The item data array, type CRSP_ITM_OBJARR describes the associated C container object. The C container is allocated

based on the object’s type (objtype) and contained data type (arrtype). The respective scalar member has suffix _val to

its name, and _arr for the array type. Time-series and array data are stored in array type, while row data is kept in scalar

type:

Itm->arr->arrtype:

CRSP_TS_OTID: itm->arr-><arrtype_name>_arr - time-series object data array

CRSP_ARARY_OTID: itm->arr-><arrtype_name>_arr - array object data array

CRSP_ROW_OTID: itm->arr-><arrtype_name>_val - row object data scalar.

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 10

NOTE: Throughout the implementation of the CRSP C API, the C array indexing is 0-based, thus the first element of an

array is data_arr(0).

Properties of the item data array for the item data types that are common to all of the supported CRSP datasets are listed

in the following table:

NaMe C tYpe DeSCriptiON

arrtype integer data type of the defined and allocated C container. Common data types:
• CrSp_iNteGer_tiD: integer

• CrSp_FLOat_tiD: real

• CrSp_DOUBLe_tiD: double precision

• CrSp_Char_tiD: character(1)

• CrSp_CharaCter_tiD: CrSp_varStriNG type

int_val / arr integer / dimension (:) pointer to allocated scalar / array of integer type

flt_val / arr real / dimension (:) pointer to allocated scalar / array of real type

dbl_val / arr double precision / dimension (:) pointer to allocated scalar / array of double precision type

char_val / arr character(LeN=1) / dimension (:) pointer to allocated scalar / array of single-character type

vstr_val / arr CrSp_varStriNG / dimension (:) pointer to allocated scalar / array of variable-length string type

structured types specific to CrSp datasets refer to the description of data types for the specific CrSp dataset.

In a user-program the item container data is usually accessed directly as defined by item’s data type, e.g.:

print *, sale_itm->arr->dbl_arr(i)

The item data container is normally accessed in association with its item data-object.

NOTE: If an incorrect data container is referenced, an access violation error should occur on the referenced null-pointer.

In such situations the recommended action is to verify that the appropriate containers are being accessed for the selected

items.

Data for items of CRSP array type is accessed in the valid [0..num-1] index range, as defined in the corresponding arr

data-object. For example:

itm->arr->dbl_arr(i), i=0..itm->obj->arr->num-1

Data for items of CRSP time-series type is accessed in the valid [beg,end] index range, as defined in the corresponding ts

data-object, e.g.:

itm->arr->dbl_arr(i), i=itm->obj->ts->beg..itm->obj->ts->end

Data for items of CRSP row type is not indexed and is accessed directly from the value as defined by the corresponding

scalar/structured type, e.g.:

itm->arr->master_val->ccmid

To verify if an element of an array item contains a missing value, call the function crsp_itm_is_miss_arrval.

SUppOrtiNG iNFOrMatiON

Various supporting information about CRSP databases, items, keysets and other item-access objects is stored in the

following derived types:

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 11

C tYpe NaMe DeSCriptiON aCCeSS via tYpe
NaMe

USaGe

CrSp_itM_iNFO item information; includes item’s full name, description, display format, data type and size
information. also includes the default keyset number associated with this item.

CrSp_itM itm->itm_info

CrSp_itM_KeYSet Keyset descriptor; includes keyset information and the array of items composing the keyset. CrSp_itM itm->itmkeyset

CrSp_itM_CaL Calendar descriptor; includes calendar’s id, associated keyset number, base calendar name,
and calendar’s frequency, also the base calendar object. additionally, for fiscal calendars
indicates whether the calendar has been shifted based on the currently loaded company’s
FYe.

CrSp_itM itm->itmcal

CrSp_KeYSet Keyset information; includes keyset’s number, name, tag, and description. indicates whether
the keyset has been loaded and associated with any of the requested items.

CrSp_itM_KeYSet itmkeyset->keyset_info

CrSp_itM_Set CrSp data set descriptor; includes the set’s path, name, id, and database root information. CrSp_itM_hNDL hndl->dataset

CrSp_rOOt_iNFO CrSp data set root information; includes internal service information about the currently
loaded database such as creation/modification date, product code and name, and descriptors
of available calendars. Mainly intended for internal use.

CrSp_itM_Set dataset->root_info

NOTE: While selected supported information is populated on initiating of the connection to a CRSP data set (on return

from call to crsp_itm_init), the listed supported information becomes available only on opening of the CRSP data set (on

return from call to crsp_itm_open).

The relevant details of the derived types shown above are listed in the Supporting Types on page 25.

GeNeriC Data tYpeS

All CRSP databases contain data items of both simple C data types and of database-specific structured data types.

Moreover, each composing field of the structured data type can instead be requested as an individual data item of the

simple C data type.

The vast majority of the data items defined in CRSP datasets are of CRSP time-series container object type, with the stored

values commonly of generic C data types. A limited set of items is stored in CRSP array and CRSP row container objects;

these items are mostly of structured data types and are listed in the following sections regarding particular CRSP database

products.

The following table lists the supported generic data types and ways to access data from the item-associated container:

iteM OBJeCt tYpe C tYpe NaMe iNterNaL StOraGe aCCeSS via CrSp_itM

time-series CrSp_tS itm->obj->ts

int int(4) itm->arr->int_arr(i)

float float(4) itm->arr->flt_arr(i)

double double(8) itm->arr->dbl_arr(i)

char(LeN=1) char (1) itm->arr->char_arr(i)

array CrSp_arraY itm->obj->arr

int int(4) itm->arr->int_arr(i)

float float(4) itm->arr->flt_arr(i)

double double(8) itm->arr->dbl_arr(i)

char(LeN=1) char (1) itm->arr->char_arr(i)

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 12

iteM OBJeCt tYpe C tYpe NaMe iNterNaL StOraGe aCCeSS via CrSp_itM

row CrSp_rOw itm->obj->row

int int(4) itm->arr->int_val

float float(4) itm->arr->flt_val

double double(8) itm->arr->dbl_val

char(LeN=1) char (1) itm->arr->char_val

aCCeSSiNG CrSp DataBaSeS

The following sections describe the details of accessing CRSP databases supported by the API. Supported databases are

the CRSP US Stock Database, the CRSP US Index Database, and the CRSP/Compustat Merged Database. Each section

presents database connection information, available access keys, as well how to access a database’s data groups and items

from your programs.

CrSp US StOCK DataBaSe

To connect to the specific CRSP Stock database instance the path to its database root should be specified. When installed

on your system, CRSP Stock data set will be assigned an environment variable pointing to the CRSP Stock database root.

Additionally, an application ID should be specified on the call to crsp_itm_init to indicate the item-universe to be loaded

for the session and describes the available items and item groups, e.g.:

sts = crsp_itm_init (hndl,’CRSP_DSTK’,app_id,’stk1’)

User-programs should access the CRSP Stock data set with the app_id as listed in the following table:

StK rOOt/app iD C tYpe DeSCriptiON

CrSp_DStK CrSp Daily Stock data set

CrSp_DStKitM_iD integer CrSp Daily Stock data items and groups

CrSp_MStK CrSp Monthly Stock data set

CrSp_MStKitM_iD integer CrSp Monthly Stock data items and groups

The details on included items and item groups can be found starting on page 13.

aCCeSS KeYSaCCeSS KeYS

CRSP Stock data set contains various data on companies and securities. Access key is composed of access key items the

values of which can be retrieved or set from the user-program to control the direct access to STK data.

Default access key is loaded automatically on opening the access session to the CRSP STK data set

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP

PERMNO, CUSIP, and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set

on the selected access key. The function crsp_itm_get_key can also be used to retrieve the value of the access key items

for the currently read record.

To switch to access by an alternative key, a user calls crsp_itm_load_key to set the access key index, followed by calls to

crsp_itm_set_key to set the value of the key items used on subsequent reading of the database.

The defined STK access keys and associated key items are listed in the following table:

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 13

CCM aCCeSS KeY/KeY iteMS C tYpe DeSCriptiON NOteS

perMNO CrSp historical perMNO default

KYperMNO integer CrSp company issue’s perMNO primary key item

perMCO CrSp historical perMCO

KYperMCO integer CrSp company’s perMCO primary key item

CUSip CrSp Stock CUSip

KYCUSip char(CrSp_CUSip_LeN) CrSp Stock issue’s CUSip primary key item

hCUSip CrSp Stock historical CUSip

KYhCUSip char(CrSp_CUSip_LeN) CrSp issue’s historical CUSip primary key item

ticker CrSp Stock ticker

KYtiCKer char(CrSp_StK_tiC_LeN) CrSp issue’s ticker primary key item

SiCCD CrSp Stock SiC code

KYSiC integer CrSp Stock security’s SiC primary key item

Data tYpeSData tYpeS

Generally, individual CRSP Stock database data items are of common simple C data types and stored data can be accessed

through itm->arr and corresponding scalar or array member.

Additionally, selected CRSP supplemental STK data groups can be accessed by the entire group as a defined structured

type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm_name, but

recommended programming access is through the itm_name of the structure. To access the structured type and its fields,

load the structured type itm_name during initialization, create a CRSP_ITM pointer matching the itm_name, attach it to the

data, and access the structured type and its fields through the pointer:

sts = crsp_itm_load(hndl,’HEADER’,match_flag)

sts = crsp_itm_find(hndl,’HEADER’,0,header_itm)

permno = header_itm->arr->header_val->permno

...

CrSp US iNDeX DataBaSe

To connect to the specific CRSP Index database instance the path to its database root should be specified. When installed

on your system, CRSP Index data sets will be assigned an environment variable pointing to the CRSP Index database root.

Additionally, an application ID should be specified on the call to crsp_itm_init to indicate the item-universe to be

loaded for the session and describes the available items and item groups, e.g.:

sts = crsp_itm_init (hndl,’CRSP_DSTK’,app_id,’ind1’)

User-programs should access the CRSP Index data sets with the app_id as listed in the following table:

StK rOOt/app iD C tYpe DeSCriptiON

CrSp_DStK CrSp Daily Stock and index data sets

CrSp_DiNDiteMS_iD integer CrSp Daily index series data items and groups

CrSp_DiNDGiteMS_iD integer CrSp Daily index group data items and groups

CrSp_MStK CrSp Monthly Stock and index data sets

CrSp_MiNDiteMS_iD integer CrSp Monthly index series data items and groups

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 14

StK rOOt/app iD C tYpe DeSCriptiON

CrSp_MiNDGiteMS_iD integer CrSp Monthly index group data items and groups

aCCeSS KeYSaCCeSS KeYS

CRSP Index data sets include various data on market indexes. Access key is composed of access key items the values of

which can be retrieved or set from the user-program to control the direct access to IND data.

Default access key is loaded automatically on opening the access session to the CRSP IND data set.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set

on the selected access key. The function crsp_itm_get_key can also be used to retrieve the value of the access key items

for the currently read record.

The defined IND access keys and associated key items are listed in the following table:

CCM aCCeSS KeY/KeY iteMS C tYpe DeSCriptiON NOteS

indno CrSp index’s iNDNO default

KYiNDNO integer CrSp index’s iNDNO primary key item

Data tYpeSData tYpeS

Generally, individual CRSP Index database data items are of common simple C data types and stored data can be accessed

through itm->arr and corresponding scalar or array member.

Additionally, selected CRSP supplemental IND data groups can be accessed by the entire group as a defined structured

type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm_name, but

recommended programming access is through the itm_name of the structure. To access the structured type and its fields,

load the structured type itm_name during initialization, create a CRSP_ITM pointer matching the itm_name, attach it to

the data, and access the structured type and its fields through the pointer:

sts = crsp_itm_load(hndl,’INDHDR’,match_flag)

sts = crsp_itm_find(hndl,’INDHDR’,0,indhdr_itm)

indno = indhdr_itm->arr->indhdr_val->indno

...

CrSp/COMpUStat MerGeD DataBaSe

To connect to the specific CRSP CCM database instance the path to its database root should be specified. When installed

on your system, CRSP CCM data set will be assigned an environment variable pointing to the CRSP CCM database root.

Additionally, an application ID should be specified on the call to crsp_itm_init to indicate the item-universe to be

loaded for the session and describes the available items and item groups, eg:

sts = crsp_itm_init (hndl,’CRSP_CCM’,app_id,’ccm1’)

User-programs should access the CRSP CCM data set with the app_id as listed in the following table:

CCM rOOt/app iD C tYpe DeSCriptiON

CrSp_CCM CCM/CrSp Compustat data set

CrSp_CCMiteMS_iD integer Compustat Xpressfeed data items and groups

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 15

The details on included items and item groups can be found starting on page 16.

aCCeSS KeYSaCCeSS KeYS

CRSP Compustat Xpressfeed includes various data on companies, securities, and indexes. Access key is composed of

access key items the values of which can be retrieved or set from the user-program to control the direct access to the CCM

data.

Default access key for CRSP CCM is loaded automatically on opening the access session to the CRSP CCM data set

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP

PERMNO, CUSIP and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set

on the selected access key. The function crsp_itm_get_key can also be used to retrieve the value of the access key items

for the currently read record.

To switch to access by an alternative key, a user calls crsp_itm_load_key to set the access key index, followed by calls to

crsp_itm_set_key to set the value of the key items used on subsequent reading of the database.

The defined CCM access keys and associated key items are listed in the following table:

CCM aCCeSS KeY/KeY iteMS C tYpe DeSCriptiON NOteS

gvkey Compustat GvKeY and iiD default

KYGvKeY integer Compustat company’s GvKeY primary key item

KYiiD char(CrSp_CCM_iiD_LeN) Compustat company security’s iiD secondary key item

gvkeyx Compustat permanent identifier for indexes

KYGvKeYX integer Compustat index’s GvKeYX primary key item

ccmid Compustat permanent identifier - either GvKeY or GvKeYX

KYCCMiD integer CrSp CCMiD (GvKeY or GvKeYX as reported in MaSter item) primary key item

KYiiD char(CrSp_CCM_iiD_LeN) Compustat company security’s iiD secondary key item

permco CrSp historical perMCO Link

KYperMCO integer CrSp company’s perMCO primary key item

permno CrSp historical perMNO Link

KYperMNO integer CrSp company issue’s perMNO primary key item

cusip Compustat CUSip

KYCUSip char(CrSp_CCM_CUSip_LeN) Compustat issue’s CUSip primary key item

ticker Compustat reported issue trading Symbol selects GvKeY and security

KYtiCKer char(CrSp_CCM_tiC_LeN) Compustat issue’s ticker primary key item

sic Compustat -reported SiC code. Security or Company

KYSiC integer Compustat security’s SiC primary key item

KYiiD char(CrSp_CCM_iiD_LeN) Compustat company security’s iiD secondary key item

apermno Link-Used perMNO

KYperMNO integer CrSp company issue’s perMNO primary key item

apermco Link-Used perMCO

KYperMCO integer CrSp company issue’s perMCO primary key item

ppermno CrSp perMNO when security is marked as primary

KYperMNO integer CrSp company issue’s perMNO primary key item

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 16

Data tYpeSData tYpeS

Generally, individual Compustat Xpressfeed data items are of common simple C data types and stored data can be accessed

through itm%arr and corresponding scalar or array member.

Also additional character data types were introduced to store specific classes of Xpressfeed items, as listed in the following

table:

iteM OBJeCt tYpe C tYpe NaMe iNterNaL StOraGe aCCeSS via CrSp_itM NOteS

time-series CrSp_tS itm->obj->ts

CrSp_CCM_FtNt char(CrSp_CCM_FtNt_LeN) itm->arr->ftnt_arr(i)->ftnt Used for CCM footnote items, mainly
time-series

CrSp_CCM_teXtiteM char(CrSp_CCM_teXtiteM_LeN) itm->arr->text_arr(i)->text Used for various CCM character string
items, mainly time-series

array CrSp_arraY itm->obj->arr

CrSp_CCM_FtNt char(CrSp_CCM_FtNt_LeN) itm->arr->ftnt_arr(i)->ftnt

CrSp_CCM_teXtiteM char(CrSp_CCM_teXtiteM_LeN) itm->arr->text_arr(i)->text

row CrSp_rOw itm->obj->row

CrSp_CCM_FtNt char(CrSp_CCM_FtNt_LeN) itm->arr->ftnt_val->ftnt

CrSp_CCM_teXtiteM char(CrSp_CCM_teXtiteM_LeN) itm->arr->text_val->text

Additionally, selected Compustat Xpressfeed primary data groups and CRSP supplemental data groups can be accessed

by the entire group as a defined structured type rather than as a stand-alone item. These data groups and their elements

can both be accessed by itm_name, but recommended programming access is through the itm_name of the structure. To

access the structured type and its fields, load the structured type itm_name during initialization, create a CRSP_ITM pointer

matching the itm_name, attach it to the data, and access the structured type and its fields through the pointer:

sts = crsp_itm_load(hndl,’MASTER’,match_flag)

sts = crsp_itm_find(hndl,’MASTER’,0,mstr_itm)

ccmid = mstr_itm->arr->master_val->ccmid

...

CrSp C api iteM haNDLiNG FUNCtiONSCrSp C api iteM haNDLiNG FUNCtiONS

This section contains an alphabetical list of the functions defined in the CRSP C API. Each definition presents the

following information about a function:

• Its prototype

• A list of arguments

• A list of return values

• Side effects

• Preconditions

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 17

CrSp_itM_CLOSeCrSp_itM_CLOSe

crsp_itm_close frees all item lists and item indexes, clears all calendar and key lists, closes the database, frees the

handle set, and re-initializes the item access handle itself.

prOtOtYpe: int crsp_itm_close(CRSP_ITM_HNDL **hndl)

arGUMeNtS: CRSP_ITM_HNDL *hndl: access handle to close.

retUrN vaLUeS: CrSp_SUCCeSS: if the database is successfully closed and all handle data are free
CrSp_FaiL: if there is an error in the parameters, inconsistent handle, error closing databases.

SiDe eFFeCtS: if successful, the handle data are emptied:
the database will be closed and the structure cleared.
all internal storage allocated for this instance will be freed

preCONDitiONS: the item handle must be previously opened with function crsp_itm_init.

Example:

if (crsp_itm_close(&hndl) == CRSP_FAIL)

{

 fprintf (stderr, err_msg);

 exit (EXIT_FAILURE);

}

CrSp_itM_FiNDCrSp_itM_FiND

crsp_itm_find attaches a pointer to a CRSP_ITM item that was previously loaded. The CRSP_ITM structure describes the

data item and contains the underlying time series, array, or row data.

prOtOtYpe: int crsp_itm_find(CRSP_ITM_HNDL *itmhndl,char *itm_name, int keyset, CRSP_ITM **foundptr);

arGUMeNtS: CRSP_ITM_HNDL_T * hndl:access handle containing the needed set structure information and the current item list.
char *itm_name:String containing the itm_name to find.
Int keyset:Keyset to find
CRSP_ITM *itm_foundptr:User-declared pointer that will point to the data item found.

retUrN vaLUeS: CrSp_SUCCeSS: if successfully found the requested item in the given keyset.
CrSp NOt FOUND: if the itm_name and keyset combination are not available
CrSp_FaiL: if error in parameters, handle not initialized, or error searching for the item.

SiDe eFFeCtS: if successful, the itm_foundptr will point to a CRSP_ITM item with data and information for the desired item and keyset.
Otherwise the null() will be assigned to itm_foundptr.

preCONDitiONS: the item handle set must be initialized, loaded with a list of items, and opened.

Example:

if (crsp_itm_find(hndl,”HEADER”,0,&stkhdr_itm) == CRSP_FAIL || !stkhdr_itm)

{

 fprintf (stderr,”Error - invalid item/keyset specified(DSTK:1)\n”);

 exit(EXIT_FAILURE);

}

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 18

CrSp_itM_Get_KeYCrSp_itM_Get_KeY

crsp_itm_get_key retrieves key information for data loaded by a function crsp_itm_read call. An output key item list is

prepared when the key is initialized, and loaded by function crsp_itm_read. This function finds the key_itm_name in the

list and copies the value into the user-specified location.

prOtOtYpe: int crsp_itm_get_key(CRSP_ITM_HNDL *hndl, char *key_itm, void *keyval);

arGUMeNtS: CRSP_ITM_HNDL_T *hndl:access handle containing the needed set structure information and the current item list
Char *key_itm_name:String containing an itm_name of a loaded key to be retrieved.
Void *keyval: variable to accept the value of the key item. Data type must agree with the item’s type and size.

retUrN vaLUeS: CrSp_SUCCeSS: if data loaded successfully
CrSp_FaiL: if error in parameters, handle not open, key item.

SiDe eFFeCtS: if successful, the keyval is loaded based on the item and key value type.

preCONDitiONS: the item handle must be initialized and opened. the item key array must be initialized based on a keytype with the function crsp_
itm_open or function crsp_itm_init_key functions. the key_itm_name must be a valid item for that keytype, and the keyval
data must agree with the type of that item.

Example:

if (crsp_itm_get_key(hndl, “KYPERMNO”, keyval) == CRSP_FAIL)

 {

 crsp_errprintf(2, 50, CRSP_FATAL_PRINT,

 CRSP_ERROUT_STDERR,” hndl permno, crsp_itm_get_key”);

 exit(EXIT_FAILURE);

 }

CrSp_itM_iNitCrSp_itM_iNit

crsp_itm_init prepares a handle for item access operation for one database and one application id. The handle will

be initialized and the database set type and set id identified, allowing loading of reference data and allocation of a set

structure.

prOtOtYpe: int crsp_itm_init(CRSP_ITM_HNDL **hndl, char *dbpath, int app_id, char *hndl_name);

arGUMeNtS: CRSP_ITM_HNDL *hndl:access handle that will be used to manage the database information and item lists.
Char *dbpath: path to database containing the data to load and the applicable reference data.
Int app_id:identifier of a defined application organizing data items into groups for access. available app_ids can be found in the
reference array, function crsp_itm_ app. Common app_ids have defined constants:

• CRSP_CCMITEMS_ID – generic CCM usage application

• CRSP_DSTKITM_ID – generic Daily Stock usage application

• CRSP_MSTKITM_ID – generic Monthly Stock usage application

• CRSP_DINDITEMS_ID – generic Daily ind Stock usage application

• CRSP_MINDITEMS_ID – generic Monthly ind Stock usage application

• CRSP_SIZITM_ID – generic SiZ 1925-e usage application

Char *hndl_name:Name to assign to the handle.

retUrN vaLUeS: CrSp_SUCCeSS: if initialized successfully
CrSp_FaiL: if there is an error in the parameter, database cannot be opened, reference data unavailable, incompatibility between
database and app_id.

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 19

SiDe eFFeCtS: if successful, the handle data are loaded:
• the handle fields are initialized, including all lists and arrays.

• the ca_ref structure is loaded with the reference data in the database. if an old database with no reference data, it will
use a global reference file with a standard name based on the app_id in the CRSP_LIB directory.

• Itm_grp and itm_avail arrays in the handle are loaded with available tables and items

• Set_list element is allocated using the database path and setid. the database is opened with a 0 wanted, which loads
reference data but allocates no module space. the root information is loaded to the set’s CRSP_ROOT_INFO structure.

preCONDitiONS: the item handle object must be declared and not attached to another access instance. the app_id must exist in the reference data
of the database opened.

Example:

 if (crsp_itm_init(&hndl,dbpath,CRSP_SIZITM_ID,”siz1”) == CRSP_FAIL)

 {

 fprintf (stderr,err_msg);

 exit (EXIT_FAILURE);

 }

CrSp_itM_iS_MiSS_arrvaLCrSp_itM_iS_MiSS_arrvaL

crsp_itm_is_miss_arrval checks if the requested element in a data object attached to the item contains a missing

value. is_miss is set to TRUE when a missing value is detected. Only items of simple (non-structured) types are accepted,

while the item’s underlying data-object can be of structured data-type, in which case the structure offset is used to extract

the item value.

prOtOtYpe: int crsp_itm_is_miss_arrval(CRSP_ITM *itm,int ind, int *is_miss);

arGUMeNtS: CRSP_ITM *itm:pointer to the data item
Int ind:index of the data array element to check
Int *is_miss:pointer to the resulting flag value

retUrN vaLUeS: CrSp_SUCCeSS: if successful, the returned value is initialized and set.
CrSp_FaiL: if error in parameters, bad item or element index is out-of-range (ignored in case of CRSP_ROW object)

SiDe eFFeCtS: if the requested value contains a missing value, the is_miss is set to trUe. Otherwise FaLSe is assigned.

preCONDitiONS: the item has to have a valid bound data-object. Structured items are not allowed. Field items of structures are allowed.

Example:

 if (crsp_itm_is_miss_arrval(itm,ind,&is_miss) != CRSP_FAIL && !is_miss)

 {

 fprintf (ofp,”%18.4f”,itm->arr.dbl_arr[ind]);

 }

 else

 {

 fprintf (ofp,”%18s”,”N/A”);

 }

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 20

CrSp_itM_LOaDCrSp_itM_LOaD

crsp_itm_load prepares items described by a full list and loads them to an item table structure in an item handle. It

splits the full list into the global section and the list section and uses the function crsp_itm_expand_elem on each list

element in the list section. This will recursively expand the list elements to fill the structure and apply global qualifiers

during the process.

prOtOtYpe: int crsp_itm_load(CRSP_ITM_HNDL *hndl, char *itm_str, int match_flag);

arGUMeNtS: CRSP_ITM_HNDL_T * hndl: access handle containing the needed set structure information and the current item list.
Char *full_list:String describing all items to add, used on standard item notation.
Int match_flag:Flag setting the behavior when an item if found but not the keyset. values are:

• CRSP_MATCH_REQUIRED (=0): if any indicated item and keyset is not found no further items will be added, and CrSp_
NOt_FOUND returned.

• CRSP_MATCH_FILL (=1): a dummy item will be created for any item if the item exists but the keyset does not exist for that
item in the current database.

• CRSP_MATCH_IGNORE (=2): items will not be added if the keyset is not found, but the return remains CrSp_SUCCeSS.

retUrN vaLUeS: CrSp_SUCCeSS: if successful, and all indicated items loaded according to match_flag
CrSp_FaiL: error in parameters, bad list, handle not initialized, or reference data not available.

SiDe eFFeCtS: if successful, the CRSP_ITM_GRP is loaded with all indicated items. a CRSP_ITM is allocated for each item/keyset pair not already
loaded. Object pointers are not set by this function.

preCONDitiONS: the item handle set must be loaded. the item table must be initialized with an available app_id. the first set in the set list must
agree with the app_id.

Example:

 if ((status=crsp_itm_load(hndl,”STKHDR_ALL;DSTK_TS”, CRSP_MATCH_IGNORE)) == CRSP_FAIL

 || status == CRSP_NOT_FOUND)

 {

 fprintf (stderr,err_msg);

 exit (EXIT_FAILURE);

 }

CrSp_itM_LOaD_KeYCrSp_itM_LOaD_KeY

crsp_itm_load_key defines the keytype that will be used for subsequent reads.

prOtOtYpe: int crsp_itm_load_key(CRSP_ITM_HNDL *hndl, char *ketytype);

arGUMeNtS: CRSP_ITM_HNDL *hndl: access handle containing the needed set structure information and the current item list.
Char *keytype:Name of the key to initialize. values are:

• gvkey: Compustat company key (default)

• gvkeyx: Compustat index key

• ccmid: GvKeY or GvKeYX

• permno: CrSp perMNO found in any links

• permco: CrSp perMCO found in any links

• apermno: CrSp-centric composite records by perMNO

• ppermco: CrSp-centric composite records by perMNO, primary links only

• sic: Compustat company SiC code

• ticker: Compustat security ticker symbol

• cusip: Security CUSip

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 21

retUrN vaLUeS: CrSp_SUCCeSS: if successful
CrSp_FaiL: error in parameters, handle not initialized, or keytype not found.

SiDe eFFeCtS: if successful, the handle is prepared to handle reads.

preCONDitiONS: the item handle must be initialized. Keytype must be known for the app_id.

Example:

 if (crsp_itm_load_key(hndl,”PERMNO”) == CRSP_FAIL)

 {

 fprintf (stderr,err_msg);

 exit (EXIT_FAILURE);

 }

CrSp_itM_OpeNCrSp_itM_OpeN

crsp_itm_open registers selected items in a handle by expanding structures and keysets, preparing keys, determining

modules needed to access items, opens the needed modules, and binds data in the item lists to the data structure

locations. It also builds a master index of all items available in the handle.

prOtOtYpe: int crsp_itm_open(CRSP_ITM_HNDL *hndl);

arGUMeNtS: CRSP_ITM_HNDL *hndl: access handle containing the needed set structure information and the current item list.

retUrN vaLUeS: CrSp_SUCCeSS: if opens successfully and binds the data
CrSp_FaiL: if error in parameters, inconsistent handle, error opening databases or binding items.

SiDe eFFeCtS: if successful, the handle is ready for access:
• all items in the loaded list will have object pointer set to the data location in the set data structure.

• if the handle grp_fill_cd is ‘Y’, then the item lists are filled to ensure full tables. Filling creates items to ensure that every
itm_name and keyset present in a group each combination is present even if not specified. Filling also arranges the lists so
if multiple keysets, each is sorted in the same order as the first keyset seen.

preCONDitiONS: the item handle must be previously initialized with function crsp_itm_init. it generally follows one or more instances of item load
function calls.

Example:

 if (crsp_itm_open(hndl) == CRSP_FAIL)

 {

 fprintf (stderr,err_msg);

 exit (EXIT_FAILURE);

 }

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 22

CrSp_itM_reaDCrSp_itM_reaD

crsp_itm_read loads data from handle based on item keys specified in prior function crsp_itm_key calls and the keyflag

argument. Depending on the level of the entity class, the operation may include reading data from the database into

structures and/or specifying data already loaded. This allows a direct or positional read based on keyflag.

If the value of the access handle property fiscal_disp_cd is “C”, any fiscal-based time series are shifted to a calendar

basis as part of the read operation.

prOtOtYpe: int crsp_itm_load(CRSP_ITM_HNDL *hndl, char *itm_str, int match_flag);

arGUMeNtS: CRSP_ITM_HNDL * hndl: Access handle containing the needed set structure

information and the current item list.

Char *itm_str: Code determining how the key is interpreted.
• CrSp_eXaCt: look for a specific value,

• CrSp_BaCK or CrSp_FOrwarD : direct selection when partial matches are allowed, or a positional qualifier to base
selection on the position relative to the last key accessed.

• CrSp_NeXt : read next key in sequence

• CrSp_prev : read previous key in sequence

• CrSp_SaMe: read same key, possibly with different information

• CrSp_FirSt : read first key in the database

• CrSp_LaSt : read last key in the database

Int match_flag: User provided variable to load with the level of the read. it will be loaded with a 0 if the load results in reading new
master data. it will be loaded with a number greater than 0 if the load impacts detail or global data, but no master data are affected.

retUrN vaLUeS: CrSp_SUCCeSS: if data loaded successfully
CrSp_eOF: if positional read reaches the end of the file
CrSp_NOt_FOUND: if key not found on exact read. if a detail input key is not provided and no items of that entity class are selected,
the return is CrSp_SUCCeSS as long as the primary key matches.
CrSp_FaiL: if error in parameters, handle not opened, error in read operations.

SiDe eFFeCtS: if successful, the wanted data for the key are loaded into the handle set structure which allows item objects to point to the loaded
data. the key found for each level is loaded into the outkey item list. if the handle fiscal_disp_cd is set to calendar-based and
items are fiscal-based, shifted calendars are created and time series are converted to calendar basis. the status argument is loaded
based on whether the primary key changed. handle primkey field and readlvl are set. readlvl is set to the rank of the first entity
class changed. if the primary key changed, getlvl is set to 0.

preCONDitiONS: the item handle must be initialized and opened. the item key must be initialized based on the key type, key element, and the entity
class. if not a positional qualifier, the item key inpkey list must be loaded.

Example:

 if ((ret = crsp_itm_read(hndl,CRSP_EXACT, &status)) == CRSP_FAIL)

 {

 fprintf (stderr,err_msg);

 got_db_error=1;

 break;

 }

CrSp_itM_Set_KeYCrSp_itM_Set_KeY

crsp_itm_set_key loads key information that will be used to load data in a function crsp_itm_read call. The key is

setup during the function crsp_itm_open based on the active keytype. The value passed to this function is entered into

the handle attached to the input key item.

prOtOtYpe: int crsp_itm_set_key(CRSP_ITM_HNDL *hndl, char *key_itm, void *keyval);

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 23

arGUMeNtS: CRSP_ITM_HNDL *hndl: access handle containing the needed set structure information and the current item list.
Char *key_itm: String containing an itm_name of an input key item to be loaded.
Void *keyval: Data to be loaded into the key item. Data must agree with the key item’s type.

retUrN vaLUeS: CrSp_SUCCeSS: if data loaded successfully
CrSp_FaiL: if error in parameters, handle not open, key item.

SiDe eFFeCtS: if successful, the keyval is copied into the data location for the input key item element in the handle.

preCONDitiONS: the item handle must be initialized and opened. the item key array must be initialized based on a keytype with the function crsp_
itm_open or function crsp_itm_init_key functions. the key_itm_name must be a valid item for that keytype, and the keyval
data must agree with the type of that item.

Example:

 if (crsp_itm_set_key(hndl,”KYPERMNO”,&permno) == CRSP_FAIL)

 {

 fprintf(stderr,err_msg);

 exit(EXIT_FAILURE);

 }

CrSp_reF_eLeM_LOOKUpCrSp_reF_eLeM_LOOKUp

crsp_ref_elem_lookup uses CA reference data that is available from within the item handle, to return a pointer to the

desired object within the CRSPAccess database.

prOtOtYpe: void *crsp_ref_elem_lookup(CRSP_CA_REF *ref, char *elem_name, int keyset);

arGUMeNtS: CRSP_CA_REF *ref: pointer to the Ca_reF data array bound within the item handle
char *elem_name: String containing a name of valid group element to be loaded.
int keyset:Desired item keyset, default is 0

retUrN vaLUeS: NULL: Desired object could not be found.
else: pointer to the data object (CRSP_TS, CRSP_ARR, CRSP_ROW).

preCONDitiONS: item handle must be initialized and open. Group element name and keyset must be valid, and the database must have been opened
with a wanted value that includes the module that contains the element.

Example:

 CRSP_ROW *stkhdr_row = 0;

 stkhdr_row = crsp_ref_elem_lookup(stkhdr_itm->hndl->ca_ref, “HEADER”, 0);

CrSp_reF_eLeM_tYpe_LOOKUpCrSp_reF_eLeM_tYpe_LOOKUp

Using the CA reference data available from within the item handle, crsp_ref_elem_type_lookup gives the data type of

the specified element.

prOtOtYpe: int crsp_ref_elem_type_lookup(CRSP_CA_REF *ref, char *elem_name, int *type)

arGUMeNtS: CRSP_CA_REF *ref: pointer to the CA_REF data array bound within the item handle
char *elem_name: String containing a name of a valid group element
int *type: pointer to an integer which will receive the data type

retUrN vaLUeS: CrSp_SUCCeSS or CrSp_FaiL

SiDe eFFeCtS: the type pointer will be modified regardless of success or failure

preCONDitiONS: item handle must be initialized and open. element name must be valid.

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 24

Example:

 stkhdr_row = crsp_ref_elem_lookup(stkhdr_itm->hndl->ca_ref, “HEADER”, 0);

CrSp_reF_Get_eLeM_vaL_CharCrSp_reF_Get_eLeM_vaL_Char

Using the CA reference data available from within the item handle, crsp_ref_get_elem_val_char returns the value of an

observation of a structure element that is a string type.

prOtOtYpe: char * crsp_ref_get_elem_val_char(CRSP_CA_REF *ref, char *elem_name, char *struct_

name, void *data, int index);

arGUMeNtS: CRSP_CA_REF *ref: pointer to the Ca_reF data array bound within the item handle
char *elem_name: String containing a name of a valid group element
char *struct_name: String containing the name of a valid data structure
void *data: pointer to the valid data container holding the data structure
int index: the zero-based index of the element to retrieve

retUrN vaLUeS: Character pointer to the string value of the data

preCONDitiONS: item handle must be initialized and open. element name and structure name must be valid. Data pointer and index must be valid.

Example:

 /* Get Character values */

 strcpy(siz_cusip, crsp_ref_get_elem_val_char(stkhdr_itm->hndl->ca_ref, “CUSIP”,

“HEADER”, stkhdr_row, 0));

 crsp_util_strtrim(siz_cusip);

CrSp_reF_Get_eLeM_vaL_DOUBLeCrSp_reF_Get_eLeM_vaL_DOUBLe

Using the CA reference data available from within the item handle, crsp_ref_get_elem_val_double returns the value of

an observation of a structure element that is a double type.

prOtOtYpe: double crsp_ref_get_elem_val_double(CRSP_CA_REF *ref, char *elem_name, char *struct_

name, void *data, int index);

arGUMeNtS: CRSP_CA_REF *ref: pointer to the Ca_reF data array bound within the item handle
char *elem_name: String containing a name of a valid group element
char *struct_name: String containing the name of a valid data structure
void *data: pointer to the valid data container holding the data structure
int index: the zero-based index of the element to retrieve

retUrN vaLUeS: the value of the requested data element.

preCONDitiONS: item handle must be initialized and open. element name and structure name must be valid. Data pointer and index must be valid.

Example:

 /* Get double values */

 Siz_delprc = crsp_ref_get_elem_val_double(stkhdr_itm->hndl->ca_ref, “DLPRC”,

“DELIST”, stkhdr_row, 0);

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 25

CrSp_reF_Get_eLeM_vaL_FLOatCrSp_reF_Get_eLeM_vaL_FLOat

Using the CA reference data available from within the item handle, crsp_ref_get_elem_val_float returns the value of an

observation of a structure element that is a float type.

prOtOtYpe: float crsp_ref_get_elem_val_float(CRSP_CA_REF *ref, char *elem_name, char *struct_name,

void *data, int index);

arGUMeNtS: CRSP_CA_REF *ref:pointer to the Ca_reF data array bound within the item handle
char *elem_name:String containing a name of a valid group element
char *struct_name:String containing the name of a valid data structure
void *data:pointer to the valid data container holding the data structure
int index: the zero-based index of the element to retrieve

retUrN vaLUeS: the value of the requested data element.

preCONDitiONS: item handle must be initialized and open. element name and structure name must be valid. Data pointer and index must be valid.

Example:

 /* Get integer values */

 siz_permno = crsp_ref_get_elem_val_int(stkhdr_itm->hndl->ca_ref, “PERMNO”, “HEADER”,

stkhdr_row, 0);

CrSp_reF_Get_eLeM_vaL_iNtCrSp_reF_Get_eLeM_vaL_iNt

Using the CA reference data available from within the item handle, crsp_ref_get_elem_val_int returns the value of an

observation of a structure element that is an integer type.

prOtOtYpe: int crsp_ref_get_elem_val_int(CRSP_CA_REF *ref, char *elem_name, char *struct_name,

void *data, int index);

arGUMeNtS: CRSP_CA_REF *ref:pointer to the Ca_reF data array bound within the item handle
char *elem_name:String containing a name of a valid group element
char *struct_name: String containing the name of a valid data structure
void *data: pointer to the valid data container holding the data structure
int index: the zero-based index of the element to retrieve

retUrN vaLUeS: the value of the requested data element.

preCONDitiONS: item handle must be initialized and open. element name and structure name must be valid. Data pointer and index must be valid.

Example:

 /* Get integer values */

 siz_permno = crsp_ref_get_elem_val_int(stkhdr_itm->hndl->ca_ref, “PERMNO”, “HEADER”,

stkhdr_row, 0);

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 26

reFereNCe iNFOrMatiON
CrSp C api Data tYpeS

All derived types used in the CRSP C API are defined in the module crsp_itm_types. They are included in user programs

automatically through the use of crsp_itm_lib module.

Note: This document lists only selected properties of the defined types that are relevant in the user-scope of item-based

access. The full individual definitions of the specific C derived types can be referenced from the respective include source

files. These files are already included in the crsp_itm_lib module and an explicit include statement is not necessary to use

the defined types in your programs. The supplied CRSP C API include files are listed in the following table:

pLatFOrM/LOCatiON FiLe DeSCriptiON

Windows 32-bit
Windows 64-bit
%CrSp_iNCLUDe%

SunOS sparc

Linux 32-bit
Linux 64-bit
$CrSp_iNCLUDe

crsp_itm_ccm_types.inc CrSp CCM/Compustat specific data types

crsp_itm_stk_types.inc CrSp Stock specific data types

crsp_itm_ind_types.inc CrSp index specific data types

crsp_itm_gen_types.inc CrSp generic data types used in all supported data sets

crsp_itm_types.inc Data types used in context of item-access

crsp_itm_params.inc Declarations of constant parameters used.

To use the CRSP C API library in your program simply include a ‘use’ statement for the top-level module crsp_itm_lib. All

of the required underlying modules will be included automatically. The supplied CRSP C API module files are listed in the

following table:

pLatFOrM/LOCatiON FiLe DeSCriptiON

windows 32-bit
windows 64-bit
%CrSp_iNCLUDe%\mod

SunOS sparc
SunOS i86pc
$CrSp_iNCLUDe/mod

Linux 32-bit
Linux 64-bit
$CrSp_iNCLUDe/mod
$CrSp_iNCLUDe/mod_g95

crsp_itm_lib.mod CrSp C itm-api user-level module

crsp_itm_utils.mod implementations of CrSp itm-api interfaces

crsp_itm_types.mod C derived types used in context of CrSp C itm-api

crsp_itm_xfer.mod internal functions and types for CrSp C/C exchange layer

CONtaiNer OBJeCtS

CRSP container objects are used to uniformly define the storage for various CRSP data types. Generally, the container’s

data is stored in the associated C array, except in the case of the CRSP_ROW container, where the storage is allocated for

an C scalar of the specified data type. The associated storage array is externally allocated with 0-based array bounds.

The CRSP time-series object has an associated calendar of the CRSP_CAL object type which is aligned with the time-series

data array, attributing the date to the values stored in the time-series array.

CRSP calendar data is stored in the CRSP_CAL container object, which defines the loaded calendar and also stores the

actual calendar data of the defined type. In the context of the CRSP C API, the calendars associated to the time-series

items are of day date-type and are accessed with caldt array.

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 27

Each container (except CRSP_ROW) has a defined availability range, with missing values set beyond the defined range. The

missing value is specific to the data type of the stored data and is located at the pre-defined array index position.

Properties of the CRSP container object types are listed in the following tables:

CrSp_tSCrSp_tS

CRSP time-series container object

NaMe C tYpe DeSCriptiON

objtype int Object type id (CrSp_tS_OtiD)

arrtype int type id of the data stored in the container

subtype int Subtype id of the data stored in the container

maxarr int Maximum bound for the storage array (index is 0-based)

beg int Lower index of the available stored data

end int Upper index of the available stored data

caltype int Calendar type of the associated calendar object

cal CrSp_CaL pointer to associated calendar object

miss_val_at = 0 array index of the missing value for the stored data type

CrSp_arraYCrSp_arraY

CRSP array container object

NaMe C tYpe DeSCriptiON

objtype int Object type id (CrSp_arraY_OtiD)

arrtype int type id of the data stored in the container

subtype int Subtype id of the data stored in the container

maxarr int Maximum bound for the storage array (index is 0-based)

num int Upper index of the available stored data (index is 0-based)

miss_val_at = maxarr - 1 array index of the missing value for the stored data type

CrSp_rOwCrSp_rOw

CRSP row container object

NaMe C tYpe DeSCriptiON

objtype int Object type id (CrSp_rOw_OtiD)

arrtype int type id of the data stored in the container

subtype int Subtype id of the data stored in the container

CrSp_CaLCrSp_CaL

CRSP calendar container object

NaMe C tYpe DeSCriptiON

objtype int Object type id (CrSp_CaL_OtiD)

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 28

NaMe C tYpe DeSCriptiON

calid int id code of the loaded calendar:
• CrSp_CaLiD_DaiLY

• CrSp_CaLiD_MONthLY

• CrSp_CaLiD_aNNUaL

• CrSp_CaLiD_QUarterLY

• CrSp_CaLiD_SeMiaNNUaL

• CrSp_CaLiD_weeKLY

Loadflag int Binary Flag on loaded array parts

maxarr int Maximum bound of the date storage array

gmtoffset int Minutes offset from GMt

timezone int Code for time zone GMt

relflag int if beg and end absolute or relative

beg int valid range subset begin

end int valid range subset end

ndays int Number of periods in calendar

name character(LeN=CrSp_NaMeSiZe) Calendar name

calcd char (LeN=CrSp_CaLCD_LeN) Calender Code

freqcd char (LeN=CrSp_ChSr_StrSiZe) Frequency Code

SUppOrtiNG tYpeS

The CRSP C itm-API supporting types provide additional information about data items and other associated objects in the

context of item-based access. An item object is usually associated to a keyset and calendar (in case of time-series items).

The details of the keyset (when non-zero) and calendar are given in the CRSP_ITM_KEYSET and CRSP_ITM_CAL derived

types.

Additionally, the details of the current CRSP data set (such as set name, product name, version, etc.) are provided in the

CRSP_ITM_SET and CRSP_ROOT_INFO derived types.

The relevant fields of the supporting types are listed in the following tables:

CrSp_itM_iNFOCrSp_itM_iNFO

Item detail information

NaMe C tYpe DeSCriptiON

itm_name char(LeN=CrSp_NaMe_LeN) item mnemonic name

dflt_keyset int Default keyset

full_name char(LeN=CrSp_NaMeSiZe) Full non-mnenonic name

itm_type char(LeN=CrSp_tYpe_LeN) type of data item

derv_flg char(LeN=CrSp_tYpe_LeN) item is stored/derived

unit_type char(LeN=CrSp_CODe_LeN) type of units (money, ratio)

unit_mult double precision Multiplier to get actual value

cat_type char(LeN=CrSp_CODe_LeN) Category (BS, iS, CF, MKt)

src_type char(LeN=CrSp_CODe_LeN) Source (filing, market)

freq_type char(LeN=CrSp_tYpe_LeN) reporting frequency type

disp_fmt char(LeN=CrSp_iteMNaMe_LeN) Display format specifier

disp_len int Field width for formatted output

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 29

NaMe C tYpe DeSCriptiON

disp_precn int Number of decimal places in output

ca_data_size int internal length

ca_arrtype int internal structure it belongs

ca_subtype int internal data sub type

subno_type int type of variant id

epsflag int epsilon type/digits for diffs

cepsflag int epsilon type for character(LeN=diffs)

epsilon double precision absolute epsilon for diffs

desc char(LeN=CrSp_DeSC_LeN) Default description for field

CrSp_itM_KeYSetCrSp_itM_KeYSet

Keyset descriptor

NaMe C tYpe DeSCriptiON

keyset int Keyset number

is_loaded int true when items where requested with this keyset

keyset_info CrSp_KeYSet information about the keyset

items_arr CrSp_arraY CrSp array container definition for keyset composing items

items CrSp_itM array of the items composing the keyset

CrSp_itM_CaLCrSp_itM_CaL

Calendar descriptor

NaMe C tYpe DeSCriptiON

app_id int application iD

cal_seq_num int Calendar sequence number

fiscal_disp_cd char(LeN=CrSp_tYpe_LeN) Fiscal Display code

freqcd char(LeN=CrSp_Char_StrSiZe) Frequency code of the calendar

itm_name char (LeN=CrSp_NaMe_LeN) item Name

cal_derv_flg char (LeN=CrSp_CODe_LeN) Calendar derived flag

desc char (LeN=CrSp_DeSC_LeN Description of the Calendar

CrSp_KeYSetCrSp_KeYSet

Keyset information

NaMe C tYpe DeSCriptiON

keyset int Keyset number

keyset_tag char(LeN=CrSp_NaMe_LeN) Keyset tag name

desc char(LeN=CrSp_DeSC_LeN) Keyset description

CrSp_itM_SetCrSp_itM_Set

Data set descriptor

NaMe C tYpe DeSCriptiON

set_name char(LeN=CrSp_NaMe_LeN) Keyset number

path char(LeN=CrSp_pathSiZe) Keyset tag name

CRSP PRogRammeR'S guide | ITEM-BASED ACCESS IN C PAGE 30

NaMe C tYpe DeSCriptiON

root_info CrSp_rOOt_iNFO Database root information

CrSp_rOOt_iNFOCrSp_rOOt_iNFO

Database root information

NaMe C tYpe DeSCriptiON

product_name char(LeN=CrSp_prOD_NaMeSiZe) Database name

product_code char(LeN=CrSp_CODe_NaMeSiZe) Database code

version int version number of db

crt_date char(LeN=CrSp_Date_SiZe) Dates are Dow Mon DD hh:MM:SS YYYY

mod_date char(LeN=CrSp_Date_SiZe) Last modification date of db

cut_date char(LeN=CrSp_Date_SiZe) Cut date of db

binary_type char(LeN=CrSp_Char_StrSiZe) L (ieee little-endian) or B (big)

code_version char(LeN=CrSp_OS_NaMeSiZe) Ca version

PAGE 31

Chapter 3: iteM-BaSeD aCCeSS iN FOrtraN

CrSp FOrtraN 95 api Data OBJeCtS
Access to CRSP databases is achieved through two principal objects: the access handle – of type CRSP_ITM_HNDL_T, and

the item – of type CRSP_ITM_T. These two important object types can be seen in steps 2 and 3 of the sample program

flow on page 69.

CrSp_itM_hNDL_tCrSp_itM_hNDL_t

The item-access handle object type(CRSP_ITM_HNDL_T) encapsulates the information required to establish and maintain

a single item-access session to a given CRSP database. Additional access sessions (either to the same or to another CRSP

database), concurrent in the same program, require a separate access handle object. All of the item objects available in the

active session are grouped within the respective access handle.

The main properties of the access handle object are listed on the following table:

NaMe FOrtraN 95 tYpe DeSCriptiON

keytype character(LeN=CrSp_NaMe_LeN) Determines the keys used to select data in read functions. Supported keytypes for the application are included
in the reference data. a default will be set.

keyset_disp_cd character(LeN=CrSp_tYpe_LeN) Determines whether keyset items are labeled by the keyset number (NUM), the keyset tag (taG), or the
expanded list of all items comprising the keyset (eXp). the default display is taG.

fiscal_disp_cd character(LeN=CrSp_tYpe_LeN) Determines whether fiscal-based time series items are reported on a calendar basis (C) or a fiscal basis (F). the
default it C.

curr_disp_cd character(LeN=CrSp_tYpe_LeN) Determines whether monetary values are reported in the currency reported by Compustat (rep) or in US
Dollars (USD). the default currency display code is rep.

grp_fill_cd character(LeN=CrSp_tYpe_LeN) Determines whether group item lists are filled so that every selected item is included for every selected keyset
(Y or N). the default is Yes (Y).

dataset CrSp_itM_Set_t pointer to descriptor of currently attached CrSp dataset; includes root info for the CrSp dataset.

In a user-program the access handle objects are normally declared and allocated directly then passed to Fortran 95 itm-API

functions as a parameter. The function crsp_f_itm_init initializes the contents of the access handle and connects it to

the specified CRSP database.

CrSp_itM_tCrSp_itM_t

The item object type(CRSP_ITM_T) represents a generic container for a single data item defined in a given CRSP

database. It unifies the data types defined for each of the supported CRSP databases and allows uniform access to the

associated CRSP data containers from your programs.

The main properties of the item object are listed in the following table:

NaMe FOrtraN 95 tYpe DeSCriptiON

itm_name character(LeN=CrSp_NaMe_LeN) name of the item from a CrSp dataset.

keyset integer number of the keyset defined in a CrSp dataset.

itm_info CrSp_itM_iNFO_t item metadata; includes description, default keyset, and stored data type.

obj CrSp_itM_OBJ_t describes the underlying CrSp data-object.

arr CrSp_itM_OBJarr_t describes the Fortran 95 container associated with the defined CrSp data-object.

itmkeyset CrSp_itM_KeYSet_t describes the details of the keyset (when non-zero and loaded), including its number, name, tag, and array of
composing items of same CrSp_itM_t type.

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 32

NaMe FOrtraN 95 tYpe DeSCriptiON

itmcal CrSp_itM_CaL_t for calendar-bound items, describes the details of the attached calendar, including its id, keyset ,frequency, and
attached calendar object of CrSp_CaL_t type. when requested, the calendar may be ‘shifted’, based on the
currently loaded company’s FYe to attribute properly the item’s period data.

Item objects are normally declared as Fortran 95 pointers and then attached to the actual defined item objects by calling

the crsp_f_itm_find function for the given access handle and the specified item name and keyset.

CrSp_itM_OBJ_tCrSp_itM_OBJ_t

Item data is accessed from the data-object itm%obj and associated to a Fortran 95 container itm%arr. The item data

container object type(CRSP_ITM_OBJ_T) describes an instance of a CRSP data-object (time-series, array, row) that is

defined for the specific item. Only a single data-object can be defined for a given item, which is identified by the objtype

property.

Properties of the item data-object are listed in the following table:

NaMe FOrtraN 95 tYpe DeSCriptiON

objtype integer type of the defined and allocated object:
• CrSp_tS_OtiD: CrSp time-series
• CrSp_arraY_OtiD: CrSp array
• CrSp_rOw_OtiD: CrSp row

ts CrSp_tS_t pointer to allocated CrSp time-series data-object.

arr CrSp_arraY_t pointer to allocated CrSp array data-object.

row CrSp_rOw_t pointer to allocated CrSp row data-object.

is_empty logical indicates whether the allocated CrSp data-object contains no data.

The item data-object normally has an associated Fortran 95 container, which is either Fortran 95 array or scalar of the data

type corresponding to the actual stored data, as identified by arrtype property. Details of the CRSP container objects types

are listed in the reference section CRSP Container Objects.

CrSp_itM_OBJarr_tCrSp_itM_OBJarr_t

The item data array, type CRSP_ITM_OBJARR_T describes the associated Fortran 95 container object. The Fortran 95

container is allocated based on the object’s type (objtype) and contained data type (arrtype). The respective scalar

member has suffix _val to its name, and _arr for the array type. Time-series and array data are stored in array type, while

row data is kept in scalar type:

itm%arr%arrtype:

CRSP_TS_OTID: itm%arr%<arrtype_name>_arr - time-series object data array

CRSP_ARARY_OTID: itm%arr%<arrtype_name>_arr - array object data array

CRSP_ROW_OTID: itm%arr%<arrtype_name>_val - row object data scalar.

NOTE: Throughout the implementation of the CRSP Fortran 95 API, the Fortran 95 array indexing is 0-based, thus the first

element of an array is data_arr(0).

Properties of the item data array for the item data types that are common to all of the supported CRSP datasets are listed

in the following table:

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 33

NaMe FOrtraN 95 tYpe DeSCriptiON

arrtype integer data type of the defined and allocated Fortran 95 container. Common data types:
• CrSp_iNteGer_tiD: integer
• CrSp_FLOat_tiD: real
• CrSp_DOUBLe_tiD: double precision
• CrSp_Char_tiD: character(1)
• CrSp_CharaCter_tiD: CrSp_varStriNG_t type

int_val / arr integer / dimension (:) pointer to allocated scalar / array of integer type

flt_val / arr real / dimension (:) pointer to allocated scalar / array of real type

dbl_val / arr double precision / dimension (:) pointer to allocated scalar / array of double precision type

char_val / arr character(LeN=1) / dimension (:) pointer to allocated scalar / array of single-character type

vstr_val / arr CrSp_varStriNG_t / dimension (:) pointer to allocated scalar / array of variable-length string type

structured
types specific to
CrSp datasets

refer to the description of data types for the specific CrSp dataset.

In a user-program the item container data is usually accessed directly as defined by item’s data type, eg:

print *, sale_itm%arr%dbl_arr(i)

The item data container is normally accessed in association with its item data-object.

NOTE: If an incorrect data container is referenced, an access violation error should occur on the referenced null-pointer.

In such situations the recommended action is to verify that the appropriate containers are being accessed for the selected

items.

Data for items of CRSP array type is accessed in the valid [0..num-1] index range, as defined in the corresponding arr

data-object. For example:

itm%arr%dbl_arr(i), i=0..itm%obj%arr%num-1

Data for items of CRSP time-series type is accessed in the valid [beg,end] index range, as defined in the corresponding ts

data-object, e.g.:

itm%arr%dbl_arr(i), i=itm%obj%ts%beg..itm%obj%ts%end

Data for items of CRSP row type is not indexed and is accessed directly from the value as defined by the corresponding

scalar/structured type, e.g.:

itm%arr%master_val%ccmid

To verify if an element of an array item contains a missing value, call the function crsp_f_itm_is_miss_arrval.

SUPPORTING INFORMATION

Various supporting information about CRSP databases, items, keysets and other item-access objects is stored in the

following derived types:

FOrtraN 95 tYpe
NaMe

DeSCriptiON aCCeSS via tYpe
NaMe

USaGe

CrSp_itM_iNFO_t item information; includes item’s full name, description, display format, data type and size
information. also includes the default keyset number associated with this item.

CrSp_itM_t itm%itm_info

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 34

FOrtraN 95 tYpe
NaMe

DeSCriptiON aCCeSS via tYpe
NaMe

USaGe

CrSp_itM_KeYSet_t Keyset descriptor; includes keyset information and the array of items composing the keyset. CrSp_itM_t itm%itmkeyset

CrSp_itM_CaL_t Calendar descriptor; includes calendar’s id, associated keyset number, base calendar name,
and calendar’s frequency, also the base calendar object. additionally, for fiscal calendars
indicates whether the calendar has been shifted based on the currently loaded company’s FYe.

CrSp_itM_t itm%itmcal

CrSp_KeYSet_t Keyset information; includes keyset’s number, name, tag, and description. indicates whether
the keyset has been loaded and associated with any of the requested items.

CrSp_itM_
KeYSet_t

itmkeyset%keyset_info

CrSp_itM_Set_t CrSp data set descriptor; includes the set’s path, name, id, and database root information. CrSp_itM_hNDL_t hndl%dataset

CrSp_rOOt_iNFO_t CrSp data set root information; includes internal service information about the currently
loaded database such as creation/modification date, product code and name, and descriptors
of available calendars. Mainly intended for internal use.

CrSp_itM_Set_t dataset%root_info

NOTE: While selected supported information is populated on initiating of the connection to a CRSP data set (on return

from call to crsp_f_itm_init), the listed supported information becomes available only on opening of the CRSP data set

(on return from call to crsp_f_itm_open).

The relevant details of the derived types shown above are listed in the Supporting Types on page 69.

GENERIC DATA TYPES

All CRSP databases contain data items of both simple Fortran 95 data types and of database-specific structured data

types. Moreover, each composing field of the structured data type can instead be requested as an individual data item of

the simple Fortran 95 data type.

The vast majority of the data items defined in CRSP datasets are of CRSP time-series container object type, with the stored

values commonly of generic Fortran 95 data types. A limited set of items is stored in CRSP array and CRSP row container

objects; these items are mostly of structured data types and are listed in the following sections regarding particular CRSP

database products.

The following table lists the supported generic data types and ways to access data from the item-associated container:

iteM OBJeCt tYpe FOrtraN 95 tYpe NaMe iNterNaL StOraGe aCCeSS via CrSp_itM_t

time-series CrSp_tS_t itm%obj%ts

integer int(4) itm%arr%int_arr(i)

real float(4) itm%arr%flt_arr(i)

double precision double(8) itm%arr%dbl_arr(i)

character(LeN=1) char (1) itm%arr%char_arr(i)

CrSp_varStriNG_t char(n) itm%arr%vstr_arr(i)

array CrSp_arraY_t itm%obj%arr

integer int(4) itm%arr%int_arr(i)

real float(4) itm%arr%flt_arr(i)

double precision double(8) itm%arr%dbl_arr(i)

character(LeN=1) char (1) itm%arr%char_arr(i)

CrSp_varStriNG_t char(n) itm%arr%vstr_arr(i)

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 35

iteM OBJeCt tYpe FOrtraN 95 tYpe NaMe iNterNaL StOraGe aCCeSS via CrSp_itM_t

row CrSp_rOw_t itm%obj%row

integer int(4) itm%arr%int_val

real float(4) itm%arr%flt_val

double precision double(8) itm%arr%dbl_val

character(LeN=1) char (1) itm%arr%char_val

CrSp_varStriNG_t char(n) itm%arr%vstr_val

NOTE: The derived type CRSP_VARSTRING_T accommodates varying-length character strings and is used in the context

of the CRSP Fortran 95 API to store data of individual character items that are composing fields of a structured data

item. For example, the CCM structured item COMPANY has a field for company name, which can be referenced indirectly

as company_itm%arr%company_val%conm as a fixed-length character string. Alternatively, this field can be requested

individually as the CONM item and then referenced as conm_itm%arr%vstr_val as varying-length string.

See the description of the CRSP_VARSTRING_T type on page 71 for usage information.

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 36

aCCeSSiNG CrSp DataBaSeS
The following sections describe the details of accessing CRSP databases supported by the API. Supported databases are

the CRSP US Stock Database, the CRSP US Index Database, and the CRSP/Compustat Merged Database. Each section

presents database connection information, available access keys, as well how to access a database’s data groups and items

from your programs.

CRSP US STOCK DATABASE

To connect to the specific CRSP Stock database instance the path to its database root should be specified. When installed

on your system, CRSP Stock data set will be assigned an environment variable pointing to the CRSP Stock database root.

Additionally, an application ID should be specified on the call to crsp_f_itm_init to indicate the item-universe to be

loaded for the session and describes the available items and item groups, eg:

sts = crsp_f_itm_init (hndl,’CRSP_DSTK’,app_id,’stk1’)

User-programs should access the CRSP Stock data set with the app_id as listed in the following table:

StK rOOt/app iD FOrtraN 95 tYpe DeSCriptiON

CrSp_DStK CrSp Daily Stock data set

CrSp_DStKitM_iD integer CrSp Daily Stock data items and groups

CrSp_MStK CrSp Monthly Stock data set

CrSp_MStKitM_iD integer CrSp Monthly Stock data items and groups

The details on included items and item groups can be found starting on page 37.

aCCeSS KeYSaCCeSS KeYS

CRSP Stock data set contains various data on companies and securities. Access key is composed of access key items the

values of which can be retrieved or set from the user-program to control the direct access to STK data.

Default access key is loaded automatically on opening the access session to the CRSP STK data set

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP

PERMNO, CUSIP, and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set

on the selected access key. The function crsp_f_itm_get_key can also be used to retrieve the value of the access key

items for the currently read record.

To switch to access by an alternative key, a user calls crsp_f_itm_load_key to set the access key index, followed by calls

to crsp_itm_set_key to set the value of the key items used on subsequent reading of the database.

The defined STK access keys and associated key items are listed in the following table:

CCM aCCeSS KeY/KeY iteMS FOrtraN 95 tYpe DeSCriptiON NOteS

perMNO CrSp historical perMNO default

KYperMNO integer CrSp company issue’s perMNO primary key item

perMCO CrSp historical perMCO

KYperMCO integer CrSp company’s perMCO primary key item

CUSip CrSp Stock CUSip

KYCUSip char(CrSp_CUSip_LeN) CrSp Stock issue’s CUSip primary key item

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 37

CCM aCCeSS KeY/KeY iteMS FOrtraN 95 tYpe DeSCriptiON NOteS

hCUSip CrSp Stock historical CUSip

KYhCUSip char(CrSp_CUSip_LeN) CrSp issue’s historical CUSip primary key item

ticker CrSp Stock ticker

KYtiCKer char(CrSp_StK_tiC_LeN) CrSp issue’s ticker primary key item

SiCCD CrSp Stock SiC code

KYSiC integer CrSp Stock security’s SiC primary key item

Data tYpeSData tYpeS

Generally, individual CRSP Stock database data items are of common simple Fortran 95 data types and stored data can be

accessed through itm%arr and corresponding scalar or array member.

Additionally, selected CRSP supplemental STK data groups can be accessed by the entire group as a defined structured

type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm_name, but

recommended programming access is through the itm_name of the structure. To access the structured type and its fields,

load the structured type itm_name during initialization, create a CRSP_ITM_T pointer matching the itm_name, attach it to

the data, and access the structured type and its fields through the pointer:

sts = crsp_f_itm_load(hndl,’HEADER’,match_flag)

sts = crsp_f_itm_find(hndl,’HEADER’,0,header_itm)

permno = header_itm%arr%header_val%permno

...

StrUCtUreD tYpeS FOr CrSp US StOCK DataBaSe aCCeSSStrUCtUreD tYpeS FOr CrSp US StOCK DataBaSe aCCeSS

The tables below show the data groups available as STK structured types and their usage through the CRSP_ITM_T type.

StK MNeMONiC DeSCriptiON FOrtraN 95 tYpe
NaMe

OBJeCt
tYpe

OBJeCt aCCeSS via
CrSp_itM_t

DaiLY MONthLY

heaDer MheaDer issue header information CrSp_StK_heaDer_t row header_itm%obj%row

NaMeS MNaMeS Name information snapshot CrSp_StK_NaMe_t array names_itm%obj%arr

DiStS MDiStS information for a distribution event CrSp_StK_DiSt_t array dists_itm%obj%arr

ShareS MShareS Shares outstanding snapshot CrSp_StK_Share_t array shares_itm%obj%arr

DeLiSt MDeLiSt Delisting information CrSp_StK_DeLiSt_t array delist_itm%obj%arr

NaSDiN MNaSDiN Snapshot of Nasdaq information CrSp_StK_NaSDiN_t array nasdin_itm%obj%arr

pOrtF MpOrtF portfolio statistic and assignment snapshot CrSp_StK_pOrt_t array portf_itm%obj%arr

GrOUp MGrOUp Group statistic and assignment snapshot CrSp_StK_GrOUp_t array group_itm%obj%arr

(M)heaDer

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

heaDer MheaDer issue header information CrSp_StK_heaDer_t header_itm%arr%header_val

perMNO MperMNO perMNO int(4) i6 header_val%permno

perMCO MperMCO perMCO int(4) i6 header_val%permco

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 38

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

COMpNO MCOMpNO NaSDaQ Company Number int(4) i8 header_val%compno

iSSUNO MiSSUNO NaSDaQ issue Number int(4) i8 header_val%issuno

heXCD MheXCD exchange Code - header int(4) i2 header_val%hexcd

hShrCD MhShrCD Share Code - header int(4) i3 header_val%hshrcd

hNaMeCD MhNaMeCD Name Code -header int(4) i4 header_val%hnamecd

hSiCCD MhSiCCD Standard industrial Classification (SiC) Code - header int(4) i2 header_val%hsiccd

BeGDt MBeGDt Begin of Stock Data int(4) i8 header_val%begdt

eNDDt MeNDDt end of Stock Data int(4) i8 header_val%enddt

hDLStCD MhDLStCD Delisting Code -header int(4) i3 header_val%dlstcd

CUSip MCUSip CUSip - header char(16) a8 header_val%hcusip

htiCK MhtiCK ticker Symbol - header char(16) a6 header_val%htick

hNaiCS MhNaiCS North american industry Classification System
(NaiCS) - header

char(8) a7 header_val%hnaics

hCOMNaM MhCOMNaM Company Name - header char(36) a36 header_val%hcomnam

htSYMBOL MhtSYMBOL trading ticker Symbol - header char(12) a12 header_val%htsymbol

hCNtrYCD MhCNtrYCD Country Code - header char(4) a3 header_val%hcntrycd

hpriMeXCh MhpriMeXCh primary exchange - header char(1) a1 header_val%hprimexch

hSUBeXCh MhSUBeXCh Sub-exchange - header char(1) a1 header_val%hsubexch

htrDStat MhtrDStat trading Status - header char(1) a1 header_val%htrdstat

hSeCStat MhSeCStat Security Status - header char(1) a1 header_val%hsecstat

hShrtYpe MhShrtYpe Share type - header char(1) a1 header_val%hshrtype

hiSSUerCD MhiSSUerCD issuer Code -header char(1) a1 header_val%hissuercd

hiNCCD MhiNCCD incorporation Code -header char(1) a1 header_val%hinccd

hitS MhitS intermarket trading System indicator - header char(1) a1 header_val%hits

hDeNOM MhDeNOM trading denomination char(1) a1 header_arr(i)%hdenom

heLiGCD MheLiGCD eligibility code char(1) a1 header_arr(i)%heligcd

hCONvCD MhCONvCD Convertible code char(1) a1 header_arr(i)%hconvcd

hNaMeFLaG MhNaMeFLaG Name flag char(1) a1 header_arr(i)%hnameflag

hNaMeDeSC MhNaMeDeSC Name description char(24) a15 header_arr(i)%hnamedesc

hratiNG MhratiNG rating (if applicable) or strike price float(4) F9.4 header_arr(i)%hrating

heXpDt MheXpDt expiration date int(4) i8 header_arr(i)%hexpdt

(M)NaMeS

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

NaMeS MNaMeS Name information snapshot CrSp_StK_NaMe_t names_itm%arr%names_arr

UOt MUOt Unit of trade, end of period - actual int(4) i6 names_arr(i)%uot

NaMeDt MNaMeDt Names information Begin Date int(4) i8 names_arr(i)%namedt

NaMeeNDDt MNaMeeNDDt Names information end Date int(4) i8 names_arr(i)%nameenddt

ShrCD MShrCD Share Code int(4) i2 names_arr(i)%shrcd

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 39

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

NaMeCD MNaMeCD Name Code, end of period - actual int(4) i3 names_arr(i)%namecd

eXChCD MeXChCD exchange Code int(4) i2 names_arr(i)%exchcd

SiCCD MSiCCD Standard industrial Classification (SiC) Code int(4) i4 names_arr(i)%siccd

NCUSip MNCUSip CUSip char(16) a8 names_arr(i)%ncusip

tiCKer MtiCKer ticker Symbol char(8) a5 names_arr(i)%ticker

SNaiCS MSNaiCS North american industry Classification System (NaiCS) char(8) a7 names_arr(i)%snaics

COMNaM MCOMNaM Company Name char(36) a32 names_arr(i)%comnam

tSYMBOL MtSYMBOL trading ticker Symbol char(12) a10 names_arr(i)%tsymbol

CNtrYCD MCNtrYCD Country Code, end of period - actual char(4) a3 names_arr(i)%cntrycd

priMeXCh MpriMeXCh primary exchange char(1) a1 names_arr(i)%primexch

SUBeXCh MSUBeXCh Sub-exchange char(1) a1 names_arr(i)%subexch

trDStat MtrDStat trading Status char(1) a1 names_arr(i)%trdstat

SeCStat MSeCStat Security Status char(1) a1 names_arr(i)%secstat

ShrtYpe MShrtYpe Share type, end of period - actual char(1) a1 names_arr(i)%shrtype

iSSUerCD MiSSUerCD issuer Code, end of period - actual char(1) a1 names_arr(i)%issuercd

iNCCD MiNCCD incorporation Code, end of period - actual char(1) a1 names_arr(i)%inccd

itS MitS intermarket trading System, end of period - actual char(1) a1 names_arr(i)%its

DeNOM MDeNOM trading Denomination, end of period - actual char(1) a1 names_arr(i)%denom

eLiGCD MeLiGCD eligibility Code, end of period - actual char(1) a1 names_arr(i)%eligcd

CONvCD MCONvCD Convertible Code, end of period - actual char(1) a1 names_arr(i)%convcd

NaMeFLaG MNaMeFLaG Name Flag, end of period - actual char(1) a1 names_arr(i)%nameflag

ShrCLS MShrCLS Share Class char(4) a1 names_arr(i)%shrcls

NaMeDeSC MNaMeDeSC Name Description, end of period - actual char(24) a15 names_arr(i)%namedesc

ratiNG MratiNG interest rate, end of period - actual float(4) F9.4 names_arr(i)%rating

eXpDt MeXpDt expiration Date, end of period - actual int(4) i8 names_arr(i)%expdt

(M)DiStS

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

DiStS MDiStS information for a distribution event CrSp_StK_DiSt_t dists_itm%arr%dists_arr

DiStCD MDiStCD Distribution Code int(4) i4 dists_arr(i)%distcd

DivaMt MDivaMt Dividend amount float(4) F9.5 dists_arr(i)%divamt

FaCpr MFaCpr Factor to adjust price in period float(4) F8.4 dists_arr(i)%facpr

FaCShr MFaCShr Factor to adjust Shares Outstanding float(4) F8.4 dists_arr(i)%facshr

DCLrDt MDCLrDt Distribution Declaration Date int(4) i8 dists_arr(i)%dclrdt

eXDt MeXDt ex-Distribution Date int(4) i8 dists_arr(i)%exdt

rCrDDt MrCrDDt record Date int(4) i8 dists_arr(i)%rcrddt

paYDt MpaYDt payment Date int(4) i8 dists_arr(i)%paydt

aCperM MaCperM acquiring perMNO int(4) i5 dists_arr(i)%acperm

aCCOMp MaCCOMp acquiring perMCO int(4) i5 dists_arr(i)%accomp

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 40

(M)ShareS

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

ShareS MShareS Shares outstanding snapshot CrSp_StK_Share_t shares_itm%arr%shares_arr

ShrOUt MShrOUt Shares Outstanding int(4) i10 shares_arr(i)%shrout

ShrSDt MShrSDt Shares Outstanding Observation Date int(4) i8 shares_arr(i)%shrsdt

ShrSeNDDt MShrSeNDDt Shares Outstanding Observation end Date int(4) i8 shares_arr(i)%shrsenddt

ShrFLG MShrFLG Shares Outstanding Observation Flag int(4) i4 shares_arr(i)%shrflg

(M)DeLiSt

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

DeLiSt MDeLiSt Delisting information CrSp_StK_DeLiSt_t delist_itm%arr%delist_arr

DLStDt MDLStDt Delisting Date int(4) i8 delist_arr(i)%dlstdt

DLStCD MDLStCD Delisting Code int(4) i3 delist_arr(i)%dlstcd

NwperM MNwperM Linked perMNO after Delisting int(4) i8 delist_arr(i)%nwperm

NwCOMp MNwCOMp Linked perMCO after Delisting int(4) i8 delist_arr(i)%nwcomp

NeXtDt MNeXtDt Date of Next available information int(4) i8 delist_arr(i)%nextdt

DLaMt MDLaMt total amount Used in Delisting return float(4) F13.5 delist_arr(i)%dlamt

DLretX MDLretX Delisting return without Dividends float(4) F11.6 delist_arr(i)%dlretx

DLprC MDLprC Delisting price float(4) F13.5 delist_arr(i)%dlprc

DLpDt MDLpDt Delisting payment Date int(4) i8 delist_arr(i)%dlpdt

DLret MDLret Delisting return float(4) F11.6 delist_arr(i)%dlret

(M)NaSDiN

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

NaSDiN MNaSDiN Snapshot of Nasdaq information CrSp_StK_NaSDiN_t nasdin_itm%arr%nasdin_arr

trtSCD MtrtSCD NaSDaQ Status Code, end of period int(4) i2 nasdin_arr(i)%trtscd

trtSDt MtrtSDt Beginning effective Date of traits int(4) i8 nasdin_arr(i)%trtsdt

trtSeNDDt MtrtSeNDDt Last effective Date of traits int(4) i8 nasdin_arr(i)%trtsenddt

NMSiND MNMSiND NaSDaQ National Market indicator int(4) i2 nasdin_arr(i)%nmsind

MMCNt MMMCNt NaSDaQ Market Makers Count int(4) i4 nasdin_arr(i)%mmcnt

NSDiNX MNSDiNX NaSDaQ index Code int(4) i2 nasdin_arr(i)%nsdinx

(M)pOrtF

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

pOrtF MpOrtF portfolio statistic and assignment snapshot CrSp_StK_pOrt_t port_itm%arr%port_arr

pOrt MpOrt portfolio assignment int(4) i4 portf_arr(i)%port

Stat MStat portfolio Statistic value double(8) F16.5 portf_arr(i)%stat

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 41

(M)GrOUp

StK MNeMONiC FieLD NaMe iNterNaL StOraGe DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

GrOUp MGrOUp Group statistic and assignment snapshot CrSp_StK_GrOUp_t group_itm%arr%group_arr

GrpDt MGrpDt Group Beginning Date int(4) i8 group_arr(i)%grpdt

GrpeNDDt MGrpeNDDt Group ending Date int(4) i8 group_arr(i)%grpenddt

GrpFLaG MGrpFLaG Group Flag int(4) i4 group_arr(i)%grpflag

GrpSUBFLaG MGrpSUBFLaG Group Subflag int(4) i4 group_arr(i)%grpsubflag

CRSP US INDEX DATABASE

To connect to the specific CRSP Index database instance the path to its database root should be specified. When installed

on your system, CRSP Index data sets will be assigned an environment variable pointing to the CRSP Index database root.

Additionally, an application ID should be specified on the call to crsp_f_itm_init to indicate the item-universe to be

loaded for the session and describes the available items and item groups, eg:

sts = crsp_f_itm_init (hndl,’CRSP_DSTK’,app_id,’ind1’)

User-programs should access the CRSP Index data sets with the app_id as listed in the following table:

StK rOOt/app iD FOrtraN 95 tYpe DeSCriptiON

CrSp_DStK CrSp Daily Stock and index data sets

CrSp_DiNDiteMS_iD integer CrSp Daily index series data items and groups

CrSp_DiNDGiteMS_iD integer CrSp Daily index group data items and groups

CrSp_MStK CrSp Monthly Stock and index data sets

CrSp_MiNDiteMS_iD integer CrSp Monthly index series data items and groups

CrSp_MiNDGiteMS_iD integer CrSp Monthly index group data items and groups

aCCeSS KeYSaCCeSS KeYS

CRSP Index data sets includes various data on market indexes. Access key is composed of access key items the values of

which can be retrieved or set from the user-program to control the direct access to IND data.

Default access key is loaded automatically on opening the access session to the CRSP IND data set.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set

on the selected access key. The function crsp_f_itm_get_key can also be used to retrieve the value of the access key

items for the currently read record.

The defined IND access keys and associated key items are listed in the following table:

CCM aCCeSS KeY/KeY iteMS FOrtraN 95 tYpe DeSCriptiON NOteS

indno CrSp index’s iNDNO default

KYiNDNO integer CrSp index’s iNDNO primary key item

Data tYpeSData tYpeS

Generally, individual CRSP Index database data items are of common simple Fortran 95 data types and stored data can be

accessed through itm%arr and corresponding scalar or array member.

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 42

Additionally, selected CRSP supplemental IND data groups can be accessed by the entire group as a defined structured

type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm_name, but

recommended programming access is through the itm_name of the structure. To access the structured type and its fields,

load the structured type itm_name during initialization, create a CRSP_ITM_T pointer matching the itm_name, attach it to

the data, and access the structured type and its fields through the pointer:

sts = crsp_f_itm_load(hndl,’INDHDR’,match_flag)

sts = crsp_f_itm_find(hndl,’INDHDR’,0,indhdr_itm)

indno = indhdr_itm%arr%indhdr_val%indno

...

StrUCtUreD tYpeS FOr CrSp US iNDeX DataBaSe aCCeSSStrUCtUreD tYpeS FOr CrSp US iNDeX DataBaSe aCCeSS

The tables below show the data groups available as structured types and their usage through the CRSP_ITM_T type.

iND MNeMONiC DeSCriptiON FOrtraN 95 tYpe
NaMe

OBJeCt
tYpe

OBJeCt aCCeSS via
CrSp_itM_t

DaiLY MONthLY

iNDhDr MiNDhDr index header information CrSp_iND_heaDer_t row indhdr_itm%obj%row

reBaL MreBaL index rebalancing period summary CrSp_iND_reBaL_t array rebal_itm%obj%arr

LiSt MLiSt issue list information CrSp_iND_LiSt_t array list_itm%obj%arr

(M)iNDhDr

iND MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

iNDhDr MiNDhDr index header information CrSp_iND_heaDer_t indhdr_itm%arr%indhdr_val

iNDNO MiNDNO specific index series int(4) i7 indhdr_val%indno

iNDCO MiNDCO major index series group int(4) i7 indhdr_val%indco

priMFLaG MpriMFLaG 0 if master or permno of master int(4) i6 indhdr_val%primflag

pOrtNUM MpOrtNUM portfolio number in master if subset int(4) i6 indhdr_val%portnum

iNDNaMe MiNDNaMe index name char(80) a79 indhdr_val%indname

GrOUpNaMe MGrOUpNaMe index group name char(80) a79 indhdr_val%groupname

MethCODe MMethCODe code of possible methodology types int(4) i6 indhdr_val%method%methcode

priMtYpe MpriMtYpe fractile, selected, rulebased, market int(4) i6 indhdr_val%method%primtype

SUBtYpe MSUBtYpe index type subcode int(4) i6 indhdr_val%method%subtype

wGttYpe MwGttYpe reweighting type flag int(4) i6 indhdr_val%method%wgttype

wGtFLaG MwGtFLaG reweighting timing flag int(4) i6 indhdr_val%method%wgtflag

FLaGCODe MFLaGCODe code of possible exception types int(4) i6 indhdr_val%flags%flagcode

aDDFLaG MaDDFLaG handling new issues int(4) i6 indhdr_val%flags %addflag

DeLFLaG MDeLFLaG handling issues becoming ineligible int(4) i6 indhdr_val%flags%delflag

DeLretFLaG MDeLretFLaG measuring return of delisted issues int(4) i6 indhdr_val%flags%delretflag

MiSSFLaG MMiSSFLaG handling missing prices int(4) i6 indhdr_val%flags%missflag

UUNivCODe MUUNivCODe code of possible universe/subset types (index universe) int(4) i6 indhdr_val%induniv%univcode

UBeGDt MUBeGDt beginning date of valid data (index universe) int(4) i8 indhdr_val%induniv%begdt

UeNDDt MUeNDDt beginning date of valid data (index universe) int(4) i8 indhdr_val%induniv%enddt

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 43

iND MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

UwaNteXCh MUwaNteXCh valid exchange code (index universe) int(4) i6 indhdr_val%induniv%wantexch

UwaNtNMS MUwaNtNMS Nasdaq National Market classification (index universe) int(4) i6 indhdr_val%induniv%wantnms

UwaNtwi MUwaNtwi when-issued code (index universe) int(4) i6 indhdr_val%induniv%wantwi

UwaNtiNC MUwaNtiNC valid incorporation (index universe) int(4) i6 indhdr_val%induniv%wantinc

USCCODe MUSCCODe code of possible restriction types (index universe) int(4) i6 indhdr_val%induniv%sccode

UFStDiG MUFStDiG bitmap of first share code digit (index universe) int(4) i6 indhdr_val%induniv%fstdig

USeCDiG MUSeCDiG bitmap of second share code digit (index universe) int(4) i6 indhdr_val%induniv%secdig

pUNivCODe MpUNivCODe code of possible universe/subset types (partition universe) int(4) i6 indhdr_val%partuniv%univcode

pBeGDt MpBeGDt beginning date of valid data (partition universe) int(4) i8 indhdr_val%partuniv%begdt

peNDDt MpeNDDt beginning date of valid data (partition universe) int(4) i8 indhdr_val%partuniv%enddt

pwaNteXCh MpwaNteXCh valid exchange code (partition universe) int(4) i6 indhdr_val%partuniv%wantexch

pwaNtNMS MpwaNtNMS Nasdaq National Market classification (partition universe) int(4) i6 indhdr_val%partuniv%wantnms

pwaNtwi MpwaNtwi when-issued code (partition universe) int(4) i6 indhdr_val%partuniv%wantwi

pwaNtiNC MpwaNtiNC valid incorporation (partition universe) int(4) i6 indhdr_val%partuniv%wantinc

pSCCODe MpSCCODe code of possible restriction types (partition universe) int(4) i6 indhdr_val%partuniv%sccode

pFStDiG MpFStDiG bitmap of first share code digit (partition universe) int(4) i6 indhdr_val%partuniv%fstdig

pSeCDiG MpSeCDiG bitmap of second share code digit (partition universe) int(4) i6 indhdr_val%partuniv%secdig

rULeCODe MrULeCODe code of possible assignment rule types int(4) i6 indhdr_val%rules%rulecode

BUYFNCt MBUYFNCt function code for buy rules int(4) i6 indhdr_val%rules%buyfnct

SeLLFNCt MSeLLFNCt function code for sell rules int(4) i6 indhdr_val%rulesl%sellfnct

StatFNCt MStatFNCt function code for calculating statistic int(4) i6 indhdr_val%rules%statfnct

GrOUpFLaG MGrOUpFLaG how stats are grouped before applying rules int(4) i6 indhdr_val%rules%groupflag

aSSiGNCODe MaSSiGNCODe code of possible assignment types int(4) i6 indhdr_val%assign%assigncode

aSperM MaSperM permno of associated index for breakpoints int(4) i6 indhdr_val%assign%asperm

aSpOrt MaSpOrt portfolio number in associated index int(4) i6 indhdr_val%assign%asport

reBaLCaL MreBaLCaL calid of rebalancing calendar int(4) i6 indhdr_val%assign%rebalcal

aSSiGNCaL MaSSiGNCaL calid of assignment calendar int(4) i6 indhdr_val%assign%assigncal

CaLCCaL MCaLCCaL calid of calculation range calendar int(4) i6 indhdr_val%assign%calccal

(M)reBaL

iND MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

reBaL MreBaL index rebalancing period summary CrSp_iND_reBaL_t rebal_itm%arr%rebal_arr

rBBeGDt MrBBeGDt rebalancing beginning date int(4) i8 rebal_arr(i)%rbbegdt

rBeNDDt MrBeNDDt rebalancing ending date int(4) i8 rebal_arr(i)%rbenddt

rUSDCNt MrUSDCNt count used as of rebalancing int(4) i8 rebal_arr(i)%rusdcnt

MaXCNt MMaXCNt maximum count during period int(4) i8 rebal_arr(i)%maxcnt

rtOtCNt MrtOtCNt available count as of rebalancing int(4) i8 rebal_arr(i)%rtotcnt

eNDCNt MeNDCNt count at end of period int(4) i8 rebal_arr(i)%endcnt

MiNiD MMiNiD identifier at minimum value int(4) i8 rebal_arr(i)%minid

MaXiD MMaXiD identifier at maximum value int(4) i8 rebal_arr(i)%maxid

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 44

iND MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

MiNStat MMiNStat smallest statistic in period double(8) F14.3 rebal_arr(i)%minstat

MaXStat MMaXStat largest statistic in period double(8) F14.3 rebal_arr(i)%maxstat

MeDStat MMeDStat median statistic in period double(8) F14.3 rebal_arr(i)%medstat

avGStat MavGStat average statistic in period double(8) F14.3 rebal_arr(i)%avgstat

(M)LiSt

iND MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

DaiLY MONthLY

LiSt MLiSt issue list information CrSp_iND_LiSt_t list_itm%arr%list_arr

tperMNO MtperMNO issue identifier int(4) i8 list_arr(i)%tpermno

LBeGDt MLBeGDt first date included int(4) i8 list_arr(i)%lbegdt

LeNDDt MLeNDDt last date included int(4) i8 list_arr(i)%lenddt

SUBiND MSUBiND code for subcategory of list int(4) i6 list_arr(i)%subind

LweiGht MLweiGht weight during range double(8) F16.5 list_arr(i)%lweight

tperMNO MtperMNO issue identifier int(4) i8 list_arr(i)%tpermno

LBeGDt MLBeGDt first date included int(4) i8 list_arr(i)%lbegdt

LeNDDt MLeNDDt last date included int(4) i8 list_arr(i)%lenddt

SUBiND MSUBiND code for subcategory of list int(4) i6 list_arr(i)%subind

LweiGht MLweiGht weight during range double(8) F16.5 list_arr(i)%lweight

CRSP/COMPUSTAT MERGED DATABASE

To connect to the specific CRSP CCM database instance the path to its database root should be specified. When installed

on your system, CRSP CCM data set will be assigned an environment variable pointing to the CRSP CCM database root.

Additionally, an application ID should be specified on the call to crsp_f_itm_init to indicate the item-universe to be loaded

for the session and describes the available items and item groups, eg:

sts = crsp_f_itm_init (hndl,’CRSP_CCM’,app_id,’ccm1’)

User-programs should access the CRSP CCM data set with the app_id as listed in the following table:

CCM rOOt/app iD FOrtraN 95 tYpe DeSCriptiON

CrSp_CCM CCM/CrSp Compustat data set

CrSp_CCMiteMS_iD integer Compustat Xpressfeed data items and groups

The details on included items and item groups can be found starting on page 47.

aCCeSS KeYSaCCeSS KeYS

CRSP Compustat Xpressfeed includes various data on companies, securities, and indexes. Access key is composed of

access key items the values of which can be retrieved or set from the user-program to control the direct access to the CCM

data.

Default access key for CRSP CCM is loaded automatically on opening the access session to the CRSP CCM data set.

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 45

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP

PERMNO, CUSIP and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set

on the selected access key. The function crsp_f_itm_get_key can also be used to retrieve the value of the access key

items for the currently read record.

To switch to access by an alternative key, a user calls crsp_f_itm_load_key to set the access key index, followed by calls

to crsp_itm_set_key to set the value of the key items used on subsequent reading of the database.

The defined CCM access keys and associated key items are listed in the following table:

CCM aCCeSS KeY/KeY iteMS FOrtraN 95 tYpe DeSCriptiON NOteS

gvkey Compustat GvKeY and iiD default

KYGvKeY integer Compustat company’s GvKeY primary key item

KYiiD char(CrSp_CCM_iiD_LeN) Compustat company security’s iiD secondary key item

gvkeyx Compustat permanent identifier for indexes

KYGvKeYX integer Compustat index’s GvKeYX primary key item

ccmid Compustat permanent identifier - either GvKeY or GvKeYX

KYCCMiD integer CrSp CCMiD (GvKeY or GvKeYX as reported in MaSter item) primary key item

KYiiD char(CrSp_CCM_iiD_LeN) Compustat company security’s iiD secondary key item

permco CrSp historical perMCO Link

KYperMCO integer CrSp company’s perMCO primary key item

permno CrSp historical perMNO Link

KYperMNO integer CrSp company issue’s perMNO primary key item

cusip Compustat CUSip

KYCUSip char(CrSp_CCM_CUSip_LeN) Compustat issue’s CUSip primary key item

ticker Compustat reported issue trading Symbol selects GvKeY and security

KYtiCKer char(CrSp_CCM_tiC_LeN) Compustat issue’s ticker primary key item

sic Compustat -reported SiC code. Security or Company

KYSiC integer Compustat security’s SiC primary key item

KYiiD char(CrSp_CCM_iiD_LeN) Compustat company security’s iiD secondary key item

apermno Link-Used perMNO

KYperMNO integer CrSp company issue’s perMNO primary key item

apermco Link-Used perMCO

KYperMCO integer CrSp company issue’s perMCO primary key item

ppermno CrSp perMNO when security is marked as primary

KYperMNO integer CrSp company issue’s perMNO primary key item

Data tYpeSData tYpeS

Generally, individual Compustat Xpressfeed data items are of common simple Fortran 95 data types and stored data can be

accessed through itm%arr and corresponding scalar or array member.

Also additional character data types were introduced to store specific classes of Xpressfeed items, as listed in the following

table:

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 46

iteM OBJeCt tYpe FOrtraN 95 tYpe NaMe iNterNaL StOraGe aCCeSS via CrSp_
itM_t

NOteS

time-series CrSp_tS_t itm%obj%ts

CrSp_CCM_FtNt_t char(CrSp_CCM_FtNt_LeN) itm%arr%ftnt_arr(i)%ftnt Used for CCM footnote items,
mainly time-series

CrSp_CCM_teXtiteM_t char(CrSp_CCM_teXtiteM_LeN) itm%arr%text_arr(i)%text Used for various CCM character
string items, mainly time-series

array CrSp_arraY_t itm%obj%arr

CrSp_CCM_FtNt_t char(CrSp_CCM_FtNt_LeN) itm%arr%ftnt_arr(i)%ftnt

CrSp_CCM_teXtiteM_t char(CrSp_CCM_teXtiteM_LeN) itm%arr%text_arr(i)%text

row CrSp_rOw_t itm%obj%row

CrSp_CCM_FtNt_t char(CrSp_CCM_FtNt_LeN) itm%arr%ftnt_val%ftnt

CrSp_CCM_teXtiteM_t char(CrSp_CCM_teXtiteM_LeN) itm%arr%text_val%text

Additionally, selected Compustat Xpressfeed primary data groups and CRSP supplemental data groups can be accessed by

the entire group as a defined structured type rather than as a stand-alone item. These data groups and their elements can

both be accessed by itm_name, but recommended programming access is through the itm_name of the structure. To access

the structured type and its fields, load the structured type itm_name during initialization, create a CRSP_ITM_T pointer

matching the itm_name, attach it to the data, and access the structured type and its fields through the pointer:

sts = crsp_f_itm_load(hndl,’MASTER’,match_flag)

sts = crsp_f_itm_find(hndl,’MASTER’,0,mstr_itm)

ccmid = mstr_itm%arr%master_val%ccmid

...

StrUCtUreD tYpeS FOr CrSp/COMpUStat MerGeD DataBaSe aCCeSSStrUCtUreD tYpeS FOr CrSp/COMpUStat MerGeD DataBaSe aCCeSS

The tables below show the data groups available as CCM structured types and their usage through the CRSP_ITM_T type.

CCM MNeMONiC DeSCriptiON FOrtraN 95 tYpe NaMe OBJeCt
tYpe

OBJeCt aCCeSS via CrSp_
itM_t

MaSter CCM company id and range data CrSp_CCM_MaSter_t row master_itm%obj%row

COMpaNY CCM company header information CrSp_CCM_COMpaNY_t row company_itm%obj%row

iDX_iNDeX CCM idx_index header information CrSp_CCM_iDX_iNDeX_t row idx_index_itm%obj%row

SpiND S&p index header (pre-GiCS) CrSp_CCM_SpiND_t row spind_itm%obj%row

COMphiSt CCM company header history CrSp_CCM_COMphiSt_t array comphist_itm%obj%arr

CSthiSt CSt header history CrSp_CSt_NaMe_t array csthist_itm%obj%arr

LiNK CrSp CCM link history CrSp_CCM_LiNK_t array link_itm%obj%arr

LiNKUSeD CCM company CrSp link used data CrSp_CCM_LiNKUSeD_t array linkused_itm%obj%arr

LiNKrNG CCM company CrSp link range data CrSp_CCM_LiNKrNG_t array linkused_itm%obj%arr

aDJFaCt CCM company adjustment factor history CrSp_CCM_aDJFaCt_t array adjfact_itm%obj%arr

hGiC CCM company GiCS code history CrSp_CCM_hGiC_t array hgic_itm%obj%arr

OFFtitL CCM company officer title data CrSp_CCM_OFFtitL_t array offtitl_itm%obj%arr

CCM_FiLeDate CCM company filing date data CrSp_CCM_FiLeDate_t array ccm_filedate_itm%obj%arr

CCM_ipCD CCM industry presentation code data CrSp_CCM_ipCD_t array ccm_ipcd_itm%obj%arr

SeCUritY CCM security header information CrSp_CCM_SeCUritY_t row security_itm%obj%row

SeChiSt CCM security header history CrSp_CCM_SeChiSt_t array sechist_itm%obj%arr

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 47

CCM MNeMONiC DeSCriptiON FOrtraN 95 tYpe NaMe OBJeCt
tYpe

OBJeCt aCCeSS via CrSp_
itM_t

SeC_MthSpt CCM security monthly split events CrSp_CCM_SeC_MthSpt_t row sec_mthspt_itm%obj%row

SeC_MSpt_FN CCM security monthly split event footnotes CrSp_CCM_SeC_Mth_FN_t row sec_mspt_fn_itm%obj%row

SeC_MDiv_FN CCM security monthly dividend event footnotes CrSp_CCM_SeC_Mth_FN_t row sec_mdiv_fn_itm%obj%row

SeC_SpiND CCM security S&p information events CrSp_CCM_SeC_SpiND_t row sec_spind_itm%obj%row

iDXCSt_hiS CCM security historical index constituents CrSp_CCM_iDXCSt_hiS_t array idxcst_his_itm%obj%arr

SpiDX_CSt CCM security S&p index constituent events CrSp_CCM_SpiDX_CSt_t array spidx_cst_itm%obj%arr

CCM_SeGCUr CCM opseg currency rate data CrSp_CSt_SeGCUr_t array ccm_segcur_itm%obj%arr

CCM_SeGSrC CCM opseg source data CrSp_CSt_SeGSrC_t array ccm_segsrc_itm%obj%arr

CCM_SeGprOD CCM opseg product data CrSp_CSt_SeGprOD_t array ccm_segprod_itm%obj%arr

CCM_SeGCUSt CCM opseg customer data CrSp_CSt_SeGCUSt_t array ccm_segcust_itm%obj%arr

CCM_SeGDtL CCM opseg detail data CrSp_CSt_SeGDtL_t array ccm_segdtl_itm%obj%arr

CCM_SeGitM CCM opseg item data CrSp_CSt_SeGitM_t array ccm_seg_itm%obj%arr

CCM_SeGNaiCS CCM opseg NaiCS data CrSp_CSt_SeGNaiCS_t array ccm_segnaics_itm%obj%arr

CCM_SeGGeO CCM opseg geographic data CrSp_CSt_SeGGeO_t array ccm_seggeo_itm%obj%arr

MaSter

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

MaSter master_itm%arr%master_val

BeGQtr Quarterly date of earliest data (yyyy.q) int(4) i6 master_val%begqtr

BeGYr annual date of earliest data (yyyymmdd) int(4) i4 master_val%begyr

CBeGDt First date of Compustat data int(4) i8 master_val%cbegdt

CCMiD permanent record identifier for Compustat company or index
data, represents GvKeY for company, GvKeYX for index

int(4) i6 master_val%ccmid

CCMiDtYpe type of key for Compustat data. 1 = company data, 2 = index data int(4) i2 master_val%ccmidtype

CeNDt Last date of Compustat data int(4) i8 master_val%cendt

eNDQtr Quarterly date of last data (yyyy.q) int(4) i6 master_val%endqtr

eNDYr annual date of last data (yyyymmdd) int(4) i4 master_val%endyr

COMpaNY

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

COMpaNY company_itm%arr%company_val

aDD1-4 address lines 1-4 char(68) a65 company_val%add#

aDDZip postal code char(24) a24 company_val%addzip

BUSDeSC Business description char(2000) a2000 company_val%busdesc

CiK CiK number char(12) a10 company_val%cik

CitY City char(104) a104 company_val%city

CONM Company name char(256) a255 company_val%conm

CONML Company legal name char(104) a100 company_val%conml

COStat postal code char(24) a1 company_val%addzip

COUNtY County code char(104) a100 company_val%county

DLDte research company deletion date int(4) i8 company_val%dldte

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 48

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

DLrSN research company reason for deletion char(12) a8 company_val%dlrsn

eiN employer identification number char(12) a10 company_val%ein

FaX Fax number char(24) a18 company_val%fax

FiC iSO Country code of incorporation char(16) a3 company_val%fic

FYrC Fiscal year end (current) int(4) i2 company_val%fyrc

GGrOUp GiCS groups char(12) a4 company_val%ggroup

GiND GiCS industries char(12) a6 company_val%gind

GSeCtOr GiCS sectors char(12) a2 company_val%gsector

GSUBiND GiCS sub-industries char(12) a8 company_val%gsubind

iDBFLaG international/Domestic/Both indicator char(12) a1 company_val%idbflag

iNCOrp State/province of incorporation code char(12) a8 company_val%incorp

ipODate Company initial public offering date int(4) i8 company_val%ipodate

LOC iSOCountry code/ headquarters char(4) a3 company_val%loc

NaiCS North american industry Classification Code char(8) a6 company_val%naics

phONe phone number char(24) a18 company_val%phone

priCaN primary issue tag - Canada char(12) a8 company_val%prican

prirOw primary issue tag – rest of world char(12) a8 company_val%prirow

priUSa primary issue tag - USa char(12) a8 company_val%priusa

SiC SiC code int(4) i4 company_val%sic

SpCiNDCD S&p industry sector code - reference int(4) i4 company_val%spcindcd

SpCSeCCD S&p economic sector code - reference int(4) i4 company_val%spcseccd

State State/province char(12) a8 company_val%state

StKO Stock ownership code int(4) i1 company_val%stko

weBUrL website address char(68) a60 company_val%weburl

iDX_iNDeX

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

iDX_iNDeX idx_index_itm%arr%idx_index_val

iDX13KeY 13 character key char(16) a13 idx_index_val%idx13key

iDXCStFLG index constituent flag char(4) a2 idx_index_val%idxcstflg

iDXStat index Status char(2) a1 idx_index_val%idxstat

iNDeXCat index category code char(12) a10 idx_index_val%indexcat

iNDeXGeO index geographical area char(12) a10 idx_index_val%indexgeo

iNDeXtYpe index type char(12) a10 idx_index_val%indextype

iNDeXvaL index value char(12) a10 idx_index_val%indexval

Spii S&p industry index code int(4) i4 idx_index_val%spii

SpMi S&p major index code int(4) i4 idx_index_val%spmi

tiCi issue trading ticker char(12) a8 idx_index_val%tici

XCONM Company Name (index) char(256) a255 idx_index_val%xconm

XiNDeXiD index iD char(12) a12 idx_index_val%xindexid

XtiC ticker/trading symbol (index) char(10) a10 idx_index_val%xtic

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 49

SpiND

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SpiND spind_itm%arr%spind_val

SpiiD S&p industry iD int(4) i4 spind_val%spiid

SpiMiD S&p Major index iD int(4) i4 spind_val%spimid

SpitiC S&p index ticker char(12) a12 spind_val%spitic

SpiDeSC S&p index industry description /reference char(256) a256 spind_val%spidesc

COMphiSt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

COMphiSt comphist_itm%arr%comphist_arr(i)

hChGeNDDt Comphist description last effective date int(4) i8 comphist_arr(i)%hchgenddt

hDLDte historical research company – deletion date int(4) i8 comphist_arr(i)%hdldte

hFYrC historical fiscal year end month / current int(4) i10 comphist_arr(i)%hfyrc

hipODate historical company official public offering date int(4) i10 comphist_arr(i)%hipodate

hSiC historical SiC Code int(4) i10 comphist_arr(i)%hsic

hSpCiNDCD historical S&p industry code int(4) i10 comphist_arr(i)%hspcindcd

hSpCSeCCD historical S&p economic sector code int(4) i10 comphist_arr(i)%hspcseccd

hStKO historical stock ownership code int(4) i10 comphist_arr(i)%hstko

haDD1…4 historical address lines 1-4 char(68) a68 comphist_arr(i)%haddl#

haDDZip historical postal code char(68) a24 comphist_arr(i)%haddzip

hBUSDeSC historical business description char(2000) a2000 comphist_arr(i)%hbusdesc

hCiK historical CiK number char(12) a12 comphist_arr(i)%hcik

hCitY historical city char(104) a104 comphist_arr(i)%hcity

hCONM historical company name char(256) a256 comphist_arr(i)%hconm

hCONML historical legal company name char(104) a104 comphist_arr(i)%hconml

hCOStat historical active/inactive status marker char(4) a4 comphist_arr(i)%hcostat

hCOUNtY historical county code char(104) a1044 comphist_arr(i)%hcounty

hDLrSN historical research company reason for deletion char(12) a12 comphist_arr(i)%hdlrsn

heiN historical employer identification number char(12) a12 comphist_arr(i)%hein

hFaX historical fax number char(16) a16 comphist_arr(i)%hfax

hFiC historical iSO country code / incorporation char(16) a16 comphist_arr(i)%hfic

hGGrOUp historical GiCS group char(12) a12 comphist_arr(i)%hggroup

hGiND historical GiCS industries char(12) a12 comphist_arr(i)%hgind

hGSeCtOr historical GiCS sector char(12) a12 comphist_arr(i)%hgsector

hGSUBiND historical GiCS sub-industries char(12) a12 comphist_arr(i)%hgsubind

hiDBFLaG historical international, domestic, both indicator char(12) a12 comphist_arr(i)%hidbflag

hiNCOrp historical state/province of incorporation code char(12) a12 comphist_arr(i)%hincorp

hLOC historic iSO country code/ headquarters char(4) a4 comphist_arr(i)%hloc

hNaiCS historical NaiCS codes char(8) a8 comphist_arr(i)%hnaics

hphONe historical phone number char(16) a16 comphist_arr(i)%hphone

hpriCaN historical primary issue tag - Cananda char(12) a12 comphist_arr(i)%hprican

hprirOw historical primary issue tag – rest of world char(12) a12 comphist_arr(i)%hprirow

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 50

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

hpriUSa historical primary issue tag - US char(12) a12 comphist_arr(i)%hpriusa

hState historical state/province char(12) a12 comphist_arr(i)%hstate

hweBUrL historical website url char(68) a68 comphist_arr(i)%hweburl

CSthiSt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CSthiSt csthist_itm%arr%csthist_arr(i)

CSt_ChGDt CSt history effective date int(4) i8 csthist_arr(i)%cst_chgdt

CSt_ChGeNDDt CSt history last effective date int(4) i8 csthist_arr(i)%cst_chgenddt

CSt_DNUM CSt history industry code int(4) i4 csthist_arr(i)%cst_dnum

CSt_FiLe CSt history file identification code int(4) i4 csthist_arr(i)%cst_file

CSt_ZLiSt CSt history exchange listing and S&p index code int(4) i4 csthist_arr(i)%cst_zlist

CSt_State CSt history state identification code int(4) i4 csthist_arr(i)%cst_state

CSt_COUNtY CSt history county identification code int(4) i4 csthist_arr(i)%cst_county

CSt_StiNC CSt history state incorporation code int(4) i4 csthist_arr(i)%cst_stinc

CSt_FiNC CSt history foreign incorporation code int(4) i4 csthist_arr(i)%cst_finc

CSt_XreL CSt history industry index relative code int(4) i4 csthist_arr(i)%cst_xrel

CSt_StK CSt history stock ownership code int(4) i4 csthist_arr(i)%cst_stk

CSt_DUp CSt history duplicate file code int(4) i4 csthist_arr(i)%cst_dup

CSt_CCNDX CSt history current Canadian index code int(4) i4 csthist_arr(i)%cst_ccndx

CSt_GiCS CSt history Global industry Classification Standard Code int(4) i4 csthist_arr(i)%cst_gics

CSt_ipODt CSt history ipO date int(4) i4 csthist_arr(i)%cst_ipodt

CSt_FUNDF1 CSt history fundamental file identification code 1 int(4) i4 csthist_arr(i)%cst_fund1

CSt_FUNDF2 CSt history fundamental file identification code 2 int(4) i4 csthist_arr(i)%cst_fundf2

CSt_FUNDF3 CSt history fundamental file identification code 3 int(4) i4 csthist_arr(i)%cst_fundf3

CSt_NaiCS CSt history North american industry Classification char(8) a8 csthist_arr(i)%cst_naics

CSt_CpSpiN CSt history primary S&p index marker char(4) a4 csthist_arr(i)%cst_cpspin

CSt_CSSpiN CSt history subset S&p index marker char(4) a4 csthist_arr(i)%cst_csspin

CSt_CSSpii CSt history secondary S&p index marker char(4) a4 csthist_arr(i)%cst_csspii

CSt_SUBDBt CSt history current S&p subordinated debt rating char(8) a8 csthist_arr(i)%cst_subdbt

CSt_Cpaper CSt history current S&p commercial paper rating char(4) a4 csthist_arr(i)%cst_cpaper

CSt_SDBt CSt history current S&p senior debt rating char(4) a4 csthist_arr(i)%cst_sdbt

CSt_SDBtiM CSt history current S&p senior debt rating - footnote char(4) a4 csthist_arr(i)%cst_sdbtim

CSt_CNUM CSt history CUSip issuer code char(16) a16 csthist_arr(i)%cst_cnum

CSt_CiC CSt history issuer number char(4) a4 csthist_arr(i)%cst_cic

CSt_CONaMe CSt history company name char(64) a64 csthist_arr(i)%cst_coname

CSt_iNaMe CSt history industry name char(4) a4 csthist_arr(i)%cst_iname

CSt_SMBL CSt history stock ticker symbol char(16) a16 csthist_arr(i)%cst_smbl

CSt_eiN CSt history employer identification number char(16) a16 csthist_arr(i)%cst_ein

CSt_iNCOrp CSt history incorporation iSO country code char(4) a4 csthist_arr(i)%cst_incorp

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 51

LiNK

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

LiNK link_itm%arr%link_arr(i)

LiNKDt effective date of the link record int(4) i8 link_arr(i)%linkdt

LiNKeNDDt Last effective date of the link record int(4) i8 link_arr(i)%linkenddt

LperMNO CrSp perMNO link during link period int(4) i6 link_arr(i)%lpermno

LperMCO CrSp perMCO link during link period int(4) i10 link_arr(i)%lpermco

LiiD Security identifier char(4) a3 link_arr(i)%liid

LNKtYpe Link type code char(4) a4 link_arr(i)%lnktype

LiNKpriM primary security link marker char(4) a1 link_arr(i)%linkprim

LiNKUSeD

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

LiNKUSeD linkused_itm%arr%linkused_arr(i)

ULiNKDt effective date of the link int(4) i8 linkused_arr(i)%ulinkdt

ULiNKeNDDt Last effective date of the link int(4) i8 linkused_arr(i)%ulinkenddt

ULiNKiD Linkused row identifier int(4) i linkused_arr(i)%ulinkid

UGvKeY GvKeY used in the link int(4) i6 linkused_arr(i)%ugvkey

UperMNO CrSp perMNO link during link period int(4) i6 linkused_arr(i)%upermno

UperMCO CrSp perMCO link during link period int(4) i6 linkused_arr(i)%upermco

UiiD Used Security iD char(4) a3 linkused_arr(i)%uiid

USeDFLaG Flag marking whether link is used in building composite record int(4) i linkused_arr(i)%usedflag

ULiNKpriM Used link primary marker char(4) a1 linkused_arr(i)%ulinkprim

ULiNKtYpe Used link type char(4) a4 linkused_arr(i)%ulinktype

LiNKrNG

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

LiNKrNG linkrng_itm%arr%linkrng_arr(i)

rKeYSet Keyset applicable to range int(4) i8 linkrng_arr(i)%rkeyset

rCaLiD Calendar applicable to range int(4) i8 linkrng_arr(i)%rcalid

rBeGiND Beginning time series range of link int(4) i8 linkrng_arr(i)%rbegind

reNDiND ending time series range of link int(4) i8 linkrng_arr(i)%rendind

rpreviND time series range immediately preceding the link int(4) i8 linkrng_arr(i)%rprevind

rBeGDt Beginning calendar range of link int(4) i8 linkrng_arr(i)%rbegdt

reNDDt ending calendar range of link int(4) i8 linkrng_arr(i)%renddt

rprevDt ending calendar range preceding the link int(4) i8 linkrng_arr(i)%rprevdt

rFiSCaL_Data_FLG type of time series, C-calendar or F-fiscal. char(8) a8 linkrng_arr(i)%rfiscal_data_flg

eFFDate effective date- company cumulative factor int(4) i10 linkrng_arr(i)%effdate

thrUDate thu date – company cumulative factor int(4) i10 linkrng_arr(i)%thrudate

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

hpriUSa historical primary issue tag - US char(12) a12 comphist_arr(i)%hpriusa

hState historical state/province char(12) a12 comphist_arr(i)%hstate

hweBUrL historical website url char(68) a68 comphist_arr(i)%hweburl

CSthiSt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CSthiSt csthist_itm%arr%csthist_arr(i)

CSt_ChGDt CSt history effective date int(4) i8 csthist_arr(i)%cst_chgdt

CSt_ChGeNDDt CSt history last effective date int(4) i8 csthist_arr(i)%cst_chgenddt

CSt_DNUM CSt history industry code int(4) i4 csthist_arr(i)%cst_dnum

CSt_FiLe CSt history file identification code int(4) i4 csthist_arr(i)%cst_file

CSt_ZLiSt CSt history exchange listing and S&p index code int(4) i4 csthist_arr(i)%cst_zlist

CSt_State CSt history state identification code int(4) i4 csthist_arr(i)%cst_state

CSt_COUNtY CSt history county identification code int(4) i4 csthist_arr(i)%cst_county

CSt_StiNC CSt history state incorporation code int(4) i4 csthist_arr(i)%cst_stinc

CSt_FiNC CSt history foreign incorporation code int(4) i4 csthist_arr(i)%cst_finc

CSt_XreL CSt history industry index relative code int(4) i4 csthist_arr(i)%cst_xrel

CSt_StK CSt history stock ownership code int(4) i4 csthist_arr(i)%cst_stk

CSt_DUp CSt history duplicate file code int(4) i4 csthist_arr(i)%cst_dup

CSt_CCNDX CSt history current Canadian index code int(4) i4 csthist_arr(i)%cst_ccndx

CSt_GiCS CSt history Global industry Classification Standard Code int(4) i4 csthist_arr(i)%cst_gics

CSt_ipODt CSt history ipO date int(4) i4 csthist_arr(i)%cst_ipodt

CSt_FUNDF1 CSt history fundamental file identification code 1 int(4) i4 csthist_arr(i)%cst_fund1

CSt_FUNDF2 CSt history fundamental file identification code 2 int(4) i4 csthist_arr(i)%cst_fundf2

CSt_FUNDF3 CSt history fundamental file identification code 3 int(4) i4 csthist_arr(i)%cst_fundf3

CSt_NaiCS CSt history North american industry Classification char(8) a8 csthist_arr(i)%cst_naics

CSt_CpSpiN CSt history primary S&p index marker char(4) a4 csthist_arr(i)%cst_cpspin

CSt_CSSpiN CSt history subset S&p index marker char(4) a4 csthist_arr(i)%cst_csspin

CSt_CSSpii CSt history secondary S&p index marker char(4) a4 csthist_arr(i)%cst_csspii

CSt_SUBDBt CSt history current S&p subordinated debt rating char(8) a8 csthist_arr(i)%cst_subdbt

CSt_Cpaper CSt history current S&p commercial paper rating char(4) a4 csthist_arr(i)%cst_cpaper

CSt_SDBt CSt history current S&p senior debt rating char(4) a4 csthist_arr(i)%cst_sdbt

CSt_SDBtiM CSt history current S&p senior debt rating - footnote char(4) a4 csthist_arr(i)%cst_sdbtim

CSt_CNUM CSt history CUSip issuer code char(16) a16 csthist_arr(i)%cst_cnum

CSt_CiC CSt history issuer number char(4) a4 csthist_arr(i)%cst_cic

CSt_CONaMe CSt history company name char(64) a64 csthist_arr(i)%cst_coname

CSt_iNaMe CSt history industry name char(4) a4 csthist_arr(i)%cst_iname

CSt_SMBL CSt history stock ticker symbol char(16) a16 csthist_arr(i)%cst_smbl

CSt_eiN CSt history employer identification number char(16) a16 csthist_arr(i)%cst_ein

CSt_iNCOrp CSt history incorporation iSO country code char(4) a4 csthist_arr(i)%cst_incorp

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 52

aDJFaCt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

aDJFaCt adjfact_itm%arr%adjfact_arr(i)

aDJeX Cumulative adjustment factor by ex-date double(8) F18.4 adjfact_arr(i)%adjex

aDJpaY Cumulative adjustment factor by pay-date double(8) F18.4 adjfact_arr(i)%adjpay

hGiC

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

hGiC hgic_itm%arr%hgic_arr(i)

iNDFrOM effective from (start) date int(4) i8 hgic_arr(i)%indfrom

iNDthrU effective through (last) date int(4) i8 hgic_arr(i)%indthru

GGrOUph industry group name char(12) a12 hgic_arr(i)%ggrouph

GiNDh Group industry char(12) a12 hgic_arr(i)%gindh

GSeCtOrh Group industry sector char(12) a12 hgic_arr(i)%gsectorh

GSUBiNDh Group sub-industries char(12) a12 hgic_arr(i)%gsubindh

OFFtitL

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

OFFtitL offtitl_itm%arr%offtitl_arr(i)

OFiD Officer iD int(4) i9 offtitl_arr(i)%ofid

OFCD Officer title char(16) a8 offtitl_arr(i)%ofcd

OFNM Officer Name(s) char(40) a39 offtitl_arr(i)%ofnm

CCM_FiLeDate

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_FiLeDate ccm_filedate_itm%arr%ccm_filedate_
arr(i)

FDataDate Company filing data date int(4) i8 ccm_filedate_arr(i)%fdatadate

FCONSOL Company consolidation level filedate char(2) a2 ccm_filedate_arr(i)%fconsol

FpOpSrC population source filedate char(2) a2 ccm_filedate_arr(i)%fpopsrc

SrCtYpe Document source type filedate char(12) a12 ccm_filedate_arr(i)%srctype

FiLeDate Company filing date int(4) i8 ccm_filedate_arr(i)%filedate

CCM_ipCD

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_ipCD ccm_ipcd_itm%arr%ccm_ipcd_arr(i)

ipDataDate industry presentation code data date int(4) i8 ccm_ipcd_arr(i)%ipdatadate

ipCONSOL Level of consolidation (industry presentation code) char(2) a1 ccm_ipcd_arr(i)%ipconsol

ippOpSrC population source (industry presentation code) char(2) a1 ccm_ipcd_arr(i)%ippopsrc

ipCD industry presentation code char(2) a1 ccm_ipcd_arr(i)%ipcd

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 53

SeCUritY

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SeCUritY security_itm%arr%security_val

eXChG Stock exchange int(4) i4 security_val%exchg

DLDtei Security inactivation date int(4) i8 security_val%dltei

iiD_SeQ_ NUM iiD sequence number int(4) i8 security_val%iid_seq_num

SBeGDt First date of Compustat data for issue int(4) i8 security_val%sbegdt

SeNDDt Last date of Compustat data for issue int(4) i8 security_val%senddt

iiD issue iD char(4) a3 security_val%iid

SCUSip CUSip char(12) a12 security_val%cusip

DLrSNi Security inactivation code char(12) a8 security_val%dlrsni

DSCi Security description char(32) a28 security_val%dsci

epF earnings participation flag char(4) a1 security_val%epf

eXCNtrY Stock exchange country code char(4) a3 security_val%excntry

iSiN international security identification number char(16) a12 security_val%isin

SSeCStat Security status marker char(4) a4 security_val%ssecstat

SeDOL SeDOL char(8) a7 security_val%sedol

tiC ticker/trading symbol char(12) a8 security_val%tic

tpCi issue type char(12) a8 security_val%tpci

SeChiSt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SeChiSt sechist_itm%arr%sechist_arr(i)

hSChGDt historical security change date int(4) i8 sechist_arr(i)%hschgdt

hSChGeNDDt historical security change end date int(4) i8 sechist_arr(i)%hschgenddt

heXChG historical stock exchange int(4) i10 sechist_arr(i)%hexchg

hDLDtei historical security inactivation date int(4) i8 sechist_arr(i)%hdldtei

hiiD_SeQ_NUM historical issue iD sequence number int(4) i10 sechist_arr(i)%hiid_seq_num

hiiD historical issue iD char(4) a3 sechist_arr(i)%hiid

hSCUSip historical CUSip char(12) a12 sechist_arr(i)%hscusip

hDLrSNi historical security inactivation code char(12) a12 sechist_arr(i)%hdhdrsni

hDSCi historical security description char(32) a32 sechist_arr(i)%hdsci

hepF historical earnings participation flag char(4) a4 sechist_arr(i)%hepf

heXCNtrY historical stock exchange country code char(4) a4 sechist_arr(i)%hexcntry

hiSiN historical international security identification number char(16) a16 sechist_arr(i)%hisin

hSSeCStat historical security status marker char(4) a4 sechist_arr(i)%hssecstat

hSeDOL historical SeDOL char(8) a8 sechist(i)%hsedol

htiC historical ticker/trading symbol char(12) a12 sechist_arr(i)%htic

htpCi historical issue type char(12) a12 sechist_arr(i)%htpci

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 54

SeC_MthSpt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SeC_MthSpt sec_mthspt_itm%arr%sec_mthspt_arr(i)

DataDateM Monthly adjustment factor data date int(4) i10 sec_mthspt_arr(i)%datadatem

rawpM raw adjustment factor – pay date - monthly double(8) F18.4 sec_mthspt_arr(i)%rawpm

rawXM raw adjustment factor – ex date - monthly double(8) F18.4 sec_mthspt_arr(i)%rawxm

SeC_MSpt_FN

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SeC_MSpt_FN sec_mspt_fn_itm%arr%sec_mspt_fn_
arr(i)

DataiteMMF Monthly split footnote dataitem char(8) a8 sec_mspt_fn_arr(i)%dataitemmf

rawpM_FN1..FN5 raw adjustment factor – pay date – monthly – footnotes 1-5 char(4) a4 sec_mspt_fn_arr(i)%rawpm_fn1..fn5

rawXM_FN1..FN5 raw adjustment factor – ex date – monthly – footnotes 1-5 char(4) a4 sec_mspt_fn_arr(i)%rawxm_fn1..fn5

SeC_MDiv_FN

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SeC_MDiv_FN sec_mdiv_fn_itm%arr%sec_mdiv_fn_
arr(i)

DivDataDateMF Monthly dividend footnote data date int(4) i10 sec_mdiv_fn_arr(i)%divdatadatemf

DivDataiteMMF Monthly dividend footnote data item char(8) a8 sec_mdiv_fn_arr(i)%divdataitemmf

DvpSpM_FN1..FN5 Dividend per share – pay date – monthly – footnotes 1-5 char(4) a4 sec_mdiv_fn_arr(i)%dvpspm_fn1..fn5

DvpSXM_FN1..FN5 Dividend per share – ex date – monthly – footnotes 1-5 char(4) a4 sec_mdiv_fn_arr(i)%dvpsxm_fn1..fn5

SeC_SpiND

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SeC_SpiND sec_spind_itm%arr%sec_spind_arr(i)

SpBeGDate S&p index event beginning date int(4) i10 sec_spind_arr(i)%spbegdate

SpeNDDate S&p index event ending date int(4) i10 sec_spind_arr(i)%spenddate

SphiiD S&p holdings industry index iD int(4) i4 sec_spind_arr(i)%sphiid

SphMiD S&p holdings major index iD int(4) i4 sec_spind_arr(i)%sphmid

SphSeC S&p holdings sector code int(4) i4 sec_spind_arr(i)%sphsec

Sph100 S&p holdings S&p 100 marker int(4) i4 sec_spind_arr(i)%sph100

SphCUSip S&p holdings CUSip char(12) a9 sec_spind_arr(i)%sphcusip

SphNaMe S&p holdings name char(36) a31 sec_spind_arr(i)%sphname

SphtiC S&p holdings ticker char(12) a8 sec_spind_arr(i)%sphtic

SphvG S&p holdings value/growth indicator char(4) a1 sec_spind_arr(i)%sphvg

iDXCSt_hiS

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

iDXCSt_hiS idxcst_his_itm%arr%idxcst_his_arr(i)

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 55

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

XFrOM S&p constituent from event date int(4) i10 idxcst_his_arr(i)%xfrom

iDX13KeY S&p 13 character key char(16) a13 idxcst_his_arr(i)%idx13key

XGvKetX S&p constituent event index GvKeY int(4) i10 idxcst_his_arr(i)%xgvkeyx

SpiDX_CSt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SpiDX_CSt spidx_cst_itm%arr%spidx_cst_arr(i)

SXBeGDate S&p constituent event beginning date int(4) i10 spidx_cst_arr(i)%sxbegdate

SXeNDDate S&p constituent event ending date int(4) i10 spidx_cst_arr(i)%sxenddate

SpFLOat S&p float shares int(4) i4 spidx_cst_arr(i)%spfloat

iNDeXiD S&p major index iD char(12) a10 spidx_cst_arr(i)%indexid

eXChGX S&p constituent exchange char(8) a4 spidx_cst_arr(i)%exchgx

tiCX S&p holdings ticker char(12) a10 spidx_cst_arr(i)%ticx

CUSipX S&p constituent CUSip char(12) a9 spidx_cst_arr(i)%cusipx

CONMX S&p constituent name char(44) a40 spidx_cst_arr(i)%conmx

CONtYpe S&p constituent type char(12) a10 spidx_cst_arr(i)%contype

CONvaL S&p constituent value char(12) a10 spidx_cst_arr(i)%conval

CCM_SeGCUr

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGCUr ccm_segcur_itm%arr%segcur_arr(i)

SC_DataYr Data year int(4) i4 segcur_arr(i)%sc_datayr

SC_DataFYr Data fiscal year end month int(4) i2 segcur_arr(i)%sc_datafyr

SC_CaLYr Data calendar year int(4) i4 segcur_arr(i)%sc_calyr

SC_SrCYFYr Source fiscal year end month int(4) i2 segcur_arr(i)%sc_srcfyr

SC_Xrate period end exchange rate double(8) F16.8 segcur_arr(i)%sc_xrate

SC_Xrate12 12-month moving exchange rate double(8) F16.8 segcur_arr(i)%sc_xrate12

SC_SrCCUr Source currency code char(4) a3 segcur_arr(i)%sc_srccur

SC_CUrCD iSO currency code (USD) char(4) a3 segcur_arr(i)%sc_curcd

CCM_SeGSrC

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGSrC ccm_segsrc_itm%arr%segsrc_arr(i)

SS_SrCYr Source year int(4) i4 segsrc_arr(i)%ss_srcyr

SS_SrCFYr Source fiscal year end month int(4) i2 segsrc_arr(i)%ss_srcfyr

SS_CaLYr Data calendar year int(4) i4 segsrc_arr(i)%ss_calyr

SS_rCSt1 reserved 1 int(4) i4 segsrc_arr(i)%ss_rcst1

SS_SSrCe Source document code char(4) a2 segsrc_arr(i)%ss_ssrce

SS_SUCODe Source update code char(4) a2 segsrc_arr(i)%ss_sucode

SS_CUrCD iSO currency code char(4) a3 segsrc_arr(i)%ss_curcd

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 56

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SS_SrCCUr Source iSO currency code char(4) a3 segsrc_arr(i)%ss_srccur

SS_hNaiCS Segment primary historical NaiCS char(8) a6 segsrc_arr(i)%ss_hnaics

CCM_SeGprOD

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGprOD ccm_segprod_itm%arr%segprod_arr(i)

Sp_SrCYr Source year int(4) i4 segprod_arr(i)%sp_srcyr

Sp_SrCFYr Source fiscal year end month int(4) i2 segprod_arr(i)%sp_srcfyr

Sp_pDiD product identifier int(4) i4 segprod_arr(i)%sp_pdid

Sp_pSiD Segment link – segment identifier int(4) i4 segprod_arr(i)%sp_psid

Sp_pSaLe external revenues float(4) F10.4 segprod_arr(i)%sp_psale

Sp_rCSt1 reserved 1 float(4) F10.4 segprod_arr(i)%sp_rcst1

Sp_pNaiCS product NaiCS code char(8) a6 segprod_arr(i)%sp_pnaics

Sp_pStYpe Segment link- segment type char(16) a83 segprod_arr(i)%sp_pstype

Sp_pNaMe product name char(64) a64 segprod_arr(i)%sp_pname

CCM_SeGCUSt

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGCUSt ccm_segcust_itm%arr%segcust_arr(i)

SC_SrCYr Source year int(4) i4 segcust_arr(i)%sc_srcyr

SC_SrCFYr Source fiscal year end month int(4) i2 segcust_arr(i)%sc_srcfyr

SC_CDiD customer identifier int(4) i4 segcust_arr(i)%sc_cdid

SC_CSiD Segment link – segment identifier int(4) i4 segcust_arr(i)%sc_csid

SC_CSaLe customer revenues float(4) F10.4 segcust_arr(i)%sc_csale

SC_rCSt1 reserved 1 int(4) i4 segcust_arr(i)%sc_rcst1

SC_CtYpe Customer type char(16) a8 segcust_arr(i)%sc_ctype

SC_CGeOCD Geographic area code char(16) a8 segcust_arr(i)%sc_cgeocd

SC_CGeOar Geographic area type char(16) a8 segcust_arr(i)%sc_cgeoar

SC_CStYpe Segment link – segment type char(16) a8 segcust_arr(i)%sc_cstype

SC_CNaMe Customer name data char(64) a64 segcust_arr(i)%sc_cname

CCM_SeGDtL

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGDtL ccm_segdtl_itm%arr%segdtl_arr(i)

SD_SrCYr Source year int(4) i4 segdtl_arr(i)%sd_srcyr

SD_SrCFYr Source fiscal year end month int(4) i2 segdtl_arr(i)%sd_srcfyr

SD_SiD Segment identifier int(4) i4 segdtl_arr(i)%sd_sid

SD_rCSt1 reserved 1 int(4) i4 segdtl_arr(i)%sd_rcst1

SD_StYpe Segment type char(16) a8 segdtl_arr(i)%sd_stype

SD_SOptp1 Operating segment type 1 char(16) a8 segdtl_arr(i)%sd_ctype

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 57

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

SD_SOptp2 Operating segment type char(16) a8 segdtl_arr(i)%sd_cgeocd

SD_SGeOtp Geographic segment type char(16) a8 segdtl_arr(i)%sd_cgeoar

SD_SNaMe Segment name char(256) a64 segdtl_arr(i)%sd_cname

CCM_SeGitM

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGitM ccm_segitm_itm%arr%segitm_arr(i)

Si_DatYr Data year int(4) i4 segitm_arr(i)%si_datyr

Si_FiSCYr Data fiscal year end month int(4) i4 segitm_arr(i)%si_fiscyr

Si_SrCYr Source year int(4) i4 segitm_arr(i)%si_srcyr

Si_SrCFYr Source fiscal year end month int(4) i2 segitm_arr(i)%si_crsfyr

Si_CaLYr Data calendar year int(4) i4 segitm_arr(i)%si_calyr

Si_SiD Segment identifier int(4) i4 segitm_arr(i)%si_sid

Si_eMp employees int(4) i9 segitm_arr(i)%si_emp

Si_SaLe Net sales float(4) F10.4 segitm_arr(i)%si_sale

Si_OiBD Operating income before depreciations float(4) F10.4 segitm_arr(i)%si_oibd

Si_Dp Depreciation & amortization float(4) F10.4 segitm_arr(i)%si_dp

Si_OiaD Operating income after depreciation float(4) F10.4 segitm_arr(i)%si_oiad

Si_CapX Capital expenditures float(4) F10.4 segitm_arr(i)%si_capx

Si_iat identifiable assets float(4) F10.4 segitm_arr(i)%si_iat

Si_eQearN equity in earnings float(4) F10.4 segitm_arr(i)%si_eqearn

Si_iNveQ investments at equity float(4) F10.4 segitm_arr(i)%si_inveq

Si_rD research & development float(4) F10.4 segitm_arr(i)%si_rd

Si_OBKLG Order backlog float(4) F10.4 segitm_arr(i)%si_obklg

Si_eXpOrtS export sales float(4) F10.4 segitm_arr(i)%si_exports

Si_iNtSeG inter-segment eliminations int(4) i4 segitm_arr(i)%si_intseg

Si_OpiNC Operating profit float(4) F10.4 segitm_arr(i)%si_opinc

Si_pi pretax income float(4) F10.4 segitm_arr(i)%si_pi

Si_iB income before extraordinary earnings float(4) F10.4 segitm_arr(i)%si_ib

Si_Ni Net income (loss) float(4) F10.4 segitm_arr(i)%si_ni

Si_rCSt1 reserved 1 float(4) F10.4 segitm_arr(i)%si_rcst1

Si_rCSt2 reserved 2 float(4) F10.4 segitm_arr(i)%si_rcst2

Si_rCSt3 reserved 3 float(4) F10.4 segitm_arr(i)%si_rcst3

Si_SaLeF Footnote 1 - sales char(16) a8 segitm_arr(i)%si_salef

Si_OpiNCF Footnote 2 – operating profit char(16) a8 segitm_arr(i)%si_opincf

Si_CapXF Footnote 3 – capital expenditures char(16) a8 segitm_arr(i)%si_capxf

Si_eQearNF Footnote 4 – equity in earnings char(16) a8 segitm_arr(i)%si_eqearnf

Si_eMpF Footnote 5 - employees char(16) a8 segitm_arr(i)%si_empf

Si_rDF Footnote 6 – research & development char(16) a8 segitm_arr(i)%si_rdf

Si_StYpe Segment type char(16) a8 segitm_arr(i)%si_stype

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 58

CCM_SeGNaiCS

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGNaiCS ccm_segnaics_itm%arr%segnaics_arr(i)

SN_SrCYr Source year int(4) i4 segnaics_arr(i)%sn_srcyr

SN_SrCFYr Source fiscal year end month int(4) i2 segnaics_arr(i)%sn_srcfyr

SN_SiD Segment identifier int(4) i4 segnaics_arr(i)%sn_sid

SN_rCSt1 reserved 1 int(4) i4 segnaics_arr(i)%sn_rcst1

SN_StYpe Segment type char(16) a8 segnaics_arr(i)%sn_stype

SN_SNaiCS NaiCS code char(8) a6 segnaics_arr(i)%sn_snaics

SN_raNK ranking int(4) i4 segnaics_arr(i)%sn_rank

SN_SiC Segment SiC code int(4) i4 segnaics_arr(i)%sn_sic

CCM_SeGGeO

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGGeO ccm_seggeo_itm%arr%seggeo_arr(i)

SG_SrCYr Source year int(4) i4 seggeo_arr(i)%sg_srcyr

SG_SrCFYr Source fiscal year end month int(4) i2 seggeo_arr(i)%sg_srcfyr

SG_SiD Segment identifier int(4) i4 seggeo_arr(i)%sg_sid

SG_rCSt1 reserved 1 int(4) i4 seggeo_arr(i)%sg_rcst1

SG_StYpe Segment type char(16) a8 seggeo_arr(i)%sg_stype

SG_SGeOCD Geographic area code char(16) a8 seggeo_arr(i)%sg_sgeocd

SG_SGeOtp Geographic area type char(16) a8 seggeo_arr(i)%sg_sgeotp

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 59

CrSp FOrtraN 95 api FUNCtiONS
This section contains an alphabetical list of the functions defined in the CRSP Fortran 95 API. Each definition presents

the following information about a function:

• Its prototype

• A list of arguments

• A list of return values

• Side effects

• Preconditions

CrSp_F_itM_CLOSeCrSp_F_itM_CLOSe

crsp_f_itm_close frees all item lists and item indexes, clears all calendar and key lists, closes the database, frees the

handle set, and re-initializes the item access handle itself.

prOtOtYpe: integer function crsp_f_itm_close (hndl)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle to close.

retUrN vaLUeS: CrSp_SUCCeSS: if the database is successfully closed and all handle data are free
CrSp_FaiL: if there is an error in the parameters, inconsistent handle, error closing databases.

SiDe eFFeCtS: if successful, the handle data are emptied:
• the database will be closed and the structure cleared.
• all internal storage allocated for this instance will be freed

preCONDitiONS: the item handle must be previously opened with function crsp_f_itm_init.

Example:

if (crsp_f_itm_close(hndl) == CRSP_FAIL) then

!!--error

 print *, ‘Error-- failed to close db:’,TRIM(dbpath)

 stop

 endif

CrSp_F_itM_FiNDCrSp_F_itM_FiND

crsp_f_itm_find attaches a pointer to a CRSP_ITM_T item that was previously loaded. The CRSP_ITM_T structure describes

the data item and contains the underlying time series, array, or row data.

prOtOtYpe: integer function crsp_f_itm_find (hndl, itm_name, keyset,itm_foundptr)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle containing the needed set structure information and the current item list.

character(*) :: itm_name –
String containing the itm_name to find.

integer :: keyset –
Keyset to find

type(CrSp_itM_t), pointer :: itm_foundptr –
User-declared pointer that will point to the data item found.

CCM_SeGNaiCS

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGNaiCS ccm_segnaics_itm%arr%segnaics_arr(i)

SN_SrCYr Source year int(4) i4 segnaics_arr(i)%sn_srcyr

SN_SrCFYr Source fiscal year end month int(4) i2 segnaics_arr(i)%sn_srcfyr

SN_SiD Segment identifier int(4) i4 segnaics_arr(i)%sn_sid

SN_rCSt1 reserved 1 int(4) i4 segnaics_arr(i)%sn_rcst1

SN_StYpe Segment type char(16) a8 segnaics_arr(i)%sn_stype

SN_SNaiCS NaiCS code char(8) a6 segnaics_arr(i)%sn_snaics

SN_raNK ranking int(4) i4 segnaics_arr(i)%sn_rank

SN_SiC Segment SiC code int(4) i4 segnaics_arr(i)%sn_sic

CCM_SeGGeO

CCM MNeMONiC FieLD NaMe iNterNaL
StOraGe

DiSpLaY
FOrMat

FieLD USaGe

CCM_SeGGeO ccm_seggeo_itm%arr%seggeo_arr(i)

SG_SrCYr Source year int(4) i4 seggeo_arr(i)%sg_srcyr

SG_SrCFYr Source fiscal year end month int(4) i2 seggeo_arr(i)%sg_srcfyr

SG_SiD Segment identifier int(4) i4 seggeo_arr(i)%sg_sid

SG_rCSt1 reserved 1 int(4) i4 seggeo_arr(i)%sg_rcst1

SG_StYpe Segment type char(16) a8 seggeo_arr(i)%sg_stype

SG_SGeOCD Geographic area code char(16) a8 seggeo_arr(i)%sg_sgeocd

SG_SGeOtp Geographic area type char(16) a8 seggeo_arr(i)%sg_sgeotp

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 60

retUrN vaLUeS: CrSp_SUCCeSS: if successfully found the requested item in the given keyset.
CrSp NOt FOUND: if the itm_name and keyset combination are not available
CrSp_FaiL: if error in parameters, handle not initialized, or error searching for the item.

SiDe eFFeCtS: if successful, the itm_foundptr will point to a CrSp_itM_t item with data and information for the desired item and keyset. Otherwise
the null() will be assigned to itm_foundptr.

preCONDitiONS: the item handle set must be initialized, loaded with a list of items, and opened.

Example:

if (crsp_f_itm_find(hndl,’HEADER’,0,stkhdr_itm) == CRSP_FAIL &

 .or. crsp_f_itm_find(hndl,’PRC’,0,prc_itm) == CRSP_FAIL &

 .or. crsp_f_itm_find(hndl,’ADJPRC’,0,adjprc_itm) == CRSP_FAIL &

 .or. crsp_f_itm_find(hndl,’ADJSHR’,0,adjshr_itm) == CRSP_FAIL &

 .or. crsp_f_itm_find(hndl,’ADJVOL’,0,adjvol_itm) == CRSP_FAIL &

 .or. .not. associated(stkhdr_itm) &

 .or. .not. associated(prc_itm) &

 .or. .not. associated(adjprc_itm) &

 .or. .not. associated(adjshr_itm) &

 .or. .not. associated(adjvol_itm)) then

 print *,’Error - invalid item/keyset specified’

 stop

endif

CrSp_F_itM_FiND_itMCaLCrSp_F_itM_FiND_itMCaL

crsp_f_itm_find_itmcal attaches a pointer to a CRSP_ITM_CAL_T item calendar that was previously loaded. The CRSP_

ITM_CAL_T structure describes a global calendar or a calendar associated with an item and contains the underlying CRSP_

CAL_T data.

prOtOtYpe: integer function crsp_f_itm_find_itmcal (hndl, calid, keyset,itmcal_foundptr)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl – access handle containing the needed set structure information and the current item list.

integer :: calid –
Calendar id of the calendar to find:

• CrSp_CaLiD_DaiLY – daily calendar
• CrSp_CaLiD_MONthLY – monthly calendar
• CrSp_CaLiD_aNNUaL – annual calendar
• CrSp_CaLiD_QUarterLY – quarterly calendar
• CrSp_CaLiD_SeMiaNNUaL – semi-annual calendar
• CrSp_CaLiD_weeKLY – weekly calendar

integer :: keyset –
Keyset of the calendar to find.

• keyset >= 0 – when item-access configured with fiscal_disp_cd=‘C’, the calendars associated with fiscal
items will be “shifted”, based on the loaded company’s FYe.

• keyset=-1 – will request the global “non-shifted” calendar with the specified calid.

type(CrSp_itM_CaL_t), pointer :: itmcal_foundptr –
User-declared pointer that will point to the calendar found.

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 61

retUrN vaLUeS: CrSp_SUCCeSS: if successfully found the requested item calendar in the given keyset.
CrSp NOt FOUND: if the calid and keyset combination are not available
CrSp_FaiL: if error in parameters, handle not initialized, or error searching for the item calendar.

SiDe eFFeCtS: if successful, the itmcal_foundptr will point to a CrSp_itM_CaL_t item calendar with data and information for the desired calendar
and keyset. Otherwise the null() will be assigned to itmcal_foundptr.

preCONDitiONS: the item handle set must be initialized, loaded with a list of items, and itmed.

CrSp_F_itM_FiND_itMCaL_DtCrSp_F_itM_FiND_itMCaL_Dt

crsp_f_itm_find_itmcal_dt finds the array index of a date entry in CRSP_ITM_CAL_T item calendar.

prOtOtYpe: integer function crsp_f_itm_find_itmcal_dt (itmcal,dt,match_mode,ifound)

arGUMeNtS: type(CrSp_itM_CaL_t), pointer :: itmcal –
pointer to the item calendar.
integer :: dt –
requested date to be found. Format: yyymmdd.
integer :: match_mode –
Matching mode:

• CrSp_eXaCt – exact match requested
• CrSp_NeXt – if exact is not found – return next valid
• CrSp_prev – if exact is not found – return previous valid

integer ::ifound –
array index of the date found. when date is not found, ifound = -1

retUrN vaLUeS: CrSp_SUCCeSS: if successfully found the requested date.
CrSp NOt FOUND: if the date is not found with the given matching mode.
CrSp_FaiL: if error in parameters, item calendar is not set or loaded.

SiDe eFFeCtS: if successful, the ifound will be set to a valid array index for the caldt array attached to calendar object. the index can be used to
directly access the corresponding time-series item data values associated with this calendar.

preCONDitiONS: the item calendar set must be initialized and loaded.

CrSp_F_itM_Get_KeYCrSp_F_itM_Get_KeY

crsp_f_itm_get_key retrieves key information for data loaded by a function crsp_f_itm_read call. An output key item

list is prepared when the key is initialized, and loaded by function crsp_f_itm_read. This function finds the key_itm_

name in the list and copies ithe value into the user-specified location.

prOtOtYpe: integer function crsp_f_itm_get_key (hndl, key_itm_name,keyval)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle containing the needed set structure information and the current item list.
character(*) :: key_itm_name –
String containing an itm_name of a loaded key to be retrieved.
{integer Or type(CrSp_varStriNG_t)} :: keyval –
variable to accept the value of the key item. Data type must agree with the item’s type and size.

retUrN vaLUeS: CrSp_SUCCeSS: if data loaded successfully
CrSp_FaiL: if error in parameters, handle not open, key item.

SiDe eFFeCtS: if successful, the keyval is loaded based on the item and key value type.

preCONDitiONS: the item handle must be initialized and opened. the item key array must be initialized based on a keytype with the function crsp_f_
itm_open or function crsp_f_itm_init_key functions. the key_itm_name must be a valid item for that keytype, and the keyval data
must agree with the type of that item.

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 62

CrSp_F_itM_iNitCrSp_F_itM_iNit

crsp_f_itm_init prepares a handle for item access operation for one database and one application id. The handle will

be initialized and the database set type and set id identified, allowing loading of reference data and allocation of a set

structure.

prOtOtYpe: integer function crsp_f_itm_init(hndl, dbpath,app_id, hndl_name)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle that will be used to manage the database information and item lists.
character(*) :: dbpath –
path to database containing the data to load and the applicable reference data.
integer :: app_id –
identifier of a defined application organizing data items into groups for access. available app_ids can be found in the reference array,
function crsp_f_itm_ app. Common app_ids have defined constants:

• CrSp_CCMiteMS_iD – generic CCM usage application
• CrSp_DStKitM_iD – generic Daily Stock usage application
• CrSp_MStKitM_iD – generic Monthly Stock usage application
• CrSp_DiNDiteMS_iD – generic Daily ind Stock usage application
• CrSp_MiNDiteMS_iD – generic Monthly ind Stock usage application

character(*) :: hndl name –
Name to assign to the handle

retUrN vaLUeS: CrSp_SUCCeSS: if initialized successfully
CrSp_FaiL: if there is an error in the parameter, database cannot be opened, reference data unavailable, incompatibility between
database and app_id.

SiDe eFFeCtS: if successful, the handle data are loaded:
• the handle fields are initialized, including all lists and arrays.
• the ca_ref structure is loaded with the reference data in the database. if an old database with no reference

data, it will use a global reference file with a standard name based on the app_id in the CrSp_LiB directory.
• itm_grp and itm_avail arrays in the handle are loaded with available tables and items
• Set_list element is allocated using the database path and setid. the database is opened with a 0 wanted,

which loads reference data but allocates no module space. the root information is loaded to the set’s CrSp_
rOOt_iNFO_t structure.

preCONDitiONS: the item handle object must be declared and not attached to another access instance. the app_id must exist in the reference data of
the database opened.

Example:

if (crsp_f_itm_init(hndl,dbpath,stkappid,’stk1’) == CRSP_FAIL) then

 !!--error

 print *,’Error - failed to connect to db:’,TRIM(dbpath)

 stop

endif

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 63

CrSp_F_itM_iS_MiSS_arrvaLCrSp_F_itM_iS_MiSS_arrvaL

crsp_f_itm_is_miss_arrval checks if the requested element in a data object attached to the item contains a missing

value. is_miss is set to .TRUE. when a missing value is detected. Only items of simple (non-structured) types are

accepted, while the item’s underlying data-object can be of structured data-type, in which case the structure offset is used

to extract the item value.

prOtOtYpe: integer function crsp_f_itm_is_miss_arrval (itm, ind, is_miss)

arGUMeNtS: type(CrSp_itM_t),pointer :: itm –
pointer to the data item

integer :: ind –
index of the data array element to check
logical :: is_miss –
pointer to the resulting flag value

retUrN vaLUeS: CrSp_SUCCeSS: if successful, the returned value is initialized and set.
CrSp_FaiL: if error in parameters, bad item or element index is out-of-range (ignored in case of CrSp_rOw_t object)

SiDe eFFeCtS: if the requested value contains a missing value, the is_miss is set to .trUe. Otherwise .FaLSe. is assigned.

preCONDitiONS: the item has to have a valid bound data-object. Structured items are not allowed. Field items of structures are allowed.

CrSp_F_itM_LOaDCrSp_F_itM_LOaD

crsp_f_itm_load prepares items described by a full list and loads them to an item table structure in an item handle. It

splits the full list into the global section and the list section and uses the function crsp_f_itm_expand_elem on each list

element in the list section. This will recursively expand the list elements to fill the structure and apply global qualifiers

during the process.

prOtOtYpe: integer function crsp_f_itm_load(hndl, full_list,match_flag)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle containing the needed set structure information and the current item list.
character(*) :: full_list –
String describing all items to add, used on standard item notation

integer :: match_flag –
Flag setting the behavior when an item if found but not the keyset. values are:

• CrSp_MatCh_reQUireD (=0) – if any indicated item and keyset is not found no further items will be added,
and CrSp_ NOt_FOUND returned.

• CrSp_MatCh_FiLL (=1)– a dummy item will be created for any item if the item exists but the keyset does not
exist for that item in the current database.

• CrSp_MatCh_iGNOre (=2) – items will not be added if the keyset is not found, but the return remains
CrSp_SUCCeSS.

retUrN vaLUeS: CrSp_SUCCeSS: if successful, and all indicated items loaded according to match_flag
CrSp_FaiL: error in parameters, bad list, handle not initialized, or reference data not available.

SiDe eFFeCtS: if successful, the CrSp_itM_Grpis loaded with all indicated items. a CrSp_itM is allocated for each item/keyset pair not already
loaded. Object pointers are not set by this function.

preCONDitiONS: the item handle set must be loaded. the item table must be initialized with an available app_id. the first set in the set list must
agree with the app_id.

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 64

CrSp_F_itM_LOaD_KeYCrSp_F_itM_LOaD_KeY

crsp_f_itm_load_key defines the keytype that will be used for subsequent reads.

prOtOtYpe: integer function crsp_f_itm_load_key(hndl, keytype)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle containing the needed set structure information and the current item list.
character(*) :: keytype –
Name of the key to initialize. values are:

• gvkey – Compustat company key (default)
• gvkeyx – Compustat index key
• ccmid – gvkey or gvkeyx
• permno – CrSp permno found in any links
• permco – CrSp permco found in any links
• apermno – CrSp-centric composite records by permno
• ppermco – CrSp-centric composite records by permno – primary links only
• sic – Compustat company SiC code
• ticker – Compustat security ticker symbol
• cusip – security CUSip

retUrN vaLUeS: CrSp_SUCCeSS: if successful
CrSp_FaiL: error in parameters, handle not initialized, or keytype not found.

SiDe eFFeCtS: if successful, the handle is prepared to handle reads.

preCONDitiONS: the item handle must be initialized. Keytype must be known for the app_id.

CrSp_F_itM_OpeNCrSp_F_itM_OpeN

crsp_f_itm_open registers selected items in a handle by expanding structures and keysets, preparing keys, determining

modules needed to access items, opens the needed modules, and binds data in the item lists to the data structure

locations. It also builds a master index of all items available in the handle.

prOtOtYpe: integer function crsp_f_itm_open (hndl)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle containing the needed set structure information and the current item list.

retUrN vaLUeS: CrSp_SUCCeSS: if opens successfully and binds the data
CrSp_FaiL: if error in parameters, inconsistent handle, error opening databases or binding items.

SiDe eFFeCtS: if successful, the handle is ready for access:
• all items in the loaded list will have object pointer set to the data location in the set data structure.
• if the handle grp_fill_cd is ‘Y’, then the item lists are filled to ensure full tables. Filling creates items to ensure

that every itm_name and keyset present in a group each combination is present even if not specified. Filling
also arranges the lists so if multiple keysets, each is sorted in the same order as the first keyset seen.

preCONDitiONS: the item handle must be previously initialized with function crsp_f_itm_init. it generally follows one or more instances of item load
function calls

Example:

if (crsp_f_itm_open(hndl) == CRSP_FAIL) then

 !!--error

 print *,’Error - failed to open db for access’

 stop

endif

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 65

CrSp_F_itM_reaDCrSp_F_itM_reaD

crsp_f_itm_read Loads data from handle based on item keys specified in prior function crsp_f_itm_key calls and the

keyflag argument. Depending on the level of the entity class, the operation may include reading data from the database

into structures and/or specifying data already loaded. This allows a direct or positional read based on keyflag.

If the value of the access handle property fiscal_disp_cd is “C”, any fiscal-based time series are shifted to a calendar

basis as part of the read operation.

prOtOtYpe: integer function crsp_f_itm_read (hndl, keyflag, key_status)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle containing the needed set structure information and the current item list.
integer :: keyflag –
Code determining how the key is interpreted.

• CrSp_eXaCt – look for a specific value,
• CrSp_BaCK or CrSp_FOrwarD – direct selection when partial matches are allowed, or a positional qualifier

to base selection on the position relative to the last key accessed.
• CrSp_NeXt (=-99) – read next key in sequence
• CrSp_prev (=-96) – read previous key in sequence
• CrSp_SaMe (=-98) – read same key, possibly with different information
• CrSp_FirSt (=-95) – read first key in the database
• CrSp_LaSt (=-97) – read last key in the database

integer :: key_status –
User provided variable to load with the level of the read. it will be loaded with a 0 if the load results in reading new master data. it will
be loaded with a number greater than 0 if the load impacts detail or global data, but no master data are affected.

retUrN vaLUeS: CrSp_SUCCeSS: if data loaded successfully
CrSp_eOF: if positional read reaches the end of the file
CrSp_NOt_FOUND: if key not found on exact read. if a detail input key is not provided and no items of that entity class are selected,
the return is CrSp_SUCCeSS as long as the primary key matches.
CrSp_FaiL: if error in parameters, handle not opened, error in read operations.

SiDe eFFeCtS: if successful, the wanted data for the key are loaded into the handle set structure which allows item objects to point to the loaded
data. the key found for each level is loaded into the outkey item list. if the handle fiscal_disp_cd is set to calendar-based and items
are fiscal-based, shifted calendars are created and time series are converted to calendar basis. the status argument is loaded
based on whether the primary key changed. handle primkey field and readlvl are set. readlvl is set to the rank of the first entity class
changed. if the primary key changed, getlvl is set to 0.

preCONDitiONS: the item handle must be initialized and opened. the item key must be initialized based on the key type, key element, and the entity
class. if not a positional qualifier, the item key inpkey list must be loaded.

Example:

sts = crsp_f_itm_read(hndl,CRSP_EXACT, key_sts)

if (sts == CRSP_FAIL) then

 got_db_error = .true.

 print *,’Error - failed to read db for key:’,key

 exit

endif

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 66

CrSp_F_itM_Set_KeYCrSp_F_itM_Set_KeY

crsp_f_itm_set_key loads key information that will be used to load data in a function crsp_f_itm_read call. The key is

setup during the function crsp_f_itm_open based on the active keytype. The value passed to this function is entered into

the handle attached to the input key item.

prOtOtYpe: integer function crsp_f_itm_set_key (hndl, key_itm_name, keyval)

arGUMeNtS: type(CrSp_itM_hNDL_t) :: hndl –
access handle containing the needed set structure information and the current item list.
character(*) :: key_itm_name –
String containing an itm_name of an input key item to be loaded.
{integer Or type(CrSp_varStriNG_t)} :: keyval –
Data to be loaded into the key item. Data must agree with the key item’s type.

retUrN vaLUeS: CrSp_SUCCeSS: if data loaded successfully

CrSp_FaiL: if error in parameters, handle not open, key item.

SiDe eFFeCtS: if successful, the keyval is copied into the data location for the input key item element in the handle.

preCONDitiONS: the item handle must be initialized and opened. the item key array must be initialized based on a keytype with the function crsp_f_
itm_open or function crsp_f_itm_init_key functions. the key_itm_name must be a valid item for that keytype, and the keyval data
must agree with the type of that item.

Example:

if (crsp_f_itm_set_key(hndl,’KYPERMNO’,key) == CRSP_FAIL) then

 !!-- error

 print *,’Error - failed to set key:’,key

 stop

endif

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 67

reFereNCe iNFOrMatiON
CRSP FORTRAN 95 API DATA TYPES

All derived types used in the CRSP Fortran 95 API are defined in the module crsp_f_itm_types. They are included in user

programs automatically through the use of crsp_f_itm_lib module.

Note: This document lists only selected properties of the defined types that are relevant in the user-scope of item-based

access. The full individual definitions of the specific Fortran 95 derived types can be referenced from the respective

include source files. These files are already included in the crsp_f_itm_lib module and an explicit include statement is

not necessary to use the defined types in your programs. The supplied CRSP Fortran 95 API include files are listed in the

following table:

pLatFOrM/LOCatiON FiLe DeSCriptiON

windows 32-bit
windows 64-bit
%CrSp_iNCLUDe%

SunOS sparc
SunOS i86pc
Linux 32-bit
Linux 64-bit
$CrSp_iNCLUDe

crsp_itm_ccm_types.inc CrSp CCM/Compustat specific data types

crsp_itm_stk_types.inc CrSp Stock specific data types

crsp_itm_ind_types.inc CrSp index specific data types

crsp_itm_gen_types.inc CrSp generic data types used in all supported data sets

crsp_itm_types.inc Data types used in context of item-access

crsp_itm_params.inc Declarations of constant parameters used.

To use the CRSP Fortran 95 API library in your program simply include a ‘use’ statement for the top-level module crsp_f_

itm_lib. All of the required underlying modules will be included automatically. The supplied CRSP Fortran 95 API module

files are listed in the following table:

pLatFOrM/LOCatiON FiLe DeSCriptiON

windows 32-bit
windows 64-bit
%CrSp_iNCLUDe%\mod

SunOS sparc
SunOS i86pc
$CrSp_iNCLUDe/mod

Linux 32-bit
Linux 64-bit
$CrSp_iNCLUDe/mod
$CrSp_iNCLUDe/mod_g95

crsp_f_itm_lib.mod CrSp Fortran 95 itm-api user-level module

crsp_f_varstring.mod CrSp implementation of varying-length string (CrSp_varStriNG_t Fortran 95 derived
type)

crsp_f_itm_utils.mod implementations of CrSp itm-api interfaces

crsp_f_itm_types.mod Fortran 95 derived types used in context of CrSp Fortran 95 itm-api

crsp_f_itm_xfer.mod internal functions and types for CrSp Fortran 95/C exchange layer

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 68

CONTAINER OBJECTS

CRSP container objects are used to uniformly define the storage for various CRSP data types. Generally, the container’s

data is stored in the associated Fortran 95 array, except in the case of the CRSP_ROW_T container, where the storage

is allocated for an Fortran 95 scalar of the specified data type. The associated storage array is externally allocated with

0-based array bounds.

The CRSP time-series object has an associated calendar of the CRSP_CAL_T object type which is aligned with the time-

series data array, attributing the date to the values stored in the time-series array.

CRSP calendar data is stored in the CRSP_CAL_T container object, which defines the loaded calendar and also stores the

actual calendar data of the defined type. In the context of the CRSP Fortran 95 API, the calendars associated to the time-

series items are of day date-type and are accessed with caldt array.

Each container (except CRSP_ROW_T) has a defined availability range, with missing values set beyond the defined range.

The missing value is specific to the data type of the stored data and is located at the pre-defined array index position.

Properties of the CRSP container object types are listed in the following tables:

CrSp_tS_tCrSp_tS_t

CRSP time-series container object

NaMe FOrtraN 95 tYpe DeSCriptiON

objtype integer Object type id (CrSp_tS_OtiD)

arrtype integer type id of the data stored in the container

subtype integer Subtype id of the data stored in the container

maxarr integer Maximum bound for the storage array (index is 0-based)

beg integer Lower index of the available stored data

end integer Upper index of the available stored data

caltype integer Calendar type of the associated calendar object

cal CrSp_CaL_t pointer to associated calendar object

miss_val_at = 0 array index of the missing value for the stored data type

CrSp_arraY_tCrSp_arraY_t

CRSP array container object

NaMe FOrtraN 95 tYpe DeSCriptiON

objtype integer Object type id (CrSp_arraY_OtiD)

arrtype integer type id of the data stored in the container

subtype integer Subtype id of the data stored in the container

maxarr integer Maximum bound for the storage array (index is 0-based)

num integer Upper index of the available stored data (index is 0-based)

miss_val_at = maxarr - 1 array index of the missing value for the stored data type

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 69

CrSp_rOw_tCrSp_rOw_t

CRSP row container object

NaMe FOrtraN 95 tYpe DeSCriptiON

objtype integer Object type id (CrSp_rOw_OtiD)

arrtype integer type id of the data stored in the container

subtype integer Subtype id of the data stored in the container

CrSp_CaL_tCrSp_CaL_t

CRSP calendar container object

NaMe FOrtraN 95 tYpe DeSCriptiON

objtype integer Object type id (CrSp_CaL_OtiD)

calid integer id code of the loaded calendar:
• CrSp_CaLiD_DaiLY
• CrSp_CaLiD_MONthLY
• CrSp_CaLiD_aNNUaL
• CrSp_CaLiD_QUarterLY
• CrSp_CaLiD_SeMiaNNUaL
• CrSp_CaLiD_weeKLY

maxarr integer Maximum bound of the date storage array

gmtoffset integer Minutes offset from GMt

timezone integer Code for time zone GMt

relflag integer if beg and end absolute or relative

beg integer valid range subset begin

end integer valid range subset end

ndays integer Number of periods in calendar

name character(LeN=CrSp_NaMeSiZe) Calendar name

caldt integer,dimension(:) array of the available day dates (yyyymmdd) in the calendar

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 70

SUPPORTING TYPES

The CRSP Fortran 95 itm-API supporting types provide additional information about data items and other associated

objects in the context of item-based access. An item object is usually associated to a keyset and calendar (in case of time-

series items). The details of the keyset (when non-zero) and calendar are given in the CRSP_ITM_KEYSET_T and CRSP_ITM_

CAL_T derived types.

Additionally, the details of the current CRSP data set (such as set name, product name, version, etc.) are provided in the

CRSP_ITM_SET_T and CRSP_ROOT_INFO_T derived types.

The relevant fields of the supporting types are listed in the following tables:

CrSp_itM_iNFO_tCrSp_itM_iNFO_t

Item detail information

NaMe FOrtraN 95 tYpe DeSCriptiON

itm_name character(LeN=CrSp_NaMe_LeN) item mnemonic name

dflt_keyset integer Default keyset

full_name character(LeN=CrSp_NaMeSiZe) Full non-mnenonic name

itm_type character(LeN=CrSp_tYpe_LeN) type of data item

derv_flg character(LeN=CrSp_tYpe_LeN) item is stored/derived

unit_type character(LeN=CrSp_CODe_LeN) type of units (money, ratio)

unit_mult double precision Multiplier to get actual value

cat_type character(LeN=CrSp_CODe_LeN) Category (BS, iS, CF, MKt)

src_type character(LeN=CrSp_CODe_LeN) Source (filing, market)

freq_type character(LeN=CrSp_tYpe_LeN) reporting frequency type

disp_fmt character(LeN=CrSp_iteMNaMe_LeN) Display format specifier

disp_len integer Field width for formatted output

disp_precn integer Number of decimal places in output

ca_data_size integer internal length

ca_arrtype integer internal structure it belongs

ca_subtype integer internal data sub type

subno_type integer type of variant id

epsflag integer epsilon type/digits for diffs

cepsflag integer epsilon type for character(LeN=diffs)

epsilon double precision absolute epsilon for diffs

desc character(LeN=CrSp_DeSC_LeN) Default description for field

CrSp_itM_KeYSet_tCrSp_itM_KeYSet_t

Keyset descriptor

NaMe FOrtraN 95 tYpe DeSCriptiON

keyset integer Keyset number

is_loaded logical true when items where requested with this keyset

keyset_info CrSp_KeYSet_t information about the keyset

items_arr CrSp_arraY_t CrSp array container definition for keyset composing items

items CrSp_itM_t,dimension(:) array of the items composing the keyset

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 71

CrSp_itM_CaL_tCrSp_itM_CaL_t

Calendar descriptor

NaMe FOrtraN 95 tYpe DeSCriptiON

calid integer Calendar iD

keyset integer Keyset number
keyset = -1 for global base calendars (non-shifted)

is_shifted loigcal true if the calendar day dates were shifted based on company’s FYe

calcd character(LeN=CrSp_CaLCD_LeN) Base calendar name

freqcd character(LeN=CrSp_Char_StrSiZe) Frequency code of the calendar

cal CrSp_CaL_t, pointer pointer to CrSp calendar container object

CrSp_KeYSet_tCrSp_KeYSet_t

Keyset information

NaMe FOrtraN 95 tYpe DeSCriptiON

keyset integer Keyset number

keyset_tag character(LeN=CrSp_NaMe_LeN) Keyset tag name

desc character(LeN=CrSp_DeSC_LeN) Keyset description

CrSp_itM_Set_tCrSp_itM_Set_t

Data set descriptor

NaMe FOrtraN 95 tYpe DeSCriptiON

set_name character(LeN=CrSp_NaMe_LeN) Keyset number

path character(LeN=CrSp_pathSiZe) Keyset tag name

root_info CrSp_rOOt_iNFO_t Database root information

CrSp_rOOt_iNFO_tCrSp_rOOt_iNFO_t

Database root information

NaMe FOrtraN 95 tYpe DeSCriptiON

product_name character(LeN=CrSp_prOD_NaMeSiZe) Database name

product_code character(LeN=CrSp_CODe_NaMeSiZe) Database code

version integer version number of db

crt_date character(LeN=CrSp_Date_SiZe) Dates are Dow Mon DD hh:MM:SS YYYY

mod_date character(LeN=CrSp_Date_SiZe) Last modification date of db

cut_date character(LeN=CrSp_Date_SiZe) Cut date of db

binary_type character(LeN=CrSp_Char_StrSiZe) L (ieee little-endian) or B (big)

code_version character(LeN=CrSp_OS_NaMeSiZe) Ca97 version

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 72

CRSP_VARSTRING_T TYPE

The varying-length string Fortran 95 derived type CRSP_VARSTRING_T allows for flexible use of expandable character strings

and complements the standard fixed-length Fortran 95 character type. The _VARSTRING_T string can be constructed from

and converted into a regular fixed-length string. The internals of the derived type handle the necessary storage allocation

and provide public functions for basic string-related operations.

The CRSP_VARSTRING_T derived type is implemented in a separate module, crsp_f_varstring. This module is

automatically included in the crsp_f_itm_types module and is available to programs using the CRSP Fortran 95 API.

FOrtraN 95 MODULe NaMe DeSCriptiON

crsp_f_varstring CrSp_varStriNG_t varying-length character string

aSSiGNMeNt (=)aSSiGNMeNt (=)

This interface extends the built-in assignment operator. It allows for construction, assignment, and conversion of a varying-

length string, which are handled by internal elemental functions.

iNterFaCe: assignment(=)
left = right

arGUMeNtS1: type(CrSp_varStriNG_t) :: left
type(CrSp_varStriNG_t) :: right

arGUMeNtS2: type(CrSp_varStriNG_t) :: left
character(*) :: right

arGUMeNtS3: character(*) :: left
type(CrSp_varStriNG_t) :: right

retUrN vaLUeS: None

SiDe eFFeCtS: Left variable gets assigned the value of the right variable.
the left CrSp_varStriNG_t variable will be re-initialized to accommodate the string value on the right.

preCONDitiONS: available heap memory necessary for dynamic allocation of the internal string storage.

eXaMpLe: type(CrSp_varStriNG_t) ::vstr1, vstr2
character(LeN=10) :: fixstr = ‘1235’
vstr1 = ‘teSt’
vstr 2 = fixstr
vstr1 = vstr2

LeNLeN

len extends the intrinsic LEN() function to operate on CRSP_VARSTRING_T strings. It returns the current allocated length

of the stored string.

iNterFaCe: LeN(vstr)

arGUMeNtS: type(CrSp_varStriNG_t) :: vstr

retUrN vaLUeS: integer :: len –
Length of the stored string. if string is not allocated, returned len=0.

SiDe eFFeCtS: None

preCONDitiONS: None

eXaMpLe: type(CrSp_varStriNG_t) ::vstr
integer :: len
vstr = ‘teSt’
len = LeN(vstr)

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 73

triMtriM

trim extends the intrinsic TRIM() function to operate on CRSP_VARSTRING_T strings. It returns a [right] blank-trimmed

stored string as a fixed-length string.

iNterFaCe: triM(vstr)

arGUMeNtS: type(CrSp_varStriNG_t) :: vstr

retUrN vaLUeS: character(*) :: fixstr –
Fixed-length string resulting from the stored string with blanks trimmed from the right side.

SiDe eFFeCtS: None

preCONDitiONS: None

eXaMpLe: type(CrSp_varStriNG_t) ::vstr
character(LeN=10) :: fixstr
fixstr=’teSt’ !! is blank-padded to allocated length
vstr = fixstr
print *,’trimmed_str:[’,triM(vstr),’]’

CharChar

Explicitly converts the stored string into fixed-length string. char is often used on string arguments to output statements

(such as PRINT and WRITE).

iNterFaCe: Char(vstr)

arGUMeNtS: type(CrSp_varStriNG_t) :: vstr

retUrN vaLUeS: character(*) :: fixstr –
Fixed-length string from the stored string

SiDe eFFeCtS: None

preCONDitiONS: None

eXaMpLe: type(CrSp_varStriNG_t) ::vstr
vstr = ‘teSt’
print *,’vstr:[’,Char(vstr),’]’

CrSp_F_vStr_FreeCrSp_F_vStr_Free

crsp_f_vstr_free frees the internally allocated heap storage. It is expected to be called by the user when the CRSP_

VARSTRING_T variable goes out of its scope of use, so that the allocated memory is released back to the process heap.

prOtOtYpe: pure subroutine crsp_f_vstr_free (str,stat)

arGUMeNtS: type(CrSp_varStriNG_t) :: vstr
integer, optional :: stat –
error code to indicate status of the operation:

• stat = 0 – SUCCeSS
• stat = non-zero – FaiLeD

retUrN vaLUeS: None

SiDe eFFeCtS: the errOr CODe iS Set tO the Stat variaBLe wheN paSSeD aS arGUMeNt.

preCONDitiONS: None

eXaMpLe: type(CrSp_varStriNG_t) ::vstr
integer :: errcd
vstr = ‘teSt’
call crsp_fvstr_free(vstr,stat=errcd)
if (errcd /= 0) stop

CRSP PRogRammeR'S guide | ITEM ACCESS IN FORTRAN PAGE 74

CrSp_F_vStr_iNitCrSp_F_vStr_iNit

crsp_f_vstr_init reserves internal storage to hold a string of the specified length and initializes the reserved string with

blanks. Normally an explicit call to this function is not required from user programs, as it is called internally by the defined

assignment operators.

prOtOtYpe: pure subroutine crsp_f_vstr_init (str,len, stat)

arGUMeNtS: type(CrSp_varStriNG_t) :: vstr –
resulting varying-length string

integer,intent(in) :: len –
reserved length of the string

integer, optional :: stat –
error code to indicate status of the operation:

• stat = 0 – SUCCeSS
• stat = non-zero – FaiLeD

retUrN vaLUeS: None

SiDe eFFeCtS: the error code is set to the stat variable when passed as argument.

preCONDitiONS: available heap memory necessary for dynamic allocation of the internal string storage.

eXaMpLe: type(CrSp_varStriNG_t) ::vstr
integer :: errcd
call crsp_fvstr_init(vstr,10, stat=errcd)
if (errcd /= 0) stop

PAGE 75

Chapter 4: iteM-BaSeD SaMpLeS

BUILDING AND EXECUTING PROGRAMS

The CRSP API includes a variety of sample programs illustrating item-based access to CRSP databases from Fortran 95

programs. This section describes the sample programs and shows you how to build and execute them on the Windows XP,

Sun Solaris, and Linux platforms.

Before creating your own programs, it is a good idea to first build and execute one or more of these sample programs.

Besides illustrating CRSP API programming techniques, the sample programs have been tested and debugged by CRSP. If

you can successfully run them, then you know your programming environment is correctly configured.

The following table lists the supplied sample programs, organized by database.

FOrtraN iteM-BaSeD SaMpLe prOGraMSFOrtraN iteM-BaSeD SaMpLe prOGraMS

CrSp DataBaSe SaMpLe prOGraMS MaKe FiLe/ pLatFOrM .eXt

CrSp/Compustat Merged
Database

ccmitm_fsamp1.f90 –Sequential item-access to CrSp Compustat dataset
ccmitm_fsamp2.f90 –Direct item-access to CrSp Compustat dataset by GvKeY list
ccmitm_fsamp3.f90 –Direct item-access to CrSp Compustat securities data by GvKeY.iiD
ccmitm_fsamp4.f90 –Use of CrSp Link for Compustat, item-access by CrSp permno.

windows / SunOS /Linux Lahey Fortran 95 /
Linux G95\
f95_samp_ccm.mak / .mk/ .mk5

/ .mkg5

CrSp US Stock Database stkitm_fsamp1.f90 –sequential item-access to CrSp Stock dataset.
stkitm_fsamp2.f90 –direct item-access to CrSp Stock dataset by CrSp permno.
stkitm_fsamp4.f90 –use of regular and derived data-items for CrSp Stock dataset.

windows / SunOS /Linux Lahey Fortran 95 /
Linux G95
f95_samp_stkitm.mak / .mk/

.mk5 / .mkg5

CrSp US index Database inditm_fsamp1.f90 –sequential item-access to CrSp Stock & index Database.
inditm_fsamp2.f90 –direct item-access to CrSp Stock ind dataset by CrSp indno.

windows / SunOS /Linux Lahey Fortran 95 /
Linux G95
f95_samp_inditm.mak / .mk/

.mk5 / .mkg5

C iteM-BaSeD SaMpLe prOGraMSC iteM-BaSeD SaMpLe prOGraMS

SKtitM_SaMp1.C reads CrSp SiZ database
sequentially by perMNO

stkitm_samp1.c by default reads all securities in a CrSp Stock database sequentially and creates
an output file with one header line per security.

StKitM_SaMp2.C reads CrSp Stock database directly
using an input file of perMNOs or
file of CUSips, as indicated.

stkitm_samp2.c reads an input file of perMNOs or file of CUSips and loads data from a CrSp Stock
database for each input key. it creates an output file with one header line per record. if an input key is not
found in the CrSp Stock database, a message is printed to the screen and no processing is done.
this program loads data for selected records. Other sample programs are available that can process a
CrSp Stock database sequentially.

StKitM_SaMp4.C reads CrSp Stock database directly
using an input file of perMNOs or
file of CUSips, as indicated. Shows
access to derived items.

stkitm_samp4.c reads an input file of perMNOs or file of CUSips and loads data from a CrSp Stock
database for each input key. it creates an output file with one header line per record. if an input key is not
found in the CrSp Stock database, a message is printed to the screen and no processing is done.
this program loads data for selected records. Other sample programs are available that can process a
CrSp Stock database sequentially.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 76

api eNvirONMeNt api eNvirONMeNt

environment variables

The CUPL installation process sets a number of environment variables pointing to the locations of modules, include and

library files, as well as sample programs. The values of these environment variables are given in the following table, broken

down by platform.

FORTRANFORTRAN

pLatFOrM F95 MODULeS (*.MOD) F95 iNCLUDeS (*.iNC) F95 LiBrarY F95 SaMpLeS
(*.F90)

windows 32- and 64-bit %CrSp_iNCLUDe%\mod %CrSp_iNCLUDe% %CrSp_LiB% %CrSp_SaMpLe%

Sun Solaris - Ultra Sparc - 64-bit $CrSp_iNCLUDe/mod $CrSp_iNCLUDe $CrSp_LiB $CrSp_SaMpLe

red hat Linux 32- and 64-bit G95 0.91 complier:
$CrSp_iNCLUDe/mod_g95

$CrSp_iNCLUDe $CrSp_LiB $CrSp_SaMpLe

CC
pLatFOrM C MODULeS (*.MOD) C iNCLUDeS (*.iNC) C LiBrarY C SaMpLeS

windows 32- and 64-bit %CrSp_iNCLUDe%\mod %CrSp_iNCLUDe% %CrSp_LiB% %CrSp_SaMpLe%

Sun Solaris - Ultra Sparc - 64-bit $CrSp_iNCLUDe/mod $CrSp_iNCLUDe $CrSp_LiB $CrSp_SaMpLe

red hat Linux 32- and 64-bit G95 0.91 complier:
$CrSp_iNCLUDe/mod_g95

$CrSp_iNCLUDe $CrSp_LiB $CrSp_SaMpLe

Compiler Options

Platform-specific Fortran 95 compiler options used with Fortran 95 CRSP API are listed in the table below. Refer to the

CRSPAccess Release Notes for specific versions of the supported Fortran 95 compilers.

FORTRANFORTRAN
pLatFOrM FOrtraN 95 COMpiLer OptiONS

windows 32- and 64-bit intel visualFortran 2011/parallelStudio Xe
ifort /Qvec- /i %CrSp_iNCLUDe% /i %CrSp_iNCLUDe%\mod

Sun Solaris - Ultra Sparc - 64-bit Sun Fortran-95 8.2:
f95 -w -xtarget=generic64 -ext_names=plain -i$CrSp_iNCLUDe -M$CrSp_iNCLUDe/mod -KpiC

red hat Linux 32- and 64-bit G95 0.91
g95 -w -i$CrSp_iNCLUDe -i$CrSp_iNCLUDe/mod_g95

CC
pLatFOrM C COMpiLer OptiONS

windows 32- and 64-bit MS visual Studio C++ 2008 & 2010

Sun Solaris - Ultra Sparc - 64-bit Sun C 5.8, part of SunStudio 11

red hat Linux 32- and 64-bit Gcc 4.1.2

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 77

LiBrarieSLiBrarieS

Platform-specific libraries and options for linking with CRSP API are listed in the table below:

FORTRAN FORTRAN

pLatFOrM FOrtraN 95 COMpiLer OptiONS

windows 32- and 64-bit intel visualFortran 2011/parallelStudio Xe
%CrSp_LiB%\crsp_lib_f95.lib %CrSp_LiB%\crsp_lib.lib

Sun Solaris - Ultra Sparc - 64-bit Sun Fortran-95 8.2:
$CrSp_LiB/crsplib_f95.a $CrSp_LiB/crsplib.a -lm –lnsl

red hat Linux 32- and 64-bit G95 0.91
$CrSp_LiB/crsplib_g95.a $CrSp_LiB/crsplib.a -lm

C C

pLatFOrM FOrtraN 95 COMpiLer OptiONS

windows 32- and 64-bit intel visualFortran 2011/parallelStudio Xe
%CrSp_LiB%\crsp_lib_c.lib %CrSp_LiB%\crsp_lib.lib

Sun Solaris - Ultra Sparc - 64-bit Sun Fortran-95 8.2:
$CrSp_LiB/crsplib_c.a $CrSp_LiB/crsplib.a -lm –lnsl

red hat Linux 32- and 64-bit G95 0.91
$CrSp_LiB/crsplib_g95.a $CrSp_LiB/crsplib.a -lm

SUN SOLariSSUN SOLariS

CRSP currently supports Sun Sparc Solaris 2.9/5.9 with the Forte Developer 7.0, Fortran 95 7.0, and Sun x86 Solaris

2.9/5.9.

Fortran was compiled and tested using the above compiler. Fortran library functions interface with C functions in the CRSP

object library. Ordinary sample Fortran usage links to the object library, but does not require compiling C programs.

CRSP access depends on environment variables set during installation. Environment variables can be used on Unix with the

name preceded by the $ symbol. All file names and environment variable names are case sensitive on Unix systems. The

env command can be used in a terminal window to find available environment variables.

Important CRSP files or directories can be found with the following names:

$CRSP_BIN Directory containing executable programs and shell scripts files. this directory is in the path so programs can be run from any
directory. executable versions of the sample programs can be found in this directory.

$CRSP_LIB Directory containing CrSp object library and internal files.
$CRSP_LIB/crsplib.a CrSp C object library.
$CRSP_LIB/crsplib_f95.a CrSp F95 object library.
$CRSP_INCLUDE Directory containing CrSp FOrtraN header files referred to by iNCLUDe statements.
$CRSP_SAMPLE Directory containing CrSp sample programs.
$CRSP_MSTK Directory containing monthly CrSp stock and index databases.
$CRSP_DSTK Directory containing daily CrSp stock and index databases.
$CRSP_CST Directory containing CrSp Link and COMpUStat database.
$CRSP_WORK Directory created to hold user-generated files

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 78

SUN FOrtraN 95 8.2SUN FOrtraN 95 8.2

Command line

> cp $CRSP_SAMPLE/stkitm_fsamp1.f90 .

> chmod 660 stkitm_fsamp1.f90

In Sun Sparc Solaris 2.9/5.9:In Sun Sparc Solaris 2.9/5.9:

> f95 –w –xarch=v9 –ext_names=plain –I$CRSP_INCLUDE –KPIC -o stkitm_fsamp1 stkitm_fsamp1.f90 $CRSP_

LIB/crsplib_f95.a $CRSP_LIB/crsplib.a

In Sun x86 Solaris 2.9/5.9:In Sun x86 Solaris 2.9/5.9:

> f95 –w –xtarget=generic64 –ext_names=plain -I$CRSP_INCLUDE –KPIC -o stkitm_fsamp1 stkitm_fsamp1.

f90 $CRSP_LIB/crsplib_f95.a $CRSP_LIB/crsplib.a

To run the program:To run the program:

> ./stkitm_fsamp1

Sample programs can also be compiled and linked using the make utility. The sample program directory $CRSP_SAMPLE

contains sample make description files for Sun Solaris in f95_samp.mak. To use make, copy the relevant description file to

your program directory, edit it to support the program(s) of interest and create local executables.

using a Make file:

To compile a specific sample program:To compile a specific sample program:

> make –f f95_samp.mk stkitm_fsamp1

To compile all sample programs:To compile all sample programs:

> make –f f95_samp.mk

To run the program:To run the program:

> ./stkitm_fsamp1

LiNUXLiNUX

CRSP currently supports Linux, Red Hat 7.2 (32-bit) and RHEL5 (64-bit) on Intel x86. FORTRAN was compiled and tested

using the Lahey Fortran 95 Version 6.2 (32-bit) and the g95 Version 0.091 32- and 64-bit compilers. Fortran library

functions interface with C functions in the CRSP object library. Ordinary sample Fortran usage links to the object library,

but does not require compiling C programs.

CRSP access depends on environment variables set during installation. Environment variables can be used on Linux with

the name preceded by the $ symbol. All file names and environment variable names are case sensitive on Linux systems.

The env command can be used in a terminal window to find available environment variables.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 79

Important CRSP files or directories can be found with the following names:

$CRSP_BIN Directory containing executable programs and shell scripts files. this directory is in the path so programs can be run from any
directory. executable versions of the sample programs can be found in this directory.

$CRSP_LIB Directory containing CrSp object library and internal files.
$CRSP_LIB/crsplib.a CrSp object library.
$CRSP_LIB/crsplib_f95.a CrSp F95 object library.
$CRSP_INCLUDE Directory containing CrSp Fortran header files referred to by iNCLUDe statements.
$CRSP_SAMPLE Directory containing CrSp sample programs.
$CRSP_MSTK Directory containing monthly CrSp stock and index databases.
$CRSP_DSTK Directory containing daily CrSp stock and index databases.
$CRSP_CST Directory containing CrSp Link and COMpUStat database.
$CRSP_WORK Directory created to hold user-generated files

Following is an example of modifying and running a sample FORTRAN program:

G95 ver. 0.91 32- and 64-bit

Command line:Command line:

> cp $CRSP_SAMPLE/stkitm_fsamp1.f90 .

> chmod 660 stkitm_fsamp1.f90

> g95 –o stkitm_fsamp1 –w stkitm_fsamp1.f90 –I$CRSP_INCLUDE $CRSP_LIB/crsplib.a $CRSP_LIB/crsplib_

f95.a `find /usr/local -name libf95.a 2>&1 | grep libf95\.a –lm

To run the program:To run the program:

> ./stkitm_fsamp1

Using a Make File:

The sample program directory $CRSP_SAMPLE contains sample make description files for Linux in f95_samp.mkg5 for the

g95 compiler. To use the make file, copy the relevant description file to your program directory, and edit it to support the

program(s) of interest and create local executables.

To compile specific sample program:To compile specific sample program:

> make –f f95_samp.mkg5 stkitm_fsamp1

To compile all sample programs:To compile all sample programs:

> make –f f95_samp.mkg5

To run the program:To run the program:

> ./stkitm_fsamp1

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 80

USiNG the CrSp FOrtraN 95 api
When you have ascertained that you can successfully compile and execute the provided sample programs, you are ready to

begin creating your own programs. This section illustrates the general flow of CRSP API programs and discusses the data

objects you will use when accessing CRSP Databases from Fortran 95.

SaMpLe api prOGraM FLOwSaMpLe api prOGraM FLOw

CRSP Fortran 95 API client applications are structured according to the following steps. The code snippets shown below

are excerpted from the stkitm_fsamp4.f90 sample program included with the API.

1. Include a ‘use’ statement for the crsp_f_itm_lib module. This step makes API functions and constants available

from within your program.

use crsp_f_itm_lib

2. Declare the item-access handle:

type(CRSP_ITM_HNDL_T) :: hndl

3. Declare pointers to item objects to be used in your program:

type(CRSP_ITM_T),pointer :: stkhdr_itm => null(), &

 prc_itm => null(), &

 adjprc_itm => null(), &

 adjshr_itm => null(), &

 adjvol_itm => null()

4. Connect to a CRSP database for item-access. Specify database root and the available item-set app_id. :

if (crsp_f_itm_init(hndl,dbpath,stkappid,’stk1’) == CRSP_FAIL) then

!!--error

print *,’Error - failed to connect to db:’,TRIM(dbpath)

stop

endif

5. Select the wanted items to be loaded into active item set. Multiple calls to crsp_f_itm_load are allowed and have

expanding effect on the item selection, while without the selected item duplication.

sts=crsp_f_itm_load(hndl,’STKHDR_ALL’,CRSP_MATCH_IGNORE)

if (sts == CRSP_FAIL .or. sts == CRSP_NOT_FOUND) then

!!--error

print *,’Error - failed to load the requested data items (DSTK:1)’

stop

endif

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 81

sts=crsp_f_itm_load(hndl,’DSTK_TS;ADJPRC;ADJSHR;ADJVOL’,CRSP_MATCH_IGNORE)

if (sts == CRSP_FAIL .or. sts == CRSP_NOT_FOUND) then

!!--error

print *,’Error - failed to load the requested data items (DSTK:2)’

stop

endif

6. Configure the item-access if needed by setting any of the access configuration codes in the access handle, eg:

hndl%fiscal_disp_cd = ‘F’

See CRSP Fortran 95 API Data Objects on “CRSP Fortran 95 API Data Objects” on page 31 for the details of access
handle properties.

7. Open the item-access to the selected CRSP dataset:

if (crsp_f_itm_open(hndl) == CRSP_FAIL) then

!!--error

print *,’Error - failed to open db for access’

stop

endif

8. Attach the user-declared item pointers to the loaded items. Specify the item name and keyset:

if (crsp_f_itm_find(hndl,’HEADER’,0,stkhdr_itm) == CRSP_FAIL &

.or. crsp_f_itm_find(hndl,’PRC’,0,prc_itm) == CRSP_FAIL &

.or. crsp_f_itm_find(hndl,’ADJPRC’,0,adjprc_itm) == CRSP_FAIL &

.or. crsp_f_itm_find(hndl,’ADJSHR’,0,adjshr_itm) == CRSP_FAIL &

.or. crsp_f_itm_find(hndl,’ADJVOL’,0,adjvol_itm) == CRSP_FAIL &

.or. .not. associated(stkhdr_itm) &

.or. .not. associated(prc_itm) &

.or. .not. associated(adjprc_itm) &

.or. .not. associated(adjshr_itm) &

.or. .not. associated(adjvol_itm)) then

!!--error

print *,’Error - invalid item/keyset specified’

stop

endif

Note: Only previously loaded items can be found. If an item is not being found, first make sure the requested item has

been loaded in the requested keyset explicitly or implicitly through a collective item group.

9. Load the primary access key if different from a defined default.

if (crsp_f_itm_load_key(hndl,’permno’) == CRSP_FAIL) then

!!--error

print *,’Error - failed to load index for key:’,’permno’

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 82

stop

endif

10. In case of direct access, set the corresponding key item to the target value.

if (crsp_f_itm_set_key(hndl,’KYPERMNO’,key) == CRSP_FAIL) then

!!-- error

print *,’Error - failed to set key:’,key

stop

endif

11. Read the database. Specify the key matching mode when exact key value is not found. In case of sequential access set

key flag to CRSP_NEXT. For composite primary key the non-zero key_status signals access on detail key:

sts = crsp_f_itm_read(hndl,CRSP_EXACT, key_sts)

if (sts == CRSP_FAIL) then

got_db_error = .true.

print *,’Error - failed to read db for key:’,key

exit

endif

12. On successful read-status the data is loaded and item data containers are ready for access. The item data can be

accessed through the attached item pointers. This step is where your application-specific logic comes into play.

do i=prc_itm%obj%ts%beg, prc_itm%obj%ts%end

write(ofunit,601) &

stkhdr_itm%arr%header_val%permno, &

stkhdr_itm%arr%header_val%hcomnam, &

prc_itm%obj%ts%cal%caldt(i), &

prc_itm%arr%flt_arr(i), &

adjprc_itm%arr%flt_arr(i), &

adjshr_itm%arr%int_arr(i), &

adjvol_itm%arr%dbl_arr(i)

601 format(I6,1X,A32,1X,I8,1X,F12.5,1X,F12.5,1X,I9,1X,F13.1)

enddo

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 83

13. Close the item-access and disconnect from the selected CRSP dataset. This also releases the internally allocated

storage for this item-handle instance and invalidates any user-declared item pointers attached to the handle.

if (crsp_f_itm_close(hndl) == CRSP_FAIL) then

!!--error

print *, ‘Error-- failed to close db:’,TRIM(dbpath)

stop

endif

For more detailed examples of item-access to supported CRSP database products, you are encouraged to refer to the

supplied set of sample programs.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 84

MiCrOSOFt wiNDOwS
VISUAL STUDIO 2010 - C COMPILER INSTRUCTIONS

CRSP supports compiling C programs in Windows 32-bit and 64-bit environments. The following example compiles a

sample C program provided with the CUPL tools using Microsoft Visual Studio 2010. Use 64-bit options in Visual Studio

with a 64-bit install of CUPL, 32-bit options with a 32-bit install.

STEP 1: To begin, open Visual Studio 2010. Click on New Project.

STEP 2: Select Visual C++ and highlight Win32 Console Application. Give the project a name, specify a location, and

provide a solution name. Click OK.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 85

STEP 3: On the Application Settings screen, click on Console application, and check Empty project, then click on Finish.

STEP 4: You are ready to add information to the project that you are building. To do so, right click on the project, in this

example, stkitm_samp1 (in bold). On the pop-up screen, select Add > Existing Item.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 86

STEP 5: Browse for the program that you would like to add. In the CUPL Version 3.86 – 64-bit tools, sample programs are

located in the Sample64 folder. Highlight stkitm_samp1.c program and Add.

STEP 6: The program will display in the Source folder of the project. Right click on the stkitm_samp1 project again, and

at the very bottom of the window, select Properties.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 87

STEP 7: At this point, there are several actions to take and there is no specific order necessary. First, in the Configuration
options in the upper left corner of the screen, click on the dropdown and select Release.

STEP 8: On the top right corner of the same screen (see above), click on the Configuration Manager. From the Active

solution platform dropdown, select x64 and click OK. If x64 doesn’t exist as an option, from this same dropdown click on

New and add x64 as an option, click OK, and then Close.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 88

STEP 9: Back to the Property Pages, under Configuration Properties, click on Debugging. In the Command Arguments line,

define the database that you will use, and enter a name for the output file. In this example, %crsp_dstk% is using

environment variables that are pointing to the CRSP daily stock database. “10” is the daily stock setid. stksamp1.out is

the file that will be generated once the project is built and run.

STEP 10: Still under the Configuration Properties, click on VC++ Directories. Highlight the Include Directories row and click

on the dropdown. Click on Edit and add the location of the Include folder in the CUPL tools. In this example, c:\crsp86\

include64. Click OK.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 89

STEP 11: Next, expand the C/C++ directory select the General tab. Highlight the Additional Include Directories and click

on the dropdown and Edit. Enter the path for the CRSP include files. In the example, the path is c:\crsp86\include64.

Click OK to close the window.

STEP 12: Still in the the C/C++ folder, select Preprocessor. Highlight Preprocessor Definitions, click on the dropdown and

Edit. Enter WINNT and click OK to close the window.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 90

STEP 13: Next in Configuration Properties, expand the Linker folder and select General. Highlight the Additional Library
Directories row and click on the dropdown. Enter the path for the CRSP libraries. In this example, it is c:\crsp86\

acclib64.

STEP 14: Stay in the Linker folder and select Input. Click on the Additional Dependencies row, click on the dropdown and

Edit. Enter the CRSP library file name, crsp_lib.lib and click OK to close the window.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 91

STEP 15: Finally, within Linker, select Command Line and click Apply in the lower right corner of the screen. Click OK to

close the Properties Pages.

STEP 16: At this point, all entries should have been made in order to build the solution. From the menu bar, select Build >

Build stkitm_samp1. Assuming that the build runs successfully to completion, you ill see the following message once the

build is complete:

Build: 1 succeeded, 0 failed, 0 skipped.

Prior to running your program, check the Visual Studio Menu bar to confirm that the Solution Configurations set the mode

to Release. (Note: At CRSP, if not set to Release mode, we encountered an error message stating that MSVCR100.dll is not

found)

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 92

STEP 17: Once you have built your program successfully, you can now run it to generate output. From the Menu Bar, click

on Debug > Start Without Debugging. The program will begin running and for this example, will work sequentially through

the universe of CRSP PERMNOs.

Your output will be located in c:\CRSP86\work, or as specified in your project.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 93

wiNDOwS COMMaND prOMptwiNDOwS COMMaND prOMpt

The sample programs can also be compiled and run from a command prompt window. In order to do so, the environment

must be set for Intel Fortran to run.

To set the Windows 32-bit environment to Intel(R) Fortran, click on Start > All Programs > Intel(R) Software Development
Tools > Intel(R) Fortran Compiler 9.1 > Build Environment for Fortran IA-32 applications.

To set the Windows 64-bit environment to Intel(R) Fortran, click on Start > All Programs > Intel Parallel Studio XE 2011 >
Command Prompt > Parallel Studio XE with Intel Compiler > Intel 64 Visual Studio 2008 mode.

A DOS window will open ready for you to run your Fortran 95 programs.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 94

Compiling from the Command prompt

To compile a sample program from the command prompt using the Intel Fortran Compiler, copy it to your program directory

and invoke the invoke the ifort command as shown below.

 > copy %crsp_sample%\stkitm_fsamp1.f90

 > ifort /I%crsp_include% stkitm_fsamp1.f90 %crsp_lib%\crsp_lib.lib %crsp.lib%\crsp_lib_F95.lib

To run the program:To run the program:

 > .\stkitm_fsamp1

Using a Make File

Sample programs can also be compiled and linked at the command prompt using the nmake utility. A sample description

file, f95_samp.mak, exists in the %crsp_sample% directory. To use the sample description file with your own program, copy

it to your program directory and modify it to include your program instead of the sample.

 > copy %crsp_sample%\f95_samp.mak .

To compile a specific sample program:To compile a specific sample program:

 > nmake /f f95_samp.mak stkitm_fsamp1.exe

To compile all sample programs:To compile all sample programs:

 > nmake /f f95_samp.mak

To run the program:To run the program:

 > .\stkitm_fsamp1

PAGE 95

Chapter 5: LeGaCY Set aCCeSS iN C

CrSpaCCeSS C Data StrUCtUreS
C Programming allows complete support for CRSP databases, including random access on PERMNO, CUSIP and other

header variables, and full support of all data items. There are sample programs, header files, and an object library

available.

DATA ORGANIZATION FOR C PROGRAMMING

The basic levels of a CRSPAccess database are the database, set type, set id, module, object, and array. They are defined

as follows:

• Database (CRSPDB) is the directory containing the database files. A CRSPDB is identified by the database path.

• Set Type is a predefined type of financial data. Each set type has its own defined set of data structureH6s, spe- cial-
ized access functions, and keys. CRSPAccess stock databases support stock (STK) and index (IND) set types. A
CRSPDB can include more than one set type.

• Set Identifier (SETID) is a defined subset of a set type. SETIDs of the same set type use the same access func- tions,
structures, and keys, but have different characteristics within those structures. For example, daily stock sets use the
same data structure as monthly stock sets, but time series are associated with different calendars. Multiple SETIDs of
the same set type can be present in one CRSPDB.

• Modules are the groupings of data found in the data files in a CRSPDB. Multiple data items can be present in a module.
Data are retrieved at a module level, and access functions retrieve data items for keys based on selected modules.
Modules correspond to the physical data files.

• Objects are the fundamental data types defined for each set type. There are three fundamental object types: time
series (CRSP_TIMESERIES), event arrays (CRSP_ARRAY), and headers (CRSP_ROW). Objects contain header information
such as counts, ranges, or associated calendars (CRSP_CAL) plus arrays of data for zero or more observations. Some
set types allow arrays of objects of one type. In this case, the number of available objects is determined by the SETID,
and each of the objects in the list has independent counts, ranges, or associ- ated calendars.

• Arrays are attached to each object. The array contains the set of observations and is the basic level of program- ming
access. An observation can be a simple data type such as an integer for an array of volumes, or a complex structure
such as for a name history. When there is an array of objects, there is a corresponding array of arrays with the data.

DATA OBJECTS

There are four basic types of information stored in CRSP databases. Each is associated with a CRSP object structure.

• Header Information. These are identifiers with no implied time component.

• Event Arrays. Arrays can represent status changes, random events, or observations. The time of the event and rel-
evant information is stored for each observation. There is a count of the number of observations for each type of event
data.

• Time Series Arrays. An observation is available for each period in an associated calendar. A beginning and ending
point of valid data are available for each type of time series data. Data are stored for each period in the range – miss-
ing values are stored as placeholders if information is not available for a period.

• Calendar Arrays. Each time series is tied to an array of relevant time periods. This calendar is used in conjunction with
the time series arrays to attach times to the observations.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 96

An observation can be a simple value or contain multiple components such as codes and amounts. Time series, except

Portfolios, are based on calendars which share the frequency of the database. In a monthly database, the time series are

based on a month-end trading date calendar. In a daily database, the time series are based on a daily trading date calendar

excluding market holidays. Portfolio calendars are dependent on the rebalancing methodology of the specific portfolio type.

All calendars are attached automatically to each wanted time series object when the database is opened.

There are four base CRSPAccess C structures called objects used in CRSPDBs. The following table contains each of the

objects in all caps, followed by the components, lower case and indented, that each object type contains. All data items are

defined in terms of the following objects:

OBJeCt Or FieLD USaGe Data tYpe
CRSP_ARRAY Structure for storing event-type data
objtype object type code identifies the structure as a CRSP_ARRAY, always = 3 int

arrtype array type code defines the structure in the array. Base C types or CrSp- defined structures each have associated
codes defined in the constants header file

int

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type
fields

int

size_of_array_

width
number of bytes in each array element int

maxarr maximum number of array elements containing valid data int

num number of array elements containing valid data int

dummy data secondary subtype code int

arr object array is a pointer to the array containing the actual data. the array can be a base C data type or a CrSp-defined
structure. its size and type are determined by arrtype, size_of_array_width, and maxarr

void *

CRSP_ROW Structure for storing header data
objtype object type code identifies the structure as a CRSP_ROW, always = 5 int

arrtype array type code defines the structure in the array. Base C types or CrSp- defined structures each have associated
codes defined in the constants header file

int

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type
fields

int

size_of_array_

width
array structure size in bytes int

arr object array is a pointer to the array containing the actual data. the array can be a base C data type or a CrSp-defined
structure. its size and type are determined by arrtype and size_of_array_width. the array size is always 1

void *

CRSP_TIMESERIES Structure for storing time series data
objtype object type code identifies the structure as a CrSp_tiMeSerieS, always = 2 int

arrtype array type code defines the structure in the array. Base C types or CrSp- defined structures each have associated
codes defined in the constants header file

int

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type
fields

int

size_of_array_

width
array structure size in bytes int

maxarr maximum number of array elements int

beg first array index with valid data for the current record, or 0 if no valid range int

end last array index with valid data for the current record, or 0 if no valid range int

caltype calendar time period description code describes the type of time periods. Calendar type (caltype) is always 2,
indicating time periods are described in the Calendar trading Date (caldt) array by the last trading date in the period

int

cal calendar associated with time series is a pointer to the calendar associated with the time series array. the calendar
includes the matching period- ending dates for each array index

CRSP_CAL *

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 97

OBJeCt Or FieLD USaGe Data tYpe
arr object array is a pointer to the array containing the actual data. the array can be a base C data type or a CrSp-defined

structure. its size and type are determined by arrtype, size_of_array_width, and maxarr

void *

CRSP_CAL Structure for storing calendar period data
objtype object type code identifies the structure as a CrSp_CaL, always = 1 int

calid calendar identification number is an identifier assigned to each specific calendar by CrSp int

type generic group code of calendar, ie. daily or monthly. all current time series use 2 for calendar trading date (caldt) only int

loadflag calendar type availability flag is a code indicating the types of calendar arrays loaded. Currently = 2 for calendar
trading date (caldt) only

int

maxarr maximum number of trading periods allocated for the calendar int

ndays number of days is the index of the last calendar period int

name the calendar name in text char[80]

callist calendar period grouping identifiers reserved for array of alternate grouping identifiers for calendar periods int *

caldt calendar trading date is an array of calendar period ending dates, stored in YYYYMMDD. Calendars start at element 1
and end at element number of days (ndays)

int *

calmap used to store array of first and last calendar period array elements in a linked calendar to elements in this calendar CRSP_CAL_MAP *

basecal used to point to a calendar linked in calmap CRSP_CAL *

SET STRUCTURES AND USAGE

Stock and indexes access functions initialize and load data to C top-level defined set structures. Top-level structures are

built from general object and array structure definitions and contain object and array pointers that have memory allocated

to them by access open functions.

Two set types and six set identifiers are currently supported for stock and indexes data. The identifier must be speci- fied

when opening or accessing data from the set.

Data Set tYpe Set iDeNtiFierS FreQUeNCY

CrSp Stock Data StK 10 Daily

20 Monthly

CrSp indexes Data iND 400 Monthly Groups (in iX product only)

420 Monthly Series

440 Daily Groups (in iX product only)

460 Daily Series

Each set structure has three types of pointer definitions.

 ▪ Module pointers point to CRSP_OBJECT_ELEMENT linked lists and are only needed internally to keep track of the objects
in a module. These have the suffix _obj and can be ignored by ordinary programming.

 ▪ Object pointers define a CRSP_ARRAY, CRSP_ROW, or CRSP_TIMESERIES object type. A suffix, _arr,
 ▪ _ts, or _row is appended to the variable name. Range variables num, beg, and end are accessed from these variables.
 ▪ Array pointers define the data item array. The array has the same rank as the object but without the suffix. It is a pointer

to the array element of the object and is used for general access of the data item.

If a module has multiple types of objects, a group structure is created with definitions for those objects and is included in

the main structure.

If a module has a variable number of objects of one type, an integer variable keeps track of the actual number. These

variables end with the suffix types and are based on the set type.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 98

Each of the top-level structures contains three standard elements:

 ▪ PERMNO – the actual key loaded
 ▪ loadflag, a binary flag matching the set wanted parameters indicating which pointers have been allocated. See the open function for the set for more information

about wanted parameters.
 ▪ setcode, a constant identifying the type of set (1=STK, 3=IND)

For example, a Stock Structure has CRSP_TIMESERIES object called prc_ts containing an array called prc.

C LANGUAGE DATA OBJECTS FOR CRSP STOCK DATA

Each stock structure is comprised of a fixed set of objects. Objects contain the header information required to use the CRSP data structures and the data arrays.

Data elements are described in the C Data Structure Table under the array name.

Time series beg and end are both equal to 0 if there are no data. Otherwise beg > 0, beg <= end, and end <= maxarr. The 0th element of a time series array is

reserved for the missing value of the underlying data type for that time series.

The stock structure contains an array of portfolio time series. Each member contains the portfolio statistic and assignment data for one portfolio type. Each mem-

ber can have a different range and calendar. The count of Portfolio Types is found in the port types variable.

MODULe OBJeCt NaMe OBJeCt tYpe arraY tYpe Data SUBtYpe

arraY
StrUCtUre
SiZe

raNGe
eLeMeNtS
ON a
SeCUritY
BaSiS

eLeMeNtS OF
a Set BaSiS arraY NaMe

STK_HEAD

header Module

header_row Stock header
Structure

CRSP_ROW CRSP_STK_HEADER_NUM = 50 0 172 none none stk.header

STK_EVENTS

event arrays Module

names_arr Security Name
history

CRSP_ARRAY CRSP_STK_NAME_NUM = 51 0 160 num maxarr stk.events.names

STK_EVENTS

event arrays Module

dists_arr Distribution history
array

CRSP_ARRAY CRSP_STK_DIST_NUM = 52 0 40 num maxarr stk.events.dists

STK_EVENTS

event arrays Module

shares_arr Shares Structure
array

CRSP_ARRAY CRSP_STK_SHARE_NUM = 53 CRSP_SHARES_IMP_NUM

= 0

16 num maxarr stk.events.

shares

STK_EVENTS

event arrays Module

delist_arr Delisting Structure
array

CRSP_ARRAY CRSP_STK_DELIST_NUM = 54 0 40 num maxarr stk.events.

delist

STK_EVENTS

event arrays Module

nasdin_arr Nasdaq Structure
array

CRSP_ARRAY CRSP_STK_NASDIN_NUM = 55 0 24 num maxarr stk.events.

nasdin

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 99

MODULe OBJeCt NaMe OBJeCt tYpe arraY tYpe Data SUBtYpe

arraY
StrUCtUre
SiZe

raNGe
eLeMeNtS
ON a
SeCUritY
BaSiS

eLeMeNtS OF
a Set BaSiS arraY NaMe

STK_PORTS

portfolios Module

port_ts[] portfolio Statistics
and assignments

CRSP_TIMESERIES CRSP_STK_PORT_NUM = 56 each portfolio time series
in the array has subtype
equal to the permanent
index identification
Number of the associated
group index

4 beg and

end (for each

portfolio time

series)

maxarr, cal,

stk.porttypes

stk.porttypes-1

STK_GROUPS

Groups Module

group_arr[] array of Group
arrays

CRSP_ARRAY CRSP_STK_GROUP_NUM=57 each Group CRSP_ARRAY
in the array has subtype
equal to the permanent
index identification
Number of an associated
group index

16 num (for each

group array)

maxarr,

stk.grouptypes

stk.group

STK_LOW

Bid or Low Data

bidlo_ts Bid or Low CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.bidlo

STK_HIGHS

ask or high Data

askhi_ts ask or high CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 8 beg and end maxarr, cal stk.askhi

STK_PRCS

prices Module

prc_ts Closing price or Bid/
ask average

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.prc

STK_RETURNS

returns Module

ret_ts holding period
return

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end maxarr, cal stk.ret

STK_VOLUMES

volumes Module

vol_ts Share volume CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CRSP_VOLUME_NUM = 6 4 beg and end maxarr, cal stk.vol

STK_BIDS

Bids Module

bid_ts Nasdaq Closing Bid CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CrSp_priCe_NUM = 1 4 beg and end maxarr, cal stk.bid

STK_ASKS

asks Module

ask_ts Nasdaq Closing ask CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CrSp_priCe_NUM = 1 4 beg and end maxarr, cal stk.ask

STK_RETX

returns without

Dividends Module

retx_ts return without
Dividends

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CrSp_retUrN_NUM = 2 4 beg and end maxarr, cal stk.retx

STK_SPREADS

Bid/ask Spreads

Module

spread_ts Month end Bid/ask
Spread

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CrSp_priCe_NUM = 1 4 beg and end maxarr, cal stk.spread

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 100

MODULe OBJeCt NaMe OBJeCt tYpe arraY tYpe Data SUBtYpe

arraY
StrUCtUre
SiZe

raNGe
eLeMeNtS
ON a
SeCUritY
BaSiS

eLeMeNtS OF
a Set BaSiS arraY NaMe

STK_TRADES

Number of trades

Module (Daily)

numtrd_ts

or
altprcdt_ts

Nasdaq Number of
trades
or
alternate price Date

CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CrSp_COUNt_NUM = 7,
or
CrSp_Date_NUM = 26

4 beg and end maxarr, cal stk.numtrd

or
stk.altprcdt

STK_

ALTPRCDTS

alternate price Date

Module (Monthly)

StK_OpeNprCS
Open price
Module (Daily)
StK_aLtprCS
alternate
prices Module
(Monthly)

openprc_ts

or
altprc_ts

Open price
or
alternate price

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_PRICE_NUM = 1 4 beg and end maxarr, cal stk.openprc

 or

stk.altprc

C LaNGUaGe Data StrUCtUre FOr CrSp StOCK DataC LaNGUaGe Data StrUCtUre FOr CrSp StOCK Data

All CRSP-defined data type structures have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next level of inden-

tation

Index and Date Ranges for all elements in a structure are the same as for the structure itself. There are three structure levels indicated by the indentation in the

mnemonic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indi-

cates data grouped in modules. See the CRSPAccess Stock Users Guide for data item definitions.

All character strings, indicated by char[#], are NULL terminated. The number of characters -1 is the maximum string length allowed. Actual maximums may be

lower. The top level stk structure is an example used by CRSP Stock sample programs. Other names can be used, and multiple CRSP_STK_STRUCTs can be declared

in a program. See the CRSP_STK open access function for initializing a stock structure.

MNeMONiC NaMe Data tYpe Data USaGe iNDeX raNGe Date USaGe OBJeCt USaGe
stk Master Stock Structure CRSP_STK_

STRUCKT

stk

header Stock header Structure
permno perMNO int stk.header->permno stk.header_row

permco perMCO int stk.header->permco stk.header_row

compno Nasdaq Company Number int stk.header->compno stk.header_row

issuno Nasdaq issue Number int stk.header->issuno stk.header_row

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 101

MNeMONiC NaMe Data tYpe Data USaGe iNDeX raNGe Date USaGe OBJeCt USaGe
hexcd exchange Code - header int stk.header->hexcd stk.header_row

hsiccd Standard industrial
Classification (SiC) Code -
header

int stk.header->hsiccd stk.header_row

begdt Begin of Stock Data int stk.header->begdt stk.header_row

enddt end of Stock Data int stk.header->enddt stk.header_row

dlstcd Delisting Code - header int stk.header->dlstcd stk.header_row

hcusip CUSip - header char[16] stk.header->hcusip stk.header_row

htick ticker Symbol - header char[16] stk.header->htick stk.header_row

hcomnam Company Name - header char[36] stk.header->hcomnam stk.header_row

hnaics North american industry
Classification System (NaiCS)
- header

char[8] stk.header->hnaics stk.header_row

htsymbol trading ticker Symbol -
header

char[12] stk.header->htsymbol stk.header_row

trdstat trading Status - header char[1] stk.header->htrdstat stk.header_row

hsecstat Security Status - header char[1] stk.header->hsecstat stk.header_row

events Master Stock Structure CRSP_

STKEV

ENT_

STRUCT

stk.events

names Security Name history i between 0 and stk.
events.names_arr->num-1

name effective from stk.events.

names[i].namedt to stk.events.
names[i].nameenddt

stk.events.names_arr

namedt Name effective Date int stk.events.names[i].namedt

nameenddt Last Date of Name int stk.events.names[i].nameenddt

ncusip CUSip char[16] stk.events.names[i].ncusip

ticker ticker Symbol char[8] stk.events.names[i].ticker

comnam Company Name char[36] stk.events.names[i].comnam

shrcls Share Class char[4] stk.events.names[i].shrcls

shrcd Share Code int stk.events.names[i].shrcd

exchcd exchange Code int stk.events.names[i].exchcd

siccd Standard industrial
Classification (SiC) Code

int stk.events.names[i].siccd

naics North american industry
Classification System (NaiCS)

char[8] stk.events.names[i].naics

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 102

MNeMONiC NaMe Data tYpe Data USaGe iNDeX raNGe Date USaGe OBJeCt USaGe
tsymbol trading ticker Symbol char[12] stk.events.names[i].tsymbol

trdstat trading Status char[1] stk.events.names[i].trdstat

secstat Security Status char[1] stk.events.names[i].secstat

dists Distribution history array i between 0 and stk.
events.dists_arr->num-1

distribution effective on stk.events.
dists[i].exdt

stk.events.dists_arr

distcd Distribution Code int stk.events.dists[i].distcd

divamt Dividend Cash amount float stk.events.dists[i].divamt

facpr Factor to adjust price float stk.events.dists[i].facpr

facshr Factor to adjust Shares
Outstanding

float stk.events.dists[i].facshr

dclrdt Distribution Declaration Date int stk.events.dists[i].dclrdt

exdt ex-Distribution Date int stk.events.dists[i].exdt

rcrddt record Date int stk.events.dists[i].rcrddt

paydt payment Date int stk.events.dists[i].paydt

acperm acquiring perMNO int stk.events.dists[i].acperm

accomp acquiring perMCO int stk.events.dists[i].accomp

shares Shares Structure array i between 0 and stk.
events.shares_arr->num-1

shares observation effective from stk.
events.shares[i].shrsdt to stk.

events.shares[i].shrsenddt

stk.events.shares_arr

shrout Shares Outstanding int stk.events.shares[i].shrout

shrsdt Shares Outstanding
Observation Date

int stk.events.shares[i].shrsdt

shrsenddt Shares Outstanding
Observation end Date

int stk.events.shares[i].shrsenddt

shrflg Shares Outstanding
Observation Flag

int stk.events.shares[i].shrflg

delist Delisting Structure array i between 0 and stk.
events.delist_arr->num-1

delist observation on stk.events.
delist[i].dlstdt

stk.events.delist_arr

dlstdt Delisting Date int stk.events.delist[i].dlstdt

dlstcd Delisting Code int stk.events.delist[i].dlstcd

nwperm New perMNO int stk.events.delist[i].nwperm

nwcomp New perMCO int stk.events.delist[i].nwcomp

nextdt Delisting Date of Next
available information

int stk.events.delist[i].nextdt

dlamt amount after Delisting float stk.events.delist[i].dlamt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 103

MNeMONiC NaMe Data tYpe Data USaGe iNDeX raNGe Date USaGe OBJeCt USaGe
dlretx Delisting return without

Dividends

float stk.events.delist[i].dlretx

dlprc Delisting price float stk.events.delist[i].dlprc

dlpdt Delisting payment Date int stk.events.delist[i].dlpdt

dlret Delisting return float stk.events.delist[i].dlret

nasdin NaSDaQ Structure array i between 0 and stk.
events.nasdin_arr->num-1

NaSDaQ status effective from stk.
events.nasdin[i].trtsdt to stk.
events.nasdin[i].trtsenddt

stk.events.nasdin_arr

trtsdt NaSDaQ traits Date int stk.events.nasdin[i].trtsdt

trtsenddt NaSDaQ traits end Date int stk.events.nasdin[i].trtsenddt

trtscd NaSDaQ traits Code int stk.events.nasdin[i].trtscd

nmsind NaSDaQ National Market
indicator

int stk.events.nasdin[i].nmsind

mmcnt Market Maker Count int stk.events.nasdin[i].mmcnt

nsdinx NaSD index Code int stk.events.nasdin[i].nsdinx

port portfolio Statistics and
assignments

j between 0 and stk.
porttypes-1, i between
stk.port_ts[j]->beg and
stk.port_ts[j]->end

value for period ending stk.port_
ts[j]->cal->caldt[i]

array of stk.port_ts

port portfolio assignment Number int stk.port[j][i].port

stat portfolio Statistic value double stk.port[j][i].stat

groups Group array j between 0 and stk.
group-1, i between stk.
group_arr[j]->beg and stk.
group_arr[j]->end

value for period ending stk.group_
arr[j]->cal->caldt[i]

array of stk.group_arr

grpdt Begin of Group Data int stk.group->grpdt

grpenddt end of Group Data int stk.group->grpenddt

grpflag Group Flag of associated
index

int stk.group->grpflag

grpsubflag Group Secondary Flag int stk.group->grpsubflag

time Series Data arrays
bidlo Bid or Low price float * stk.bidlo[i] i between stk.bidlo_ts-

>beg and stk.bidlo_ts->end
value on date stk.bidlo_ts->cal-
>caldt[i]

stk.bidlo_ts

askhi ask or high price float * stk.askhi[i] i between stk.askhi_ts-
>beg and stk.askhi_ts->end

value on date stk.askhi_ts->cal-
>caldt[i]

stk.askhi_ts

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 104

MNeMONiC NaMe Data tYpe Data USaGe iNDeX raNGe Date USaGe OBJeCt USaGe
prc price or Bid/ask average float * stk.prc[i] i between stk.prc_ts->beg

and stk.prc_ts->end
value on date stk.prc_ts->cal-
>caldt[i]

stk.prc_ts

ret holding period total return float * stk.ret[i] i between stk.ret_ts->beg
and stk.ret_ts->end

value on date stk.ret_ts->cal-
>caldt[i]

stk.ret_ts

vol volume traded int * stk.vol[i] i between stk.vol_ts->beg
and stk.vol_ts->end

value on date stk.vol_ts->cal-
>caldt[i]

stk.vol_ts

bid Bid float * stk.bid[i] i between stk.bid_ts->beg
and stk.bid_ts->end

value on date stk.bid_ts->cal-
>caldt[i]

stk.bid_ts

ask ask float * stk.ask[i] i between stk.ask_ts->beg
and stk.ask_ts->end

value on date stk.ask_ts->cal-
>caldt[i]

stk.ask_ts

retx return without Dividends float * stk.retx[i] i between stk.retx_ts->beg
and stk.retx_ts->end

value on date stk.retx_ts->cal-
>caldt[i]

stk.retx_ts

spread Spread Between Bid and ask float * stk.spread[i] i between stk.spread_ts-
>beg and stk.spread_ts-
>end

value on date stk.spread_ts->cal-
>caldt[i]

stk.spread_ts

altprc

or
price alternate Date (monthly
only)
or

int * stk.altprcdt[i]

or

i between stk.altprcdt_ts-
>beg and stk.numtrd_ts-
>end

or

value on date stk.altprcdt_ts-
>cal->caldt[i]

or

stk.altprcdt_ts

or

numtrd Nasdaq Number of trades
(daily only)

int * stk.numtrd[i] i between stk.numtrd_ts-
>beg and stk.numtrd_ts-
>end

value on date stk.numtrd_ts->cal-
>caldt[i]

stk.numtrd_ts

openprc

or
Open price (daily only)

or

float * stk.openprc[i]

or

i between stk.openprc_ts-
>beg and stk.openprc_ts-
>end

or

value on date stk.openprc_ts->cal-
>caldt[i]

or

stk.openprc_ts

or

altprc price alternate (monthly only) float * stk.altprc[i] i between stk.altprc_ts-
>beg and stk.altprc_ts-
>end

value on date stk.altprc_ts->cal-
>caldt[i]

stk.altprc_ts

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 105

eXaMpLeS OF C variaBLe USaGe FOr CrSp StOCK DataeXaMpLeS OF C variaBLe USaGe FOr CrSp StOCK Data

These assume a variable stk of type CRSP_STK_STRUCT.

CrSp row/header DataCrSp row/header Data
Object variable: stk.header_row
Data Structure: stk.header
Sample print Statement:
printf (“%d %8d-%8d\n”, stk.header->permno,

stk.header->begdt, stk.header->enddt);

CrSp array/DistributionsCrSp array/Distributions
Object variable: stk.events.dists_arr
Data array: stk.events.dists
Sample print Statement: This sample loop prints all distribution codes and ex-
distribution dates.
for (i = 0; i < stk.events.dists_arr->num; ++i)

printf (“%4d %8d\n”, stk.events.dists[i].distcd, stk.events.

dists[i].exdt);

CrSp time Series/pricesCrSp time Series/prices
Object variable: stk.prc_ts
Data array: stk.prc
Sample print Statement: This sample loop prints all prices and dates in the issue’s
range.
for(i = stk.prc_ts->beg; i <= stk.prc_ts->end; ++i)

printf(“%11.5f %8d\n”, stk.prc[i], stk.prc_ts->cal-

>caldt[i]);CRSP

CrSp array of time Series/portfoliosCrSp array of time Series/portfolios
Object variable: stk.port_ts[j]
Data array: stk.port[j]
(There are stk.porttypes portfolios available; j above is between 0 and stk.
porttypes -1)

Sample print Statement: This prints the associated indno and the sample
loop prints the date and assignment for each year in the issue’s range for

porttype=0 NYSE/NYSEMKT/NASDAQ Capitalization deciles.
printf (“indno = %d\n”, stk.port_ts[0].subtype);

for (i = stk.port_ts[0]->beg; i <= stk.port_ts[0]->end; ++i)

printf (“%8d %2d\n”, stk.port_ts[0]->cal->caldt[i],

stk.port[0][i].port);

CrSp array of Group arraysCrSp array of Group arrays
Object variable: stk.group_arr[j]
Data array: stk.group[j]
(There are stk.grouptypes groups available; j above is between 0 and stk.
grouptypes -1)
Sample print Statement: This only prints if the security has ever been included in
the S&P 500 universe (grouptype = 16).
j = 16 - 1;

for (i = 0; i < stk.group_arr[15]->num; ++i)

printf (“%8d %8d %2d %2d \n”,

stk.group[j][i].grpdt,

stk.group[j][i].grpenddt,

stk.group[j][i].grpflag,

stk.group[j][i].grpsubflag);

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 106

C LaNGUaGe Data OBJeCtS FOr CrSp iNDeXeS Data C LaNGUaGe Data OBJeCtS FOr CrSp iNDeXeS Data

CRSP assigns a Permanent Index Identification Number (indno) to access the indexes data in C for individual series or portfolio groups. In the CRSP US Stock

Database, a subset of market series is available. Additional series and groups are available when you subscribe to the CRSP US Indexes Database and Security

Portfolio Assignment Module. The index structure supports data for one series or group and includes header, rebalancing, and result information for one or more

portfolios comprising the index.

Each index structure contains a fixed set of possible objects. Objects contain the header information needed to use the CRSP data structures as well as the data

arrays. Data elements are described in the C Data Structure Table under the array name.

Time series beg and end are both equal to 0 if there are no data. Otherwise beg > 0, beg <= end, and end < maxarr. The 0th element of a time series array is

reserved for the missing value for that data type.

Multiple series in the index structure refers to portfolio subgroups. Each of these will have the same beg, end, and calendar. In a SERIES SETID, the multiple series

has a count of 1. In a GROUP SETID, the count of series is found in the corresponding xxxtypes variable.

MODULe OBJeCt NaMe OBJeCt tYpe arraY tYpe Data SUBtYpe arraY
StrUCtUre
SiZe

raNGe
eLeMeNtS
ON a
SeCUritY
BaSiS

eLeMeNtS
ON a
Set BaSiS

arraY NaMe

IND_HEAD

index Description

indhdr_row indexes header
Object

CRSP_ROW CRSP_IND_HEADER_NUM = 200 0 300 none none ind.indhdr

IND_REBAL

rebalancing Data

rebal_arr[] rebalancing
arrays

CRSP_ARRAY CRSP_IND_REBAL_NUM = 201 0 64 num for each

series

maxarr, ind.

rebaltypes

ind.rebal[j], j from

0 to ind.rebaltypes

- 1

IND_LISTS

issue Lists

list_arr[] List arrays CRSP_ARRAY CRSP_IND_LIST_NUM = 202 0 24 num for each

series

maxarr, ind.

listtypes

ind.list[j], j 0 to

ind.listtypes -1

IND_USDCNTS

portfolio Used Counts

usdcnt_ts[] Used Count time
Series

CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CRSP_COUNT_NUM = 7 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.usdcnt[j], j from

0 to ind.indtypes -1

IND_TOTCNTS

portfolio total Counts

totcnt_ts[] total Count time
Series

CRSP_TIMESERIES CRSP_INTEGER_NUM = 2 CRSP_COUNT_NUM = 7 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.totcnt[j], j from

0 to ind.indtypes -1

IND_USDVALS

portfolio Used weights

usdval_ts[] Used value time
Series

CRSP_TIMESERIES CRSP_DOUBLE_NUM = 4 CRSP_WEIGHT_NUM = 4 8 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.usdval[j], j from

0 to ind.indtypes -1

IND_TOTVALS

portfolio total weights

totval_ts[] total value time
Series

CRSP_TIMESERIES CRSP_DOUBLE_NUM = 4 CRSP_WEIGHT_NUM = 4 8 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.totval[j], j from

0 to ind.indtypes -1

IND_TRETURNS

portfolio total returns

tret_ts[] total return time
Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.tret[j], j from 0

ind.indtypes -1

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 107

MODULe OBJeCt NaMe OBJeCt tYpe arraY tYpe Data SUBtYpe arraY
StrUCtUre
SiZe

raNGe
eLeMeNtS
ON a
SeCUritY
BaSiS

eLeMeNtS
ON a
Set BaSiS

arraY NaMe

IND_ARETURNS

portfolio Capital

appreciation returns

aret_ts[] Capital
appreciation time
Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.aret[j], j from 0

ind.indtypes -1

IND_IRETURNS

portfolio income

returns

iret_ts[] income return
time Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_RETURN_NUM = 2 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.iret[j], j from 0

ind.indtypes -1

IND_TLEVELStal

return index Levels

tind_ts[] total return index
Level time Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_LEVEL_NUM = 3 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.tind[j], j from 0

ind.indtypes -1

IND_ALEVELS

Capital appreciation

index Levels

aind_ts[] Capital
appreciation index
Level time Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_LEVEL_NUM = 3 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.aind[j], j from 0

ind.indtypes -1

IND_ILEVELS

income return index

Levels

iind_ts[] income return
index Level time
Series

CRSP_TIMESERIES CRSP_FLOAT_NUM = 1 CRSP_LEVEL_NUM = 3 4 beg and end

for each series

maxarr, cal,

ind.indtypes

ind.iind[j], j 0 to

ind.indtypes -1

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 108

C LaNGUaGe Data StrUCtUre FOr CrSp iNDeXeS DataC LaNGUaGe Data StrUCtUre FOr CrSp iNDeXeS Data

All CRSP-defined data types have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next indented level.

Index and date ranges for all elements in a structure are the same as for the structure itself. There are four structure levels indicated by the indentation in the Mne-

monic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates

data grouped in modules. See the Data Description Guide for data item definitions.

All character strings, indicated by char[#], are null terminated. The number of characters - 1 is the maximum string length allowed. Actual maximums may be

lower. The top level ind structure is an example used by CRSP Indexes sample programs. Other names can be used, and multiple CRSP_IND_STRUCTs may be

declared in a program.

MNeMONiC NaMe C Data tYpe C Data USaGe C iNDeX raNGe C Date USaGe C OBJeCt tYpe
ind Master indexes Structure CRSP_IND_STRUCT ind

indhdr indexes header Object ind.indhdr_row

indno iNDNO int ind.indhdr->indno

indco iNDCO int ind.indhdr->indco

primflag index primary Link int ind.indhdr->primflag

portnum portfolio Number if Subset Series int ind.indhdr->portnum

indname index Name char[80] ind.indhdr->indname

groupname index Group Name char[80] ind.indhdr->typename

method index Methodology Description
Structure

CRSP_IND_METHOD ind.indhdr->method

methcode index Method type Code int ind.indhdr>method.methcode

primtype index primary Methodology type int ind.indhdr>method.primtype

subtype index Secondary Methodology
Group

int ind.indhdr->method.subtype

wgttype index reweighting type Flag int ind.indhdr->method.wgttype

wgtflag index reweighting timing Flag int ind.indhdr->method.wgtflag

flags index exception handling Flags CRSP_IND_FLAGS ind.indhdr->flags

flagcode index Basic exception types Code int ind.indhdr->flags.flagcode

addflag index New issues Flag int ind.indhdr->flags.addflag

delflag index ineligible issues Flag int ind.indhdr->flags.delflag

delretflag return of Delisted issues Flag int ind.indhdr>flags.delretflag

missflag index Missing Data Flag int ind.indhdr->flags.missflag

partuniv index Subset Screening Structure CRSP_UNIV_PARAM ind.indhdr->partuniv

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 109

MNeMONiC NaMe C Data tYpe C Data USaGe C iNDeX raNGe C Date USaGe C OBJeCt tYpe
partunivcode Universe Subset types Code in a

partition restriction

int ind.indhdr>partuniv.univcode

begdt partition restriction Beginning
Date

int ind.indhdr->partuniv.begdt

enddt partition restriction end Date int ind.indhdr->partuniv.enddt

wantexch valid exchange Codes in the
Universe in a partition restriction

int ind.indhdr>partuniv.wantexch

wantnms valid NaSDaQ Market Groups
in the Universe in a partition
restriction

int ind.indhdr>partuniv.wantnms

wantwi valid when-issued Securities
in the Universe in a partition
restriction

int ind.indhdr>partuniv.wantwi

wantinc valid incorporation of Securities
in the Universe in a partition
restriction

int ind.indhdr>partuniv.wantinc

shrcd Share Code Screen Structure in a
partition restriction

CRSP_UNIV_SHRCD ind.indhdr->partuniv.shrcd

sccode Share Code Groupings for Subsets
in a partition restriction

int ind.indhdr>partuniv.shrcd.

sccode

fstdig valid First Digit of Share Code in a
partition restriction

int ind.indhdr>partuniv.shrcd.

fstdig

secdig valid Second Digit of Share Code in
a partition restriction

int ind.indhdr>partuniv.shrcd.

secdig

induniv partition Subset Screening
Structure

CRSP_UNIV_PARAM ind.indhdr->induniv

indunivcode Universe Subset types Code in an
index restriction

int ind.indhdr>induniv.univcode

begdt restriction Begin Date int ind.indhdr->induniv.begdt

enddt restriction end Date int ind.indhdr->induniv.enddt

wantexch valid exchange Codes in the
Universe in an index restriction

int ind.indhdr>induniv.wantexch

wantnms valid NaSDaQ Market Groups
in the Universe in an index
restriction

int ind.indhdr>induniv.wantnms

wantwi valid when-issued Securities
in the Universe in an index
restriction

int ind.indhdr->induniv.wantwi

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 110

MNeMONiC NaMe C Data tYpe C Data USaGe C iNDeX raNGe C Date USaGe C OBJeCt tYpe
wantinc valid incorporation of Securities

in the Universe in an index
restriction

int ind.indhdr>induniv.wantinc

shrcd Share Code Screen Structure in an
index restriction

CRSP_UNIV_SHRCD ind.indhdr->induniv.shrcd

sccode Share Code Groupings for Subsets
in an index restriction

int ind.indhdr>induniv.shrcd.sccode

fstdig valid First Digit of Share Code in
an index restriction

int ind.indhdr>induniv.shrcd.fstdig

secdig valid Second Digit of Share Code in
an index restriction

int ind.indhdr>induniv.shrcd.secdig

rules portfolio Building rules Structure CRSP_IND_RULES ind.indhdr->rules

rulecode index Basic rule types Code int ind.indhdr->rules.rulecode

buyfnct index Function Code for Buy rules int ind.indhdr->rules.buyfnct

sellfnct index Function Code for Sell rules int ind.indhdr->rules.sellfnct

statfnct index Function Code for
Generating Statistics

int ind.indhdr->rules.statfnct

groupflag index Statistic Grouping Code int ind.indhdr>rules.groupflag

assign related assignment information CRSP_IND_ASSIGN ind.indhdr->assign

assigncode index Basic assignment types
Code

int ind.indhdr>assign.assigncode

asperm iNDNO of associated index int ind.indhdr->assign.asperm

asport portfolio Number in associated
index

int ind.indhdr->assign.asport

rebalcal Calendar identification Number of
rebalancing Calendar

int ind.indhdr>assign.rebalcal

assigncal Calendar identification Number of
assignment Calendar

int ind.indhdr>assign.assigncal

calccal Calendar identification Number of
Calculations Calendar

int ind.indhdr->assign.calccal

rebal array of rebalancing arrays int ind.rebal[j][i].rbbegdt j between 0 and ind.
rebaltypes - 1, i between
0 and ind.rebal_arr[j]-
>num-1

data valid from ind.
rebal[j][i].rbbegdt to
ind.rebal[j][i].rbenddt

array of ind.rebal_arr

rbbegdt index rebalancing Begin Date int ind.rebal[j][i].rbbegdt

rbenddt index rebalancing end Date int ind.rebal[j][i].rbenddt

usdcnt Count Used as of rebalancing int ind.rebal[j][i].usdcnt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 111

MNeMONiC NaMe C Data tYpe C Data USaGe C iNDeX raNGe C Date USaGe C OBJeCt tYpe
maxcnt Maximum Count During period int ind.rebal[j][i].maxcnt

totcnt Count available as of rebalancing int ind.rebal[j][i].totcnt

endcnt Count at end of rebalancing
period

int ind.rebal[j][i].endcnt

minid Statistic Minimum identifier int ind.rebal[j][i].minid

maxid Statistic Maximum identifier int ind.rebal[j][i].maxid

minstat Statistic Minimum in period double ind.rebal[j][i].minstat

maxstat Statistic Maximum in period double ind.rebal[j][i].maxstat

medstat Statistic Median in period double ind.rebal[j][i].medstat

avgstat Statistic average in period double ind.rebal[j][i].avgstat

list j between 0 and ind.

listtypes - 1, i between

0 and ind.list_arr[j]-

>num-1

valid from ind.list[j]

[i].beg to ind.list[j]

[i].enddt

array of ind.list_arr

list List arrays int ind.list[j][i].permno

permno permanent Number of Securities
in index List

int ind.list[j][i].permno

begdt First Date included in List int ind.list[j][i].begdt

enddt Last Date included in a List int ind.list[j][i].enddt

subind index Subcategory Code int ind.list[j][i].subind

weight weight of an issue double ind.list[j][i].weight

Time Series

Data Arrays

aind index Capital appreciation index
Level

float* ind.aind[j][i] j between 0 and

indtypes-1, i between

ind.aind_ts[j]->beg and

ind.aind_ts[j]->end

value on date ind.aind_

ts[j]->cal>caldt[i]

array of ind.aind_ts

aret index Capital appreciation return float* ind.aret[j][i] j between 0 and

indtypes-1, i between

ind.aret_ts[j]->beg and

ind.aret_ts[j]->end

value on date ind.aret_

ts[j]->cal>caldt[i]

array of ind.aret_ts

iind index income index Level float* ind.iind[j][i] j between 0 and

indtypes-1, i between

ind.iind_ts[j]->beg and

ind.iind_ts[j]->end

value on date ind.iind_

ts[j]->cal>caldt[i]

array of ind.iind_ts

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 112

MNeMONiC NaMe C Data tYpe C Data USaGe C iNDeX raNGe C Date USaGe C OBJeCt tYpe
iret index income return float* ind.iret[j][i] j between 0 and

indtypes-1, i between

ind.iret_ts[j]->beg and

ind.iret_ts[j]->end

value on date ind.iret_

ts[j]->cal>caldt[i]

array of ind.iret_ts

tind index total return index Level float* ind.tind[j][i] j between 0 and

indtypes-1, i between

ind.tind_ts[j]->beg and

ind.tind_ts[j]->end

value on date ind.tind_

ts[j]->cal>caldt[i]

array of ind.tind_ts

tret index total return float* ind.tret[j][i] j between 0 and

indtypes-1, i between

ind.tret_ts[j]->beg and

ind.tret_ts[j]->end

value on date ind.tret_

ts[j]->cal>caldt[i]

array of ind.tret_ts

usdcnt index Used Count float* ind.usdcnt[j][i] j between 0 and

indtypes-1, i between

ind.usdcnt_ts[j]->beg

and ind.usdcnt_ts[j]-

>end

value on date ind.usdcnt_

ts[j]>cal->caldt[i]

array of ind.usdcnt_ts

totcnt index total Count float* ind.totcnt[j][i] j between 0 and

indtypes-1, i between

ind.totcnt_ts[j]->beg

and ind.totcnt_ts[j]-

>end

value on date ind.totcnt_

ts[j]>cal->caldt[i]

array of ind.totcnt_ts

 usdval index Used value float* ind.usdval[j][i] j between 0 and

indtypes-1, i between

ind.usdval_ts[j]->beg

and ind.usdval_ts[j]-

>end

value on date ind.usdval_

ts[j]>cal->caldt[i]

array of ind.usdval_ts

totval index total value float* ind.totval[j][i] j between 0 and

indtypes-1, i between

ind.totval_ts[j]->beg

and ind.totval_ts[j]-

>end

value on date ind.totval_

ts[j]>cal->caldt[i]

array of ind.totval_ts

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 113

C SAMPLE PROGRAMS

There are two sample programs provided that can process the CRSP Stock Database using C. These programs can load

stock and indexes data structures for processing. The sample program code contains additional comment information.

StK_SaMp1.C read Stock Data Sequentially stk_samp1.c creates a namelist of current names by reading a stock database sequentially
in perMNO order. it loads one index series before processing the stock data. Output is one line of
header information per security. stk_samp1.c accepts parameters for database directory, stock
set identifier, indexes set identifier, iNDNO, CrSp’s permanent index identification number, and
output file name.

StK_SaMp2.C read Stock Data with a perMNO List File stk_samp2.c reads a stock database using an input file of perMNOs. it loads one set of
indexes before processing the input list. Output is one line of header information per security.
stk_samp2.c accepts parameters for database directory, stock set identifier, indexes set
identifier, permanent index identification Number, input file name, and output file name.

StK_SaMp3.C process an input File of perMNOs with Date ranges stk_samp3.c uses CrSp C library functions to read a space-delimited text input file
with perMNOs and beginning and ending date ranges in YYYYMMDD format. it outputs date,
perMNO, end of previous week, exchange code, end of current week adjusted price, end of
current week index level for a selected index, end of previous week capitalization, and weekly
total returns.

C heaDer FiLeS aND Data StrUCtUreSC heaDer FiLeS aND Data StrUCtUreS

Header files contain all needed structure definitions, constants, and function prototypes. Two C header files are suffi- cient

to define all CRSP structures, constants, and functions.

1. crsp.h defines all structures and constants used by the CRSP C access and utility functions, and the function

definitions. crsp.h includes several other header files. The primary definitions needed for stock databases are in crsp_
objects.h, crsp_const.h, crsp_stk_objects.h, and crsp_stk_const.h. The primary definitions needed for the indexes data

are in crsp_objects.h, crsp_const.h, crsp_ind_objects.h, and crsp_ind_const.h.

2. crsp_init.h declares internal variables needed to store initialization and error information. This should only be included

in the main program and not in any function modules.

The following list is a more complete summary of individual stock and indexes header files that are included by crsp.h. All

header files are kept in the CRSP_INCLUDE directory.

heaDer FiLe DeSCriptiON
crsp_stk.h top level stock header file includes all needed header files for CrSp Stock access
crsp_stk_objects.h defines top level CrSp_StK_StrUCt structure for Stock Data
crsp_objects.h defines all object structures and data array structures for all supported types
crsp_stk_const.h defines stock constants and wanted parameters
crsp_const.h defines generic CrSp constants
crsp_access_stk.h defines stock access function prototypes
crsp_util_stk.h defines stock utility function prototypes
crsp_ind.h top level indexes header file includes all needed header files for CrSp indexes access
crsp_ind_objects.h defines top level CrSp_iND_StrUCt structure for indexes Data
crsp_ind_const.h define indexes constants and wanted parameters
crsp_access_ind.h defines index access function prototypes
crsp_util_ind.h defines index utility function prototypes
crsp_sysio.h defines system-specific constants
crsp_maint.h defines internal data structures

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 114

CRSPACCESS C LIBRARY

The CRSPAccess C Library contains the Application Programming Interface (API) used to access and to process the data.

The library is broken into sections based on the type of operations. The following major groups are available. Each can

be further subdivided into subgroups. Functions within subgroups are alphabetical. Each function includes a function

prototype, description, list of arguments, return values, side effects, and preconditions for use.

C LiBrarY CateGOrY DeSCriptiON paGe

Stock access Functions Functions used to load stock data from the database into structures page 114

index access Functions Functions used to load index data from the database into structures page 128

General access Functions General calendar and access functions page 137

General Utility Functions Functions utility to process base CrSpaccess structures page 148

Data Utility Functions Functions used to manipulate stock or indexes data page 171

STOCK ACCESS FUNCTIONSSTOCK ACCESS FUNCTIONS

The following tables list the available functions to access CRSPAccess Stock Data. Standard usage is to use an open

function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if there

is a matching structure defined for each one.

FUNCtiON DeSCriptiON paGe
crsp_stk_clear Loads Missing values to arrays in a Stock Set Structure page 114
crsp_stk_close Closes a Stock Set page 115
crsp_stk_free Deallocates Memory and reinitializes a Stock Set Structure page 115
crsp_stk_init initializes a CrSpaccess Database for Stock access page 118
crsp_stk_open Opens a Stock Set in a CrSpaccess Database page 116
crsp_stk_read Loads wanted Stock Data For a perMNO page 120
crsp_stk_read_cus Loads wanted Stock Data Using header CUSip identifier, header as the Key page 117
crsp_stk_read_permco Loads wanted Stock Data Using perMCO as the Key page 122
crsp_stk_read_hcus Loads wanted Stock Data Using historical CUSip as the Key page 118
crsp_stk_read_siccd Loads wanted Stock Data Using historical SiC Code as the Key page 122
crsp_stk_read_ticker Loads wanted Stock Data Using ticker Symbol, header as the Key page 120
crsp_stk_read_subset Loads wanted Stock Data for a perMNO applying all Subsetting Filters page 121
crsp_stk_read_key Loads wanted Stock Data Using any Supported Key page 123
crsp_stk_read_key_subset Loads wanted Stock Data Using Supported Key applying Subsetting Filters page 121
crsp_stk_alloc allocates and initializes Stock Structures page 122
crsp_stk_copy Copies Data from One Stock Structure to another page 122
crsp_stk_delete Deletes Stock Data for an existing perMNO page 122
crsp_stk_insert inserts New Stock Data for a perMNO page 123
crsp_stk_modload allocates and Loads a Module Structure page 123
crsp_stk_newset inserts a Set of Stock Modules to a CrSp root Directory page 123
crsp_stk_null Function to Zero out the Stock Structure Before Used page 127
crsp_stk_update Updates Stock Data for an existing perMNO page 129
crsp_stk_del_fromset removes Modules from Stock Set from a CrSp root Directory page 124
crsp_stk_add_toset adds Modules to Stock Set to a CrSp root Directory page 124
crsp_stk_get_allissues_key Get all issues for a key page 125

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 115

crsp_stk_clear Loads Missing Value Arrays in a Stock Set Structure

prOtOtYpe: int crsp_stk_clear (CRSP_STK_STRUCT *stk, int clearflag)

DeSCriptiON: Function to clear the stk structure before used. Load defined missing values to all allocated objects in a stock set structure. it is assumed
that the pointers are either NULL or have been allocated by a set open function. the function allows clearing on a range level, range and
array level, or array level.

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to a stock structure pointer to be cleared.
int clearflag – constant identifying the level of clearing. Supported values are:

• CRSP_CLEAR_INIT – only reset num for CrSp_arraYs and beg and end for CRSP_TIMESERIES, and nothing for
CRSP_ROWs

• CRSP_CLEAR_ALL – set ranges to missing and sets missing values for all elements in the object arrays

• CRSP_CLEAR_RANGE – set missing values for all elements in the object arrays within the range between beg and
end in a CRSP_TIMESERIES or between 0 and num–1 in a CRSP_ARRAY, or the single element in a CrSp_rOw.

• CRSP_CLEAR_SET – set ranges in the 0’th element of a CRSP_TIMESERIES array or the maxarr-1’th element of a
CRSP_ARRAY to missing values specific to the array type, or missing values in CRSP_ROW element.

retUrN vaLUeS: CrSp_SUCCeSS: if success
CrSp_FaiL: if bad parameters

SiDe eFFeCtS: the stock structure pointer has all allocated fields initialized according to the clearflag

preCONDitiONS: the stock structure must either have object fields set to NULL or allocated with a set open function.

CaLL SeQUeNCe: Can be called after crsp_stk_open and before each crsp_stk_read call.

crsp_stk_close Closes a Stock Set

prOtOtYpe: int crsp_stk_close (int crspnum, int setid, CRSP_STK_STRUCT *stkptr)

DeSCriptiON: closes a stock set

arGUMeNtS: int crspnum – identifier of CrSp database, as returned by open
int setid – identifier of the stock set code to close
CRSP_STK_STRUCT *stkptr – pointer to stock structure to be deallocated; if NULL nothing is deallocated

retUrN vaLUeS: CrSp_SUCCeSS: if successfully closed stock set
CrSp_FaiL: if error closing a file or illegal parameter

SiDe eFFeCtS: all stock module files are closed, memory allocated by them are freed. if these are the last modules open in the database, the root is also
closed. the stock structure associated with the set is deallocated if stkptr is not NULL.

preCONDitiONS: the crspnum and setid must be taken from a previous crsp_stk_open call

CaLL SeQUeNCe: Called by external programs, must be preceded by call to crsp_stk_open calls crsp_closeroot, crsp_closemod.

crsp_stk_free Deallocates Memory and Reinitializes a Stock Set Structure

prOtOtYpe: int crsp_stk_free (int crspnum, int setid, CRSP_STK_STRUCT *stkptr)

DeSCriptiON: deallocates memory and reinitializes a stock set structure

arGUMeNtS: int crspnum – identifier of crsp database, as returned by open
int setid – identifier of the stock set code to close
CRSP_STK_STRUCT *stkptr – pointer to stock structure

retUrN vaLUeS: CrSp_SUCCeSS: if successfully deallocated and reset stock structure, or stk structure is NULL
CrSp_FaiL: if error deallocating memory, error in parameters

SiDe eFFeCtS: the stock structures are reset so all pointers are NULL and all settings are 0. all memory allocated to existing object element lists is freed.

preCONDitiONS: the crspnum must be known from a previous crsp_stk_open or crsp_openroot call. the setcode is an installation-defined code
for the set.

CaLL SeQUeNCe: Called by external programs or by crsp_stk_close must be preceded by call to crsp_stk_alloc calls crsp_freemod.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 116

crsp_stk_init Initializes a CRSPAccess Database for Stock Access

prOtOtYpe: int crsp_stk_init(CRSP_STK_STRUCT *stkptr)

DeSCriptiON: initializes internal access for stock CRSPDBs and sets stock structure pointers to NULL. See crsp_stk_clear to clear data from a
stock structure.

arGUMeNtS: CRSP_STK_STRUCT *stkptr – pointer to a stock structure to initialize. this argument can be NULL to initialize a stock database
without resetting the structure.

retUrN vaLUeS: CrSp_SUCCeSS: if stock internals successfully initialized
CrSp_FaiL: if error opening or reading initialization file

SiDe eFFeCtS: internal structures will be initialized, including the array of known stock sets. they will be stored in static structures in this module and used
by other stk functions. all of the pointers in the stock structure stkptr will be set to NULL. if a structure is already initialized with crsp_stk_
open, crsp_stk_free should be used or memory will be lost.

preCONDitiONS: None; crsp_stk_init is called by crsp_stk_open

crsp_stk_open Opens an Existing Stock Set in a CRSPAccess Database

prOtOtYpe: int crsp_stk_open (char *root, int setid, CRSP_STK_STRUCT *stkptr, int wanted, char *mode,

int bufferflag)

DeSCriptiON: opens an existing stock set in a CrSpaccess Database

arGUMeNtS: char *root – path of root directory. if the root is NULL the CRSP_DSTK or CRSP_MSTK environment variables are used.
int setid – the set identifier
10 – Daily CrSp Stock Database
20 – Monthly CrSp Stock Database
CRSP_STK_STRUCT *stkptr – pointer within stock structure to be associated with this database. if wanted objects in stkptr are
NULL then space for objects where the structure is allocated by this function.

int wanted – mask indicating which modules will be used. the list below shows the wanted values for the stock modules. the wanted
values can be summed or summary wanted values can be used to open multiple modules. Only modules that are selected in the wanted
parameter have memory allocated in the stock structure and only those modules can be accessed in further access functions to the
database.

iNDiviDUaL MODULeS:
STK_HEAD 1 header structure
STK_EVENTS 2 names, dists, shares, delists, nasdin
STK_LOWS 4 lows
STK_HIGHS 8 highs
STK_PRICES 16 close or bid/ask average
STK_RETURNS 32 total returns
STK_VOLUMES 64 volumes
STK_PORTS 128 portfolios
STK_BIDS 256 bids
STK_ASKS 512 asks
STK_RETXS 1024 returns without dividends
STK_SPREADS 2048 spreads
STK_TRADES/STK_ALTPRCDTS 4096 number of trades or alternative price dates
STK_ALTPRCS/STK_OPENPRCS 8192 alternate prices or open prices
STK_GROUPS 6384 groups

GrOUp OF MODULeS:
STK_INFOS 3 header and event data
STK_DDATA 124 price, high, low, volume and returns time series
STK_SDATA 4864 bids, asks, and number of trades time series
STK_STD 5119 header, events, prices, high, low, volume, returns, and ports
STK_ALL 32767 all modules
char *mode – usage while open (r=read, rw=read/write)
int bufferflag – level of buffering: 0 : no buffering, 1 : use default, n : use factor of default

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 117

retUrN vaLUeS: crspnum: (integer) if opened successfully. this crspnum is used in further access functions to the database.
CrSp_FaiL: (integer) if error opening or loading files, if bad parameters, root already opened exclusively, stock set already opened rw,
wanted not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for
internal or stock structures.

SiDe eFFeCtS: this will load root and stock initialization files if needed, open the root including loading the configuration structure and index structures to
memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the log
file. Files will be opened for all wanted modules. associated calendars will be loaded if necessary. wanted stock structures will be allocated.

preCONDitiONS: None. the root may already be open under a different set in r mode.

crsp_stk_read Loads Wanted Stock Data for a Security by PERMNO

prOtOtYpe: int crsp_stk_read (int crspnum, int setid, int *key, int keyflag, CRSP_STK_STRUCT*stkptr,

int wanted)

DeSCriptiON: loads wanted stock data for a perMNO

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *key – specific perMNO of data to load, or pointer to integer that will be loaded with the key found if a positional keyflag is used.
int keyflag – CrSp_eXaCt constant to search for the perMNO in *key, or positional constant:
CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file CrSp_FOUND_Other: if key found in root, but not for this setid
CRSP_NOT_FOUND: if key not found in root
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum error in read, impossible wanted

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read
is reset based on the key found. if keyflag is a positional qualifier, the actual perMNO found is loaded to *key. Data is only loaded to
wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous crsp_stk_open call. stkptr must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open function.

crsp_stk_read_cus Loads Wanted Stock Data Using CUSIP Identifier, Header as the Key

prOtOtYpe: int crsp_stk_read_cus (int crspnum, int setid, char *cusip, int keyflag,CRSP_STK_STRUCT

*stkptr, int wanted)

DeSCriptiON: loads wanted stock data for a security using the CUSip identifier, header (hcusip) as the key

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 118

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
char *cusip – CUSip identifier, header to load, or pointer to string that will be loaded with the key found if a positional keyflag is used.
int keyflag – qualify conditions of key searches:
CRSP_EXACT – only accept an exact match
CRSP_BACK – ind last previous key if no exact match
CRSP_FORWARD – find the first following key if no exact match or positional constant:
CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted, invalid CUSip index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read
is reset based on the key found. if keyflag is a positional qualifier, the actual CUSip identifier, header found is loaded to *cusip. Data
is only loaded to wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded
data

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous crsp_stk_open call. stkptr must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open function.

crsp_stk_read_permco Loads Wanted Stock Data Using PERMCO as the Key

prOtOtYpe: int crsp_stk_read_permco (int crspnum, int setid, int *permco, int keyflag, CRSP_STK_STRUCT

*stkptr, int wanted)

DeSCriptiON: loads wanted stock data for a security using perMCO as the key

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *permco – perMCO to load, or pointer to an integer that will be loaded with the key found if a positional keyflag is used.
int keyflag – positional qualifier or match qualifier – see crsp_stk_read_cus
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted, invalid
PERMCO index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read is
reset based on the key found. if keyflag is a positional qualifier, the actual perMCO found is loaded to *perMCO. Data is only loaded to
wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous crsp_stk_open call. stkptr must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open function.

crsp_stk_read_hcus Loads Wanted Stock Data Using Historical CUSIP as the Key

prOtOtYpe: int crsp_stk_read_hcus (int crspnum, int setid, char *cusip, int keyflag, CRSP_STK_STRUCT

*stkptr, int wanted)

DeSCriptiON: loads wanted stock data for a security using historical CUSip as the key

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 119

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
char *cusip – historical CUSip to load, or pointer to string that will be loaded with the key found if a positional keyflag is used.
int keyflag – positional qualifier or nomatch qualifier– see crsp_stk_read_cus
CRSP_STK_STRUCT * stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid CUSip index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read is
reset based on the key found. if keyflag is a positional qualifier, the actual historical CUSip found is loaded to *cusip. Data is only loaded
to wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous crsp_stk_open call. stkptr must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open function.

 crsp_stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key

prOtOtYpe: int crsp_stk_read_siccd (int crspnum, int setid, int *siccd, int keyflag, CRSP_STK_STRUCT

*stkptr, int wanted)

DeSCriptiON: loads wanted stock data for a security using Standard industrial Classification (SiC) Code (siccd) as the key

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *siccd – siccd to load, or pointer to integer that will be loaded with the key found if a positional keyflag is used.
int keyflag – positional qualifier or no match qualifier– see crsp_stk_read_cus
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted, invalid siccd index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read
is reset based on the key found. if keyflag is a positional qualifier, the actual SiC Code found is loaded to *siccd. Data is only loaded to
wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous crsp_stk_open call. stkptr must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open function.

crsp_stk_read_ticker Loads the Wanted Stock Data Using Ticker, Header as the Key

prOtOtYpe: int crsp_stk_read_ticker (int crspnum, int setid, char *ticker, int keyflag, CRSP_STK_STRUCT

*stkptr, int wanted)

DeSCriptiON: loads wanted stock data for a security using ticker, header as the key

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
char *ticker – pointer to header ticker to load, or pointer to string that will be loaded with the key found if a positional keyflag is used.
int keyflag – positional qualifier or no match qualifier– see crsp_stk_read_cus
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_stk_open for module codes.

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if ticker not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid ticker index

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 120

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read is
reset based on the key found. if keyflag is a positional qualifier, the actual header ticker found is loaded to *ticker. Data is only loaded
to wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous crsp_stk_open call. stkptr must have
been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open
function.

crsp_stk_read_subset Loads Wanted Stock Data for a PERMNO Applying Subsetting Filters

prOtOtYpe: int crsp_stk_read_subset (int crspnum, int setid, int *key, int keyflag, CRSP_STK_STRUCT *stkptr, int wanted,
CrSp_UNiv_paraM_LOaD *subpar)

DeSCriptiON: loads wanted stock data for a perMNO applying all subsetting filters

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
int *key – perMNO to load
int keyflag – positional qualifier or no match qualifier
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load
CRSP_SUBSET_PARAM_LOAD *subpar – pointer to structure containing subsetting flags

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if perMNO not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted, invalid perMNO index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the structure. the data loaded in the module buffers may be
changed. the position for further reads will be set to the location of the read. Multiple perMNOs may be loaded on a positional read if
subsetting totally eliminates perMNOs that otherwise would be loaded.

preCONDitiONS: the stock set must be previously opened. the stknum and crspnum and stkptr are the same as opened and the wanted must be a
subset of the wanted open. the subset parameter structure must be loaded with valid flags. See the crsp_stk_subset_parload function on
page 181.

crsp_stk_read_key Loads Wanted Stock Data Using Any Supported Key

prOtOtYpe: int crsp_stk_read_key (int crspnum, int setid, void *key, int keytype, int keyflag, CRSP_

STK_STRUCT *stkptr, int wanted)

DeSCriptiON: Loads wanted stock data using any supported key. Supported keys are perMNO, header CUSip, historical CUSip, historical SiC Code,
header ticker and perMCO.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 121

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
void *key – key must point to a structure that matches the keytype
int if keytype = CRSP_SCD_NUM
CRSP_SCD_CUS if keytype = CRSP_SCD_CUSIP
CRSP_SCD_CUS if keytype = CRSP_SCD_HCUSIP
CRSP_SCD_INT if keytype = CRSP_SCD_SICCD
CRSP_SCD_CUS if keytype = CRSP_SCD_TICKER
CRSP_SCD_INT if keytype = CRSP_SCD_PERMCO
int keytype – the keyword identifying the key to search on. values are:
CRSP_SCD_CUSIP – header CUSip
CRSP_SCD_HCUSIP – historical CUSip
CRSP_SCD_SICCD – historical SiC Codes
CRSP_SCD_TICKER – header ticker
CRSP_SCD_PERMCO – perMCO
CRSP_SCD_NUM – perMNO
int keyflag – positional qualifier or no match qualifier. positioned qualifiers are dependent on the keys selected.
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF – if next or previous key at end or beginning of file
CRSP_NOT_FOUND – if perMNO not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted.

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stkptr structure. the data loaded in the module buffers may
be changed.

preCONDitiONS: the stock set must be previously opened. the crspnum and stkptr are the same as opened and the wanted must be a subset of the
open wanted.

crsp_stk_read_key_subset Loads Wanted Stock Data Using Supported Key Applying Subset Filters

prOtOtYpe: int crsp_stk_read_key_subset (int crspnum, int setid, void *key, int keytype, int keyflag,

CRSP_STK_STRUCT *stkptr, int wanted, CRSP_UNIV_PARAM_LOAD *subpar)

DeSCriptiON: loads wanted stock data using supported key applying subsetting filters applied. Supported keys are perMNO, header CUSip, historical
CUSip, historical SiC Code, header ticker and perMCO.

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_stk_open
int setid – the set identifier used in crsp_stk_open
void *key – key must point to a structure that matches keytype
int if keytype = CRSP_SCD_NUM
CRSP_SCD_CUS if keytype = CRSP_SCD_CUSIP
CRSP_SCD_CUS if keytype = CRSP_SCD_HCUSIP
CRSP_SCD_INT if keytype = CRSP_SCD_SICCD
CRSP_SCD_CUS if keytype = CRSP_SCD_TICKER
CRSP_SCD_INT if keytype = CRSP_SCD_PERMCO
int keytype – CRSP_SCD_CUSIP – header CUSip
CRSP_SCD_HCUSIP – historical CUSip
CRSP_SCD_SICCD – historical SiC Code
CRSP_SCD_TICKER – header ticker
CRSP_SCD_PERMCO – perMCO
CRSP_SCD_NUM – perMNO
int keyflag – positional qualifier or no match qualifier
CRSP_STK_STRUCT *stkptr – structure to load data
int wanted – mask of flags indicating which module data to load
CRSP_SUBSET_PARAM_LOAD *subpar – pointer to structure containing subsetting flags

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 122

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_NOT_FOUND: if key not found
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted.

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stkptr structure. the data loaded in the module buffers
may be changed. the position of further reads will be set to the location of the read. Multiple perMNOs may be loaded and discarded on a
positional read if subsetting totally eliminates perMNOs that otherwise would be loaded.

preCONDitiONS: the stock set must be previously opened. the crspnum and stkptr are the same as opened and the wanted must be a subset of the
open wanted. the subset parameter structure must be loaded with valid flags. See the crsp_stk_subset_parload function page 181.

crsp_stk_alloc Builds Stock Set Object Lists, Allocates Memory, and Sets Pointers

prOtOtYpe: int crsp_stk_alloc (int crspnum, int setid, CRSP_STK_STRUCT *stk, int wanted)

DeSCriptiON: Build stock set object lists, allocate memory, and set pointers

arGUMeNtS: int crspnum - identifier of CrSp database, as returned by open
int setid - identifier of the stock set to allocate
CRSP_STK_STRUCT *stk - pointer to stock structure
int wanted - binary code of modules wanted; see CRSP_STK_OPEN.

retUrN vaLUeS: CRSP_SUCCESS - if successfully initialized and allocated stock structure
CRSP_FAIL - if error allocating memory, error in parameters

SiDe eFFeCtS: three levels of pointers are allocated in the stock structure.
object_element list elements are created for each wanted module
object types are allocated for each object in wanted modules, and object level pointers are set
arrays are allocated for each object, and array level pointers are set
setid and wanted are stored in the structure.

preCONDitiONS: the crspnum must be known from a previous crsp_stk_open or crsp_openroot call. the setid is an installation-defined code for the set.

CaLL SeQUeNCe: Called by external programs or by crsp_stk_open. Must be preceded by call to crsp_stk_open or crsp_openroot. Calls crsp_
allocmod

crsp_stk_copy Copies Data from One Stock Structure to Another

prOtOtYpe: int crsp_stk_copy (CRSP_STK_STRUCT *stktrg, CRSP_STK_STRUCT *stksrc, int wanted)

DeSCriptiON: Copies data from one stock structure to another

arGUMeNtS: CRSP_STK_STRUCT *stktrg - pointer to stock structure target
CRSP_STK_STRUCT *stksrc - pointer to stock structure source
int wanted - wanted flag of modules to copy

retUrN vaLUeS: CRSP_SUCCESS - if successfully copied data from source to target
CRSP_FAIL - if incompatible structures

SiDe eFFeCtS: Data is copied from the source structure to the target structure. the loadflag field is used to identify all wanted modules to copy.

preCONDitiONS: Both structures must be allocated with crsp_stk_open. the wanted for the target must be a superset of the wanted in the source.
the versions of the structure must be compatible - the source modules must not have missing objects or higher maxarrs than the
counterparts in the target.

CaLL SeQUeNCe: Called by external programs must be preceded by call to crsp_stk_open for each structure.

crsp_stk_delete Deletes a PERMNO from a Stock Set

prOtOtYpe: int crsp_stk_delete (int crspnum, int setid, int key)

DeSCriptiON: Deletes a perMNO from a stock set in a CrSpaccess database.

arGUMeNtS: int crspnum - identifier of root
int setid - identifier of the set
int key - perMNO to erase from stock set

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 123

retUrN vaLUeS: CRSP_SUCCESS - if successfully deleted from stock set
CRSP_FAIL - if key not found, not found in set, not open for rewrite, or illegal parameter

SiDe eFFeCtS: if the perMNO is found in the set it is erased. all space allocated in the module files for this permno will be added to the free list for those
modules. if the perMNO does not belong to any other modules, it will be erased from the index file and its address record placed on the
address file free list. Otherwise, the index file module flags will be reset and the address records for these stock modules will be set to NULL.

preCONDitiONS: the root and stock set must be opened previously with crsp_stk_open. the open must use the rw mode.

crsp_stk_insert Adds a New PERMNO to a Stock Set

prOtOtYpe: int crsp_stk_insert (int crspnum, int setid, int key, CRSP_STK_STRUCT *stkptr, int wanted)

DeSCriptiON: adds a new perMNO to a stock set in a CrSpaccess database.

arGUMeNtS: int crspnum - CrSp database identifier from open
int setid - the set identifier
CRSP_STK_STRUCT *stkptr - pointer to stock structure - data that will be added to the wanted modules
int wanted - a stock wanted parameter indicating which stock data modules include data that will be saved.

retUrN vaLUeS: CRSP_SUCCESS - if successfully added
CRSP_FAIL - if bad parameters, database not open for rw, perMNO already exists in this set

SiDe eFFeCtS: Data for all modules will be added to the proper file. the free list is used to find a location in the module file and may be updated if free space
is used. if the key already exists but in different sets, the index file module flag is updated, and the new module addresses and sizes are
added to the address file. if the key is totally new, a new index file row and address file record are created.

preCONDitiONS: the stock set must be opened previously with rw mode.

crsp_stk_modload Allocates a Module Structure and Loads a Module and Objects Information into Module Structure

prOtOtYpe: int crsp_stk_modload (int crspnum, int modindex, int modid, CRSP_CONFIG_MOD **modstruct)

DeSCriptiON: allocates a module structure and loads a module and object information into it

arGUMeNtS: int modindex - the index of the module in the CRSP_MODTYPE structure array
CRSP_CONFIG_MOD *modstruct - pointer to the CrSp_CONFiG_MOD structure

retUrN vaLUeS: CRSP_SUCCESS - if the module is loaded successfully
CRSP_FAIL - if bad parameters or error allocating and loading module structures

crsp_stk_newset Adds a Set of Stock Modules to a CRSP Database

prOtOtYpe: int crsp_stk_newset (char *root, int setid, int wanted)

DeSCriptiON: adds a set of stock modules to a CrSpaccess database. Creates a new database if one does not exist.

arGUMeNtS: char *root - path of crspdb root directory
int setid - known stock set number from initialization file
int wanted - mask determining which stock modules are supported in the set; see CRSP_STK_OPEN.

retUrN vaLUeS: CRSP_SUCCESS - if the stock set is added
CRSP_FAIL - if bad parameters or error manipulating root structures

SiDe eFFeCtS: crsp_stk_newset creates a new CrSpaccess database if one does not exists; it then adds a set of stock modules to the existing crspdb.
it will add the information about the set to the configuration file and recreate the address file with the new modules added to each record.
empty data files for the modules will be created. if the calendars are new to the root they will be added. the new modules will be assigned to
the proper calendars.

CaLL SeQUeNCe: crsp_newroot is called to create a CrSpaccess database if none exists. the root must be a CrSpaccess database, unopened, not
including this setid, or an empty directory.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 124

crsp_stk_null Function Zeros Out the Stock Structure Before it is Used

prOtOtYpe: int crsp_stk_NULL(CRSP_STK_STRUCT *stkptr)

DeSCriptiON: Function zeros out the stock structure before it is used. all pointers are set to NULL and integers set to 0. this does not free memory. Use
CRSP_STK_CLEAR to reset data in an allocated structure.

arGUMeNtS: CRSP_STK_STRUCT *stkptr - pointer to stock structure

retUrN vaLUeS: CRSP_SUCCESS - if stock internals successfully initialized
CRSP_FAIL - if error opening or reading initialization file

SiDe eFFeCtS: the stock structure will be set to zero according to the loadflag

preCONDitiONS: None.

crsp_stk_update Updates Stock Data for a Key

prOtOtYpe: int crsp_stk_update (int crspnum, int setid, int key, CRSP_STK_STRUCT *stkptr, int wanted)

DeSCriptiON: Updates stock data for a key

arGUMeNtS: int crspnum - CrSp database root identifier returned by crsp_stk_open
int setid - the set identifier used in crsp_stk_open int key - specific perMNO of data to write
CRSP_STK_STRUCT *stkptr - structure containing new data
int wanted - mask of flags indicating which module data to write

retUrN vaLUeS: CRSP_SUCCESS - if data written successfully
CRSP_FOUND_OTHER - if key found in root, but not for this set
CRSP_NOT_FOUND - if key not found in root
CRSP_FAIL - if error with bad parameters, invalid or unopened crspnum and stknum for rw, error in write, impossible wanted.

SiDe eFFeCtS: Data from the wanted modules will be written to the proper locations in the module files. the address file may be updated for new offsets
and sizes. if the new data does not fit within the allocated space for that key in the module file the data may be moved to a new location and
the free list modified. the data loaded in the module buffers may be changed.

preCONDitiONS: the stock set must be previously opened with rw. the crspnum and setid are the same as opened and the wanted must be a subset
of the wanted open. the stkptr must be compatible with the structure allocated by the open of this crspnum and setid.

crsp_stk_del_fromset Deletes Modules from Stock Set from a CRSP Root

prOtOtYpe: int crsp_stk_del_fromset (char *root, int setid, int wanted)

DeSCriptiON: Deletes modules from stock set from a CrSp root

arGUMeNtS: char *root - path of CrSp database root
int setid - identifier of the set
int wanted - binary code of modules wanted to delete

retUrN vaLUeS: CRSP_SUCCESS - if the stock modules are removed successfully
CRSP_FAIL - if something wrong

SiDe eFFeCtS: crsp_stk_del_fromset removes the wanted modules associated with a given stock set from a CrSp database root. all wanted
modules will be erased from the address file, which will be rewritten with a new restricted record length. the index file will also be rewritten,
with keys changed to new module inclusion flags or erased altogether. the configuration file will be rewritten without the modules included in
the stk set. Wanted module files of this set will be deleted. if all modules are deleted, delete and the set.

preCONDitiONS: crsp_stk_del_fromset is run off an unopened CrSp database

pOStCONDitiONS: will leave an unopened CrSp database root

crsp_stk_add_toset Adds Modules to an Existing Stock Set

prOtOtYpe: int crsp_stk_add_toset (char *root, int setid, int wanted)

DeSCriptiON: adds modules to an existing stock set in a CrSpaccess database.

arGUMeNtS: char *root - path of CrSp database root
int setid - identifier of the set

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 125

retUrN vaLUeS: CRSP_SUCCESS - if the modules are added
CRSP_FAIL - if bad parameters

SiDe eFFeCtS: extra module files are created and attach to the database configuration file. a new address file is created in the database.

preCONDitiONS: Database must exist with set included. it is unopened. permission must exist to write to the database root.

crsp_stk_get_allissues_key Gets All Issues Associated with Key

prOtOtYpe: int crsp_stk_get_allissues_key (int crspnum, int setid, CRSP_ARRAY *issue_arr, void *key, int

keytype, CRSP_UNIV_PARAM_LOAD *subpar, CRSP_STK_STRUCT *stk, int begdt, int enddt, int dateflag)

DeSCriptiON: Gets all issues associated with key and store them in CRSP_TSP_ENTITY_LIST array. Can be called multiple times to append to list.

arGUMeNtS: int crspnum - CrSp database root identifier returned by crsp_stk_open
int setid - the set identifier used in crsp_stk_open
CRSP_ARRAY *issue - integer array to load found perMNOs. the array type must be initialized to CRSP_TSP_ENTITY_LIST.
void *key - key must point to a structure that matches keytype
int if keytype = CRSP_SCD_NUM
CRSP_SCD_CUS if keytype == CRSP_SCD_CUSIP
CRSP_SCD_CUS if keytype == CRSP_SCD_HCUSIP
CRSP_SCD_INT if keytype == CRSP_SCD_SICCD
CRSP_SCD_CUS if keytype == CRSP_SCD_TICKER
CRSP_SCD_INT if keytype == CRSP_SCD_PERMCO
int keytype - CRSP_SCD_CUSIP CRSP_SCD_HCUSIP
CRSP_SCD_SICCD CRSP_SCD_TICKER CRSP_SCD_PERMCO
CRSP_SCD_NUM (primary - perMNO)
CRSP_UNIV_PARAM_LOAD *subpar - structure specifying subset restrictions. See CRSP_STK_UBSET_PARAMLOAD on page
page 181 for options.
CRSP_STK_STRUCT *stk - allocated stock structure used to store immediate data for determining matches.
int begdt - yyyymmdd format. if stock data is not within begdt and enddt, ignore the perMNO
int enddt - yyyymmdd format. if stock data is not between begdt and enddt, ignore the perMNO
int dateflag - whether the date is relative date CRSP_TSP_RELDATE (1) or not CRSP_TSP_NO_RELDATE (0)

retUrN vaLUeS: CRSP_SUCCESS - if array loaded successfully
CRSP_FAIL - error in parameters, reads, or limits

SiDe eFFeCtS: issue array is loaded with matching issues. Only the perMNO field is loaded.

preCONDitiONS: the stock set must be previously opened. crspnum and stkptr are the same as opened. Stock structure must have wanted at least
heaDer and eveNtS, and also priCeS if subset restrictions are used. issue array must be allocated with enough space to store possible
keys. if num is nonzero, new matches will be added to the end of the list.

 iNDeX aCCeSS FUNCtiONS iNDeX aCCeSS FUNCtiONS

The following tables list the available functions to access CRSPAccess index data. Standard usage is to use an open

function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if there

is a matching structure defined for each one.

aCCeSS FUNCtiON DeSCriptiON paGe
crsp_ind_clear Loads Missing value arrays in an indexes Set Structure page 126
crsp_ind_close Closes an indexes Set page 126
crsp_ind_free Deallocates Memory and reinitializes an indexes Set Structure page 126
crsp_ind_init initializes a CrSpaccess database for indexes access page 127
crsp_ind_open Opens an indexes Set in a CrSpaccess Database page 127
crsp_ind_read Loads Wanted Data For an index page 131
crsp_ind_alloc allocates and initializes indexes Structures page 129
crsp_ind_copy Copies Data from One Stock Structure to another page 129
crsp_ind_delete Deletes indexes Data for an existing iNDNO page 130
crsp_ind_insert inserts New indexes Data for a perMNO page 130
crsp_ind_modload allocates and Loads a Module Structure page 130

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 126

aCCeSS FUNCtiON DeSCriptiON paGe
crsp_ind_newset inserts a Set of indexes Modules to a root page 131
crsp_ind_NULL Function to Zero Out the index Structure Before it is Used page 131
crsp_ind_read_subset reads indexes Data for One iNDNO applying Subsets page 131
crsp_ind_update Updates indexes Data for an existing iNDNO page 131
crsp_ind_del_fromset removes Modules from indexes Set from a root Directory page 132
crsp_ind_add_toset adds Modules to indexes Set to a root Directory page 132
crsp_ind_free_ind Frees Memory for allocated indexes Structure page 132

crsp_ind_clear Loads Missing Value Arrays in an Index Set Structure

prOtOtYpe: int crsp_ind_clear (CRSP_IND_STRUCT *ind, int clearflag)

DeSCriptiON: load defined missing values to all allocated objects in an index set structure. it is assumed that the pointers are either NULL or have been
allocated by a set open function. the function allows clearing on a range level, range and array level, or array level.

arGUMeNtS: CRSP_IND_STRUCT *ind – pointer to an index structure pointer to be cleared.
int clearflag – constant identifying the level of initialization. Supported values are:
CRSP_CLEAR_INIT – only reset num for CRSP_ARRAYs and beg and end for CRSP_TIMESERIES, and set structure to missing
values for CRSP_ROWs.
CRSP_CLEAR_ALL – set ranges to missing and set missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for all elements in the object arrays within the range between beg and end in a CRSP_
TIMESERIES or between 0 and num–1 in a CRSP_ARRAY, or the single element in a CRSP_ROW.
CRSP_CLEAR_SET – set ranges in the 0’th element of a CRSP_TIMESERIES array or the maxarr-1’th element of a CRSP_ARRAY to
missing values specific to the array type, or sets missing values to the single element in a CRSP_ROW.

retUrN vaLUeS: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

SiDe eFFeCtS: the index structure pointer has all allocated fields initialized according to the clearflag

preCONDitiONS: the index structure must either have object fields set to NULL or allocated with a set open function.

CaLL SeQUeNCe: call after crsp_ind_open and before each crsp_ind_read.

 crsp_ind_close Closes an Index Set

prOtOtYpe: int crsp_ind_close (int crspnum, int setid, CRSP_IND_STRUCT *indptr)

DeSCriptiON: close an index set

arGUMeNtS: int crspnum – identifier of the CrSp database, as returned by crsp_ind_open
int setid – identifier of the index set code to close, as used in the open
CRSP_IND_STRUCT *indptr – pointer to index structure to deallocate; if NULL, no deallocation occurs

retUrN vaLUeS: CRSP_SUCCESS: if successfully closed index set
CRSP_FAIL: if error closing a file or illegal parameter

SiDe eFFeCtS: all index module files are closed, and memory allocated by them in the index structure is freed. if these are the last modules open in the
database, the root is also closed. if indptr is NULL, no structure memory deallocation occurs.

preCONDitiONS: the crspnum and setid must be taken from a previous crsp_ind_open call.

crsp_ind_free Deallocates Memory and Reinitializes an Index Set Structure

prOtOtYpe: int crsp_ind_free (int crspnum, int setid, CRSP_IND_STRUCT *indptr)

DeSCriptiON: deallocates memory and reinitializes an index set structure

arGUMeNtS: int crspnum – identifier of CRSPDB database, as returned by open
int setid – identifier of the index set code to free
CRSP_IND_STRUCT *indptr – pointer to index structure

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 127

retUrN vaLUeS: CRSP_SUCCESS: if successfully deallocated and reset index structure, or index structure is NULL
CRSP_FAIL: if error deallocating memory, error in parameters

SiDe eFFeCtS: the index structures are reset so all pointers are NULL and all settings are 0. all memory allocated to existing objects is freed. there is no
effect if indptr is NULL.

preCONDitiONS: the crspnum must be known from a previous crsp_ind_open call. the setid is a predefined identifier for the index daily or monthly
series or group set of index data previously opened with crsp_ind_open.

crsp_ind_init Initializes a CRSPAccess Database for Indexes Access

prOtOtYpe: int crsp_ind_init (CRSP_IND_STRUCT *indptr)

DeSCriptiON: initializes an index structure by setting all pointers to NULL and all counts to zero. initializes CrSp internal structures if no previous
initialization has been done.

arGUMeNtS: CRSP_IND_STRUCT *indptr – pointer to the index structure to be initialized. this argument can be NULL to initialize a CrSp internal
database without resetting an existing structure.

retUrN vaLUeS: CRSP_SUCCESS: if index internals successfully initialized
CRSP_FAIL: if error opening or reading initialization file

SiDe eFFeCtS: internal structures will be initialized, including the array of known sets. they will be stored in internal structures in this module and used by
other CrSp functions. all the pointers in the index structure indptr will be set to NULL. if a structure is already initialized with crsp_ind_
open, crsp_ind_free should be used or memory will be lost.

preCONDitiONS: None

crsp_ind_open Opens an Existing Index Set in an Existing CRSPDB

prOtOtYpe: int crsp_ind_open (char *root, int setid, CRSP_IND_STRUCT *indptr, int wanted, char *mode,
int bufferflag)

DeSCriptiON: opens an existing index set in an existing crspdb. this opens database files, allocates needed memory to a structure, and initializes
internal structures to index data can be used. See crsp_ind_clear for clearing data

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 128

arGUMeNtS: char *root – path of root directory. if root is NULL the CRSP_DSTK or CRSP_MSTK environment variables are used.
int setid – the set identifier
400 = monthly index groups
420 = monthly index series
440 = daily index groups
460 = daily index series
CRSP_IND_STRUCT *indptr – pointer to index structure to be associated with this database. if indptr is NULL then space for a
CRSP_IND_STRUCT is allocated by this function.
int wanted – mask indicating which modules will be used. the list below shows the wanted values for the index modules. the wanted
values can be summed or summary wanted values can be used to open multiple modules. Only modules that are selected in the wanted
parameter have memory allocated in the index structure and only those modules can be accessed in further access functions to the database.
IND_HEAD 1 header structure and index description
IND_REBALS 2 rebalancing information for index groups
IND_LISTS 4 issue lists
IND_USDCNTS 8 portfolio used counts
IND_TOTCNTS 16 portfolio total eligible counts
IND_USDVALS 32 portfolio used weights
IND_TOTVALS 64 portfolio eligible weights
IND_TRETURNS 128 total returns
IND_ARETURNS 256 capital appreciation returns
IND_IRETURNS 512 income returns
IND_TLEVELS 1024 total return index levels
IND_ALEVELS 2048 capital appreciation index levels
IND_ILEVELS 4096 income return index levels
Symbols are available for common groups of modules. IND_ALL selects all the index data.
IND_INFO = IND_HEAD + IND_REBALS + IND_LISTS
IND_RETURNS = IND_TRETURNS + IND_ARETURNS + IND_IRETURNS
IND_LEVELS = IND_TLEVELS + IND_ALEVELS + IND_ILEVELS
IND_COUNTS = IND_USDCNTS + IND_TOTCNTS + IND_USDVALS+IND_TOTVALS
IND_RESULTS = IND_HEAD + IND_USDCNTS + IND_USDVALS+IND_TRETURNS
IND_ARESULTS = IND_HEAD + IND_USDCNTS + IND_USDVALS + IND_ARETURNS
IND_IRESULTS = IND_HEAD + IND_USDCNTS + IND_USDVALS + IND_IRETURNS
IND_STD = IND_HEAD + IND_COUNTS + IND_TRETURNS + IND_ARETURNS
IND_ALL = IND_INFO + IND_RETURNS + IND_LEVELS+IND_COUNTS
char *mode – usage while open. possible string values are:
r = read,
rw = read/write
int bufferflag – level of buffering: 0 : no buffering, 1 : use default, n : use factor of default
int crspnum: if opened successfully. this crspnum is used in further access functions to the database

retUrN vaLUeS: int CRSP_FAIL: if error opening or loading files, if bad parameters, root already opened exclusively, index set already opened rw, wanted
not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for internal or
stock structures.

SiDe eFFeCtS: this will load root and index initialization files if needed, open the root including loading the configuration structure and index structures
to memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the
log file. Files will be opened for all wanted modules. associated calendars will be loaded if necessary. wanted index structures will be
allocated.

preCONDitiONS: None; the root may already be open. if a new index structure is passed additional fields may be allocated.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 129

crsp_ind_read Loads Wanted Index Data For an INDNO

prOtOtYpe: int crsp_ind_read (int crspnum, int setid, int *key, int keyflag, CRSP_IND_STRUCT

DeSCriptiON: loads wanted index data for an iNDNO

arGUMeNtS: int crspnum – crspdb root identifier returned by crsp_ind_open
int setid – the set identifier used in crsp_ind_open int *key – specific indno of data to load
int keyflag – CRSP_EXACT constant to search for the indno in *key, or positional constant:
CRSP_FIRST – the first key in the database
CRSP_PREV – the previous key
CRSP_LAST – the last key in the database
CRSP_SAME – the same key
CRSP_NEXT – the next key
CRSP_STK_STRUCT *indptr – structure to load data
int wanted – mask of flags indicating which module data to load. See crsp_ind_open on page 127 for module codes.

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_EOF: if next or previous key at end or beginning of file
CRSP_FOUND_OTHER: if key found in root, but not for this set
CRSP_NOT_FOUND: if key not found in database
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and setid, error in read, impossible wanted

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the index structure. the position used for the next positional read is
reset based on the key found. if keyflag is a positional qualifier, the actual iNDNO found is loaded to *key. Data is only loaded to wanted
data structures within the range of valid data for the index. Use index clear functions to erase previously loaded data.

preCONDitiONS: the index set must be previously opened. the crspnum must be returned from a previous crsp_stk_open call. indptr must have
been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_ind_open
function.

crsp_ind_alloc Builds Indexes Set Object Lists, Allocates Memory, and Sets Pointers

prOtOtYpe: int crsp_ind_alloc (int crspnum, int setid, CRSP_IND_STRUCT *ind, int wanted)

DeSCriptiON: Builds indexes set object lists, allocates memory, and sets pointers

arGUMeNtS: int crspnum - identifier of crsp database, as returned by open
int setid - identifier of the indexes set to allocate CrSp_iND_StrUCt *ind - pointer to indexes structure int wanted - binary code
of modules wanted

retUrN vaLUeS: CRSP_SUCCESS - if successfully initialized and allocated indexes structure
CRSP_FAIL - if error allocating memory, error in paramters

SiDe eFFeCtS: three levels of pointers are allocated in the indexes structure.
1 - object_element list elements are created for each wanted module
2 - object types are allocated for each object in wanted modules, and object level pointers are set
3 - arrays are allocated for each object, and array level pointers are set.
the setcode and wanted are stored in the structure.

preCONDitiONS: the crspnum must be known from a previous crsp_ind_open or crsp_openroot call. the setcode is an installation-defined
code for the set.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 130

crsp_ind_copy Copy Data from One Indexes Structure to Another

prOtOtYpe: int crsp_ind_copy (CRSP_IND_STRUCT *indtrg, CRSP_IND_STRUCT *indsrc, int wanted)

DeSCriptiON: Copy data from one indexes structure to another

arGUMeNtS: CRSP_IND_STRUCT *indtrg - pointer to indexes structure target
CRSP_IND_STRUCT *indsrc - pointer to indexes structure source
int wanted - wanted flag of modules to copy

retUrN vaLUeS: CRSP_SUCCESS - if successfully copied data from source to target
CRSP_FAIL - if incompatible structures

SiDe eFFeCtS: Data is copied from the source structure to the target structure. the loadflag field is used to identify all wanted modules to copy.

preCONDitiONS: Both structures must be allocated with crsp_ind_open. the wanted for the target must be a superset of the wanted in the source.
the versions of the structure must be compatible - the source modules must not have missing objects or higher maxarrs that the
counterparts in the target.

crsp_ind_delete Deletes a PERMNO from an Indexes Set

prOtOtYpe: int crsp_ind_delete (int crspnum, int setid, int key)

DeSCriptiON: Deletes a perMNO from an indexes set

arGUMeNtS: int crspnum - identifier of root
int setid - identifier of the set
int key - perMNO to erase from indexes set

retUrN vaLUeS: CRSP_SUCCESS - if successfully closed indexes set
CRSP_FAIL - if key not found, not found in set, not open for rewrite, or illegal parameter

SiDe eFFeCtS: if the perMNO is found in the set it is erased. all space allocated in the module file for this perMNO will be added to the free list for that
module. if the perMNO does not belong to any other modules, it will be erased from the index file and its address record placed on the address
file free list. Otherwise, the index file module flags will be reset and the address records for these indexes modules will be set to NULL

preCONDitiONS: the root and indexes set must be opened previously with crsp_ind_open. the open must use the rw mode.

crsp_ind_insert Adds a new PERMNO to an Indexes Set

prOtOtYpe: int crsp_ind_insert (int crspnum, int setid, int key, CRSP_IND_STRUCT *indptr, int wanted)

DeSCriptiON: adds a new perMNO to an indexes set

arGUMeNtS: int crspnum - crspdb identifier from open
int setid - the set identifier
int key - perMNO to identify the new issue
CRSP_IND_STRUCT *indptr - pointer to indexes structure, data that will be added to the wanted modules
int wanted - an indexes wanted parameter indicating which indexes data modules include data that will be saved.

retUrN vaLUeS: CRSP_SUCCESS - if successfully added
CRSP_FAIL - if bad parameters, crspdb and indnum not open for RW, perMNO already exists in this set.

SiDe eFFeCtS: Data for all modules will be added to the proper file. the free list is used to find a location in the module file and may be updated if free space
is used. if the key already exists but in different sets, the index file module flag is updated, and the new module addresses and sizes are
added to the address file. if the key is totally new, a new index file row and address file record are created.

preCONDitiONS: the indexes set must be opened previously with RW mode.

crsp_ind_modload Allocates a Module Structure, Loads a Module and Objects Information

prOtOtYpe: int crsp_ind_modload (int crspnum, int modindex, int modid, CRSP_CONFIG_MOD *modstruct)

DeSCriptiON: allocates a module structure and loads a module and objects information into it

arGUMeNtS: int crsp_num -

int modindex - the index of the module in the CRSP_MODTYPE structure array. int modid -
CRSP_CONFIG_MOD *modstruct - pointer to the CRSP_CONFIG_MOD structure

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 131

retUrN vaLUeS: CRSP_SUCCESS - if the module is loaded successfully
CRSP_FAIL - if bad parameters or error allocating and loading module structures

crsp_ind_newset Adds a Set of Indexes Modules to a crspdb

prOtOtYpe: int crsp_ind_newset (char *root, int setid, int wanted)

DeSCriptiON: adds a set of indexes modules to a crspdb

arGUMeNtS: char *root - path of existing crspdb root directory
int setid - known indexes set number from initialization file
int wanted - mask determining which indexes modules are supported in the set

retUrN vaLUeS: CRSP_SUCCESS - if the indexes set is added
CRSP_FAIL - if bad parameters or error manipulating root structures

SiDe eFFeCtS: crsp_ind_newset adds a set of indexes modules to an existing crspdb. it will add the information about the set to the configuration
file and recreate the address file with the new modules added to each record. empty data files for the modules will be created. if the
calendars are new to the root they will be added. the new modules will be assigned to the proper calendars.

preCONDitiONS: the root must exist and be unopened. it is created separately with the crsp_newroot function

crsp_ind_null Function to Zero Out the Index Structure Before it is Used

prOtOtYpe: int crsp_ind_NULL(CRSP_IND_STRUCT *indptr)

DeSCriptiON: Function to zero out the index structure before used

arGUMeNtS: CRSP_IND_STRUCT *indptr - pointer to stock structure

retUrN vaLUeS: CRSP_SUCCESS - if stock internals successfully initialized
CRSP_FAIL - if error opening or reading initialization file

SiDe eFFeCtS: the index structure will be set to zero according to the loadflag

crsp_ind_read_subset Loads Wanted Indexes Data for an INDNO Applying All Subsetting Filters

prOtOtYpe: int crsp_ind_read_subset (int crspnum, int setid, int *key, int keyflag, CRSP_IND_STRUCT

*indptr, int wanted, CRSP_IND_SUBSET_PARAMS *subpar)

DeSCriptiON: loads wanted indexes data for an iNDNO applying all subsetting filters

arGUMeNtS: int crspnum - crspdb root identifier returned by crsp_ind_open
int setid - the set identifier used in crsp_ind_open int *key - perMNO to load
int keyflag - positional qualifier or no match qualifier
CRSP_IND_STRUCT *indptr - structure to load data
int wanted - mask of flags indicating which module data to load
CRSP_IND_SUBSET_PARAMS *subpar - pointer to structure containing subsetting flags

retUrN vaLUeS: CRSP_SUCCESS - if data loaded successfully
CRSP_EOF - if next or previous key at end or beginning of file
CRSP_NOT_FOUND - if perMNO not found
CRSP_FAIL - if error with bad parameters, invalid or un opened crspnum and setid, error in read, impossible wanted, invalid iNDNO index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the structure. the data loaded in the module buffers may be
changed. the position for further reads will be set to the location of the read. Multiple iNDNOs may be loaded on a positional read if
subsetting totally eliminates iNDNOs that otherwise would be loaded.

preCONDitiONS: the indexes set must be previously opened. the setid and crspnum and indptr are the same as opened and the wanted must be a
subset of the wanted open. the subset parameter structure must be loaded with valid flags

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 132

crsp_ind_update Update Indexes Data for a Key

prOtOtYpe: int crsp_ind_update (int crspnum, int setid, int key, CRSP_IND_STRUCT *indptr, int wanted)

DeSCriptiON: Update indexes data for a key

arGUMeNtS: int crspnum - crspdb root identifier returned by crsp_ind_open
int setid - the set identifier used in crsp_ind_open
int key - specific perMNO of data to write
CRSP_IND_STRUCT *indptr - structure containing new data
int wanted - mask of flags indicating which module data to write

retUrN vaLUeS: CRSP_SUCCESS - if data written successfully
CRSP_FOUND_OTHER - if key found in root, but not for this set
CRSP_NOT_FOUND - if key not found in root
CRSP_FAIL - if error with bad parameters, invalid or unopened crspnum and indnum for rw, error in write, impossible wanted

SiDe eFFeCtS: Data from the wanted modules will be written to the proper locations in the module files. the address file may be updated for new offsets
and sizes. if the new data does not fit within the allocated space for that key in the module file the data may be moved to a new location and
the free list modified. the data loaded in the module buffers may be changed.

preCONDitiONS: the indexes set must be previously opened. the indnum and crspnum and indptr are the same as opened and thewanted must be a
subset of the wanted open.

crsp_ind_del_fromset Removes Modules from Index Set from a CRSP Root

prOtOtYpe: int crsp_ind_del_fromset (char *root, int setid, int wanted)

DeSCriptiON: removes modules from index set from a root

arGUMeNtS: char *root - path of crspdb root
int setid - identifier of the set
int wanted - binary code of modules wanted to delete

retUrN vaLUeS: CRSP_SUCCESS - if the ind modules are removed successfully
CRSP_FAIL - if something wrong

SiDe eFFeCtS: crsp_ind_del_fromset removes the wanted modules associated with a given index set from a crspdb root. all wanted modules
will be erased from the address file, which will be rewritten with a new restricted record length. the index file will also be rewritten, with keys
changed to new module inclusion flags or erased altogether. the configuration file will be rewritten without the modules included in the ind
set. Wanted module files of this set will be deleted. if all modules are deleted, delete and the set.

preCONDitiONS: will leave an unopened root

crsp_ind_add_toset Add modules to an existing Indexes set

prOtOtYpe: int crsp_ind_add_toset (char *root, int setid, int wanted)

DeSCriptiON: add modules to an existing stock set

arGUMeNtS: char *root - path of crspdb root
int setid - identifier of the set
int wanted - binary code of modules wanted

retUrN vaLUeS: CRSP_SUCCESS - if the stock set is removed
CRSP_FAIL - if bad parameters

crsp_ind_free_ind Function to free an Index structure

DeSCriptiON: Function to free an index structure

arGUMeNtS: CRSP_IND_STRUCT *INDptr - pointer to index structure to be freed
int free_flag - free only the array part or all

retUrN vaLUeS: CRSP_SUCCESS - if successfully initialized
CRSP_FAIL - if bad parameters

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 133

GeNeraL aCCeSS FUNCtiONSGeNeraL aCCeSS FUNCtiONS

The CRSPAccess general access functions include error functions and portable file operation functions.

FUNCtiON GrOUp DeSCriptiON paGe

error-handling the CrSpaccess function for handling errors produced by CrSp functions page 133

C portable File Operations these functions call standard i/O functions in the C run time library page 138

Error Handling

prOtOtYpe: int crsp_errprintf (va_list)

DeSCriptiON: Builds error messages using an installation-wide file of messages, and supports basic handling of the results.
each error message, including a mnemonic name and text description, is stored in a file in the CrSp initialization directory. a unique integer
error message number is assigned to each message. the function is passed a message number, an error number, flags for type of error
and handling output, plus optionally arguments on where the results are sent and variables to modify the error messages. the message
description is built into an output error message. if the error is from a system call, system error messages and error numbers can be
appended to this message. the message is then written to the location specified in the print flag.
there is a generic message available to users wishing to use the crsp_errprintf functionality and there are two environment variables users
can set to change the behavior of the error message function.
CRSP_TRACE – can be used to modify the output behavior of the function. the default behavior is to add only the formatted string to the
message output, and use the CrSp_NULL printflag option. if CrSp_traCe is defined it must have one or more of the following one-letter
codes in a string. each code present changes the output. the possible codes are:
m = CRSP_MSGNUMBER – add the message number to message output
e = CRSP_ERRNUMBER – add the error number to message output
n = CRSP_MSGNAME – add the message header name to message output
f = CRSP_MSGFORMAT – do not add formatted string to message output
s = CRSP_SEVERITY – add severity name to output
t = CRSP_ERRTYPE – add error type to output
c = CRSP_CALLTRACE – print call error type messages
o = CRSP_NULLOUT – overrides CRSP_NULL printflag option in library functions. print message directly to standard output
and clear errmsg
r = CRSP_NULLERR – overrides CRSP_NULL printflag option in library functions. print message directly to standard error and
clear errmsg
w = CRSP_NOWARN – warning messages are ignored
i = CRSP_NOINFO – informational messages are ignored
a = CRSP_NOFATAL – fatal messages are ignored
CRSP_MSGFILE – can be used to use messages from one or more alternate message files. if this environment variable is set to a
comma-delimited set of files, the function will search these files in order for messages. the message files must have a leading line with the
lowest and highest message numbers allowed in the file, followed by lines with three text fields delimited by pipes (|), containing in order
a message number, a header name, and a format string compatible with the C printf function. the message lines must be sorted by
message number. header names are limited to 20 characters, and the format cannot produce a string of more than 500 characters. Message
numbers must be 100,000 or higher to avoid possible conflict with standard CrSpaccess messages
the standard CrSp message file is named crsp_error_msg.dat. it is found in the directory set by environment variables $CrSp_LiB
on Unix, %crsp_lib% on windows, and CRSP_LIB: on OpenvMS. it can contain message numbers in the range of 1 to 99,999. if an
alternate message file contains a message number also in the CrSp message file, the alternate definition is used, and therefore must have a
compatible format.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 134

arGUMeNtS: variable argument list, including:
int errnum – number assigned to the specific error
int msgnum – number assigned to the specific message, must be defined in the error message file
int errorflag – flag for the type and severity of the error. it must be a constant of the following form:
CRSP_severity_type where severity is one of:
 INFO – informational
 WARN – warning
 FATAL – fatal
and type is one of:
 USER – error in user argument or usage
 SYS – error returned by a system or external function
 CALL – function call returned an error
 PRINT – print global error messages
int printflag – flag for the method of handling the output. it must be one of the following constants:
 CRSP_ERROUT_STDERR – write messages directly to standard error
 CRSP_ERROUT_STDOUT – write messages directly to standard output
 CRSP_ERROUT_FILE – write messages to a file pointer (previously opened with fopen) given in the next argument
 CRSP_ERROUT_STRING – write messages to string given in the next argument. the string must have enough space allocated
to store the message.
 CRSP_NULL – append messages to a global string err_msg. if messages extend past the length of the string, previously stored
messages are printed to the screen. this is used by all CrSp library functions.
FILE * errfileptr – optional argument present only if printflag is CRSP_ERROUT_FILE. if present, error messages are written
to this file. Errfileptr is the file handler returned by fopen.
char * msgstring – optional argument present only if printflag is CRSP_ERROUT_STRING. if present, error messages are
copied to the string
int msgstringlen – optional argument present only if printflag is CRSP_ERROUT_STRING. if present, msgstringlen is the
length allocated to msgstring.
… – list of variables to be embedded in the error message. there can be zero or more variables. there must be a one to one correspondence
between the number and types of variables in this list and the format string in the CrSp error message file for the specified msgnum.

retUrN vaLUeS: CRSP_SUCCESS: if error handled successfully
CRSP_FAIL: if error in parameters or in opening or reading the error message file

SiDe eFFeCtS: the crsp_init initialization function is called to initialize access. the crsp_error_msg.dat file in the initialization directory is
opened the first time the function is called and closed when the program exits.

preCONDitiONS: CrSp functions always place errors in a global string named err_msg. CrSp environment variables must be set properly so the file crsp_
error_msg.dat is found in the CRSP_LIB directory. See the description for optional environment variables that affect the results.

C Portable File Functions

These functions call standard I/O functions in the C run time library, but can be used on Windows, Unix, and Open- VMS

systems without changes and incorporate the CRSP error handling function.

FUNCtiON DeSCriptiON paGe
crsp_file_append generic file append for multiple platforms page 135
crsp_file_close generic file close for multiple platforms page 135
crsp_file_fopen generic file fopen for multiple platforms page 135
crsp_file_lseek generic file lseek for multiple platforms page 135
crsp_file_open generic file open for multiple platforms page 136
crsp_file_read generic file read for multiple platforms page 129
crsp_file_remove generic file delete for multiple platforms page 137
crsp_file_rename generic file rename for multiple platforms page 137
crsp_file_search generic check for existence of a file on multiple platforms page 137
crsp_file_stamp generic generation of a unique file name for multiple platforms page 141

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 135

FUNCtiON DeSCriptiON paGe
crsp_file_write generic file write for multiple platforms page 137
crsp_free generic memory free for multiple platforms page 138

crsp_file_append Generic File Append for Multiple Platforms

prOtOtYpe: int crsp_file_append (char *origfile, char *newfile)

DeSCriptiON: append a file by adding the data from the second file at the end of the first file

arGUMeNtS: char *origfile – pointer to the original file
char *newfile – pointer to the new file to be appended to the first file

retUrN vaLUeS: CRSP_SUCCESS: if appended successfully
CRSP_FAIL: error in parameters or error in open or write operation

SiDe eFFeCtS: both files are opened with fopen, data from the second file is copied to the first, and then both files are closed.

preCONDitiONS: both files must exist and contain character data with no records 500 characters or longer.

crsp_file_close Generic File Close for Multiple Platforms

prOtOtYpe: int crsp_file_close (int file_desc)

DeSCriptiON: calls the C close function

arGUMeNtS: int file_desc – file handler of file to close, as returned from open function

retUrN vaLUeS: CRSP_SUCCESS: if closed successfully
CRSP_FAIL: file not opened or error in close

SiDe eFFeCtS: file described by file_desc is closed

preCONDitiONS: file must be previously opened, with file_desc returned from open

crsp_file_fopen Generic File fopen for Multiple Platforms

prOtOtYpe: (FILE *)crsp_file_fopen (va_alist)

DeSCriptiON: platform-independent version of fopen with support for extra OpenvMS options

arGUMeNtS: variable argument list:
char *path – mandatory argument containing path of file to open
char *mode – mandatory argument containing mode passed to fopen, “r” to open read-only, “rw” to read and write. See
fopen for all options.
0-6 char *rmsflags – up to 6 optional rMS flags passed to fopen on OpenvMS systems, and ignored on other systems

retUrN vaLUeS: File pointer on success
NULL if error opening file

SiDe eFFeCtS: the file specified in the first parameter is opened. the default setting for OpenvMS systems is “mbc=127” unless overridden by one of the
rmsflags options.

preCONDitiONS: See C documentation on this function for more details

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 136

crsp_file_lseek Generic C lseek for Multiple Platforms

prOtOtYpe: int crsp_file_lseek (int file_desc, int offset, int direction)

DeSCriptiON: Generic file lseek for multiple platforms. this function positions a file to an arbitrary byte position and returns the new position.
parameters are passed directly to the C lseek function. See C documentation on this function for more details

arGUMeNtS: int file_desc – the file descriptor of the current file returned by C open
int offset – the offset specified in bytes
int direction – an integer measuring whether the offset is to be measured:
 forward from the beginning of the file (direction = SEEK_SET)
 forward from the current position (direction = SEEK_CUR)
 forward from the end of the file (direction = SEEK_END)

retUrN vaLUeS: the new file position if successful
CRSP_FAIL: error if file descriptor unidentified, or a seek was attempted before the beginning of the file.

SiDe eFFeCtS: the current position in the file is set for further operations

preCONDitiONS: file must be previously opened with the open function

crsp_file_open Generic C Open for Multiple Platforms

prOtOtYpe: int crsp_file_open (char *file_spec, int flags, unsigned int mode, int platflags, int pmode,

int allocate, int mbc, int extend)

DeSCriptiON: Generic file open for multiple platforms. parameters for OpenvMS, Unix, and windows versions are passed, and only the ones needed for the
current platform are passed to the C open function. See C documentation on this function for more details.

arGUMeNtS: char *file_spec – character string containing a valid file specification of a file to be opened.
int flags – flags for permitted usage of opened file
int mode – the file protection of a new file
int platflags – additional flags bitwise or’ed with flags if windows, ignored if another system
int pmode – additional protection modes or’ed with mode if windows, ignored if another system
int allocate – blocks to allocate for a new file on OpenvMS, ignored if another system
int mbc – block count per i/O on OpenvMS, ignored if another system
int extend – blocks to allocate if additional space is needed on OpenvMS, ignored if another system

retUrN vaLUeS: file descriptor if opened successfully, to be used in other file operations with this file
CRSP_FAIL: error if file could not be opened

SiDe eFFeCtS: the file is opened and the file pointer is returned for further access

preCONDitiONS: the file existence and protections must agree with flags and modes passed to open

crsp_file_read Generic C Read for Multiple Platforms

prOtOtYpe: int crsp_file_read (int file_desc, void *buffer, int nbytes)

DeSCriptiON: Generic file read for multiple platforms

arGUMeNtS: int file_desc – the file descriptor of the current file returned by C open
void *buffer – address of contiguous storage where data will be loaded
int nbytes – the maximum number of bytes to read

retUrN vaLUeS: the number of bytes read. the return value does not necessarily equal nbytes since the function does not read beyond the end of the file or
input terminal line
CRSP_FAIL: if error in parameters or read

SiDe eFFeCtS: the current position in the file is set to the end of the read

preCONDitiONS: file must be previously opened with the open function

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 137

crsp_file_remove Generic File Delete for Multiple Platforms

prOtOtYpe: int crsp_file_remove (char *file_spec)

DeSCriptiON: calls the C remove function to delete a file

arGUMeNtS: char *file_spec – specification of file to remove

retUrN vaLUeS: CRSP_SUCCESS: if removed successfully
CRSP_FAIL: error in parameters or error in remove operation

SiDe eFFeCtS: file is removed

preCONDitiONS: file must exist and user must have delete permissions

crsp_file_rename Generic File Rename for Multiple Platforms

prOtOtYpe: int crsp_file_rename (char *old_file_spec, char *new_file_spec)

DeSCriptiON: Calls the C rename function to change the name of a file

arGUMeNtS: char *old_file_spec – specification of the file to rename
char *new_file_spec – new specification of the file

retUrN vaLUeS: CRSP_SUCCESS: if renamed
CRSP_FAIL: error in parameters or error in file operation or permissions

SiDe eFFeCtS: the file is renamed

preCONDitiONS: the old file must exist, the second must be a valid specification, and the rename operation must be valid on the system between the two files.

crsp_file_search Generic Check for the Existence of a File

prOtOtYpe: int crsp_file_search (char *file_spec)

DeSCriptiON: Checks for the existence of a file

arGUMeNtS: char *file_spec – specification of file to check

retUrN vaLUeS: CRSP_SUCCESS: if the file exists
CRSP_FAIL: if the file does not exist or cannot be opened for read access

SiDe eFFeCtS: file is opened and closed

preCONDitiONS: file must have read permissions

crsp_file_stamp Create a Unique File Name

prOtOtYpe: char *crsp_file_stamp ()

DeSCriptiON: Creates a string that can be built into a unique file name based on system time and user iD. the string contains the process iD returned from
the C getpid function, an underscore, and the system time in seconds returned from the C time function.

arGUMeNtS: none

retUrN vaLUeS: pointer to a string with a file specification if successful

NULL: if failure getting system time or user iD

SiDe eFFeCtS: memory is allocated up to 80 characters to store the new file name

preCONDitiONS: none

crsp_file_write Generic C Write for Multiple Platforms

prOtOtYpe: int crsp_file_write (int file_desc, void *buffer, int nbytes)

DeSCriptiON: Generic file write for multiple platforms

arGUMeNtS: int file_desc – the file descriptor of the current file returned by C open
void *buffer – address of contiguous storage where data will be retrieved
int nbytes – the maximum number of bytes to write

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 138

retUrN vaLUeS: the number of bytes written.
CRSP_FAIL: if error in parameters or write

SiDe eFFeCtS: the current position in the file is set to the end of the written data

preCONDitiONS: file must be previously opened with the open function

crsp_free Generic Memory Free for Multiple Platforms

prOtOtYpe: int crsp_free (void *ptr)

DeSCriptiON: Calls the C free function

arGUMeNtS: void *ptr – pointer to the memory to be freed

retUrN vaLUeS: CRSP_SUCCESS: if successfully freed. always true on windows and Unix where C free function is void.
CRSP_FAIL: error freeing memory on OpenvMS systems

SiDe eFFeCtS: memory pointed to by ptr is deallocated

preCONDitiONS: none

GeNeraL UtiLitY FUNCtiONSGeNeraL UtiLitY FUNCtiONS

The utility functions operate on the base CRSPAccess data structures and are not specific to a type of data. They include

operations on calendars CRSP object structures and general utilities.

FUNCtiON GrOUp DeSCriptiON paGe

Calendar Utility Functions Functions used to manipulate CrSp calendars page 145

Calendar access Functions Functions used to access CrSp calendars page 141

Compare Functions Functions used to compare data in two structures page 151

Object Functions Functions used to manipulate base object structures page 145

String Functions Functions used to manipulate character strings page 156

C Structure Copy Functions Functions used to copy data from one like CrSpaccess structure to another page 152

C Structure Generic Clear Functions Functions used to load missing data to object structures page 154

Data to time Series Mapping Functions Functions used to map a subset of fields to a CRSP_TIMESERIES page 174

CrSpaccess C Database information Function Function used to retrieve information about a database page 155

Calendar Utility Functions

These functions are used to manipulate calendar data in CRSPAccess databases.

FUNCtiON DeSCriptiON paGe
crsp_cal_datecmp CaLDt Date Search page 138
crsp_cal_dt2lin transforms YYYYMMDD Format into Linear Date page 146
crsp_cal_dt2parts Separates the YYYYMMDD Format into Year, Month and Day page 145
crsp_cal_lin2dt transfers Linear Date into YYYYMMDD Format page 139
crsp_cal_middt Finds the Mid-point Date of a range page 139
crsp_cal_diffdays Finds the Number of Calendar Days Between two Dates page 139
crsp_cal_link Creates a Link to Map periods of two Calendars page 140
crsp_cal_search Generic Calendar Date Search page 140
crsp_cal_incr increments an integer Date to the Next Date page 148
crsp_cal_decr Decrements an integer Date to the previous Date page 141

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 139

crsp_cal_datecmp CALDT Date Search

prOtOtYpe: int crsp_cal_datecmp (int *calelem, int *caldates, int beg, int end, int flag)

DeSCriptiON: Searches for an array of caldates to find the matching date for calelem and return the array index.

arGUMeNtS: int *calelem – pointer to the date in YYYYMMDD format
int *caldates – pointer to the array of calendar dates, usually the caldt pointer in a CRSP_CAL structure
int beg – index of the first calendar date range in the first calendar dates array, usually 1
int end – index of the last calendar date in the last calendar dates array, usually the ndays element of the CRSP_CAL structure
int flag – flag for handling inexact matches (see crsp_cal_search)

retUrN vaLUeS: index of date found if a date found according to flag
CRSP_FAIL: if not acceptable match according to flag

SiDe eFFeCtS: none

crsp_cal_dt2lin Transforms YYYYMMDD Format into Linear Date

prOtOtYpe: int crsp_cal_dt2lin (int idate)

DeSCriptiON: transforms the YYYYMMDD format of date into a linear date (number of days since 19000101)

arGUMeNtS: int idate – date to be transformed

retUrN vaLUeS: linear date
CRSP_FAIL: if error

SiDe eFFeCtS: none

crsp_cal_dt2parts Separates the YYYYMMDD Format into Year, Month, and Day

prOtOtYpe: void crsp_cal_dt2parts (int idate, int *year, int *month, int *day)

DeSCriptiON: Separates the YYYYMMDD formatted date into year, month, day.

arGUMeNtS: int idate – date to be separated
int *year – pointer to be loaded with YYYY year
int *month – pointer to be loaded with MM month
int *day – pointer to be loaded with DD day

retUrN vaLUeS: none

crsp_cal_lin2dt Transfers Linear Dates into YYYYMMDD Format

prOtOtYpe: int crsp_cal_lin2dt (int linear_date)

DeSCriptiON: transfers the linear date (number of days since 19000101) into YYYYMMDD format date.

arGUMeNtS: int linear_date – the date in linear format

retUrN vaLUeS: translated YYYYMMDD date
CRSP_FAIL: if error

SiDe eFFeCtS: None

crsp_cal_middt Finds the Mid-Point Date of a Range

prOtOtYpe: int crsp_cal_middt (int idate1, int idate2)

DeSCriptiON: Finds a date in the middle of first date and second date

arGUMeNtS: int idate1 – first date, in YYYYMMDD format
int idate2 – second date, in YYYYMMDD format

retUrN vaLUeS: middt: middle date between idate1 and idate2
CRSP_FAIL: if error

SiDe eFFeCtS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 140

crsp_cal_diffdays Finds the Number of Calendar Days Between Two Dates

prOtOtYpe: int crsp_cal_diffdays (int idate1, int idate2)

DeSCriptiON: Finds the number of days between two YYYYMMDD dates

arGUMeNtS: int idate1 – the first date
int idate2 – the end date

retUrN vaLUeS: number of days
CRSP_FAIL: if error

SiDe eFFeCtS: none

 crsp_cal_link Maps from One Calendar to Another

prOtOtYpe: int crsp_cal_link (CRSP_CAL *calbase, CRSP_CAL *calsub, int wanted, int flag)

DeSCriptiON: Finds mapping between a base and subset calendar. the map will have each period in the subset calendar in terms of period index ranges of
the base.

arGUMeNtS: CRSP_CAL *calbase – pointer to base calendar structure
CRSP_CAL *calsub – pointer to subset calendar structure
int wanted – the type of calendar period identification to link in the source calendar. possible values are:
 CAL_TYPE_ID – wanted callist
 CAL_TYPE_DATE – wanted caldt
 CAL_TYPE_DATERANGE – wanted date range
 CAL_TYPE_TIME – wanted date + time
 CAL_TYPE_TIMERANGE – wanted date range + time
int flags – flags for mapping when subset date/range is not applicable to the base. possible values are:
 CRSP_CAL_EXACT – (= 0) non-exact matches are not mapped
 CRSP_CAL_BACK – (= -1) if not found use previous
 CRSP_CAL_NEXT – (=-1) if not found use next

retUrN vaLUeS: CRSP_SUCCESS: calmap successfully loaded
CRSP_FAIL: error

SiDe eFFeCtS: this function allocates space for the calmap CRSP_CAL structure element. it loops through calsub and for each date, finds the cal
index at calbase for the same date and stores them in calsub->calmap. the calsub basecal pointer is set to basecal.

crsp_cal_search Date Range Search

prOtOtYpe: int crsp_cal_search (CRSP_CAL *cal, int wanted, void *calelem, int flag, int rangeflag)

DeSCriptiON: Finds the relevant calendar index number for a given calendar period. the element type may be any of the types supported by CRSP_CAL.
crsp_cal_search will use only the calendar type that matches the element type. the flag is used depending on type to handle inexact
matches.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 141

arGUMeNtS: CRSP_CAL *cal – pointer to the calendar structure to search
int wanted – type of calendar element that will be located, one of:
 CAL_TYPE_ID (1) = callist
 CAL_TYPE_DATE (2) = caldt
 CAL_TYPE_DATERANGE (4) = date range
 CAL_TYPE_TIME (8) = date and time
 CAL_TYPE_TIMERANGE (16) = date+time range
int calelem – calendar element to find. this is a pointer to a structure that must agree with the wanted parameter, either an int for
CAL_TYPE_ID or CAL_TYPE_DATE or, a CRSP_CAL_TIME, a CRSP_CAL_DATERANGE, or a CRSP_CAL_TIMERANGE structure.
int flag – flag for handling inexact matches –
 CRSP_CAL_EXACT (0) – only exact matches are acceptable
 CRSP_CAL_BACK (-1) – if not found use previous
 CRSP_CAL_NEXT (1) – if not found use next
int rangeflag – option if calendar type and elements are date or time ranges:
 0 = not applicable
 1 = use beginning of ranges
 2 = use end of range
 3 = use middle of beginning and end

retUrN vaLUeS: index of date if a date found according to flag
CRSP_NOMATCH if no acceptable match according to flag
CRSP_FAIL if invalid flag or data variable

SiDe eFFeCtS: none

crsp_cal_incr Increments an Integer Date to the Next Date

prOtOtYpe: int crsp_cal_incr (int_date)

DeSCriptiON: increments an integer date to the next date

arGUMeNtS: int date - date increment must be in YYYYMMDD format, a 0, or 99999999.

retUrN vaLUeS: the next integer date in YYYYMMDD format. if date was 0 or 99999999, that value is returned.

SiDe eFFeCtS: none

crsp_cal_decr Decrements an Integer Date to the Previous Date

prOtOtYpe: int crsp_cal_decr (int_date)

DeSCriptiON: Decrements an integer date to the previous date

arGUMeNtS: int date - date decrement must be in YYYYMMDD format, a 0, or 99999999.

retUrN vaLUeS: the previous integer date in YYYYMMDD format. if date was 0 or 99999999, that value is returned.

SiDe eFFeCtS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 142

Calendar Access Functions

These functions can be used to load stock data with additional options.

FUNCtiON DeSCriptiON paGe

crsp_obj_copy_cal Copy data from one CrSp calendar structure to another page 142

crsp_obj_free_cal Free memory allocated for a CrSp calendar structure page 147

crsp_obj_init_cal initialize and allocate a CrSp calendar structure page 143

crsp_cal_load Load a calendar available in a CrSpaccess database page 143

crsp_obj_copy_cal Copies a CRSP Calendar Structure

prOtOtYpe: int crsp_obj_copy_cal (CRSP_CAL *trgcal, CRSP_CAL *srccal, int caltype, int appendflag, int

begind, int endind)

DeSCriptiON: Copies a CrSp calendar structure. Can be used to copy all calendar fields or just selected period arrays over a selected range.

arGUMeNtS: CRSP_CAL *trgcal – pointer to target calendar structure to load.
CRSP_CAL *srccal – pointer to source calendar structure.
int caltype – integer binary code indicating which calendar types to copy. the sum of codes can be used to all copy multiple types.
the codes are:
 CRSP_CAL_ID (=1) – calendar list
 CRSP_CAL_DATE (=2) – calendar dates
 CRSP_CAL_DATERANGE (=4) – calendar range
 CRSP_CAL_TIME(=8) – times
 CRSP_CAL_TIMERANGE (=16) – time range
int appendflag – integer code determining whether to overlay new data or copy the entire structure. valid code values are:
 CRSP_COPY_RESET. -the source calendar is copied entirely to the target. all header fields are copied directly and all calendar
types selected are copied directly
 CRSP_COPY_OVERLAY – Only the period arrays selected are copied to the target calendar
int begind – index of first calendar period to copy
int endind – index of second calendar period to copy

retUrN vaLUeS: CRSP_SUCCESS: if the target calendar is loaded successfully.
CRSP_FAIL: if bad parameters on incompatible calendars.

SiDe eFFeCtS: Data are copied to the target calendar according to parameters. No memory is allocated. Calmap and callink data are not copied.

preCONDitiONS: Memory must be allocated for all selected caltype fields in the target calendar. the target maxarr must be greater than or equal to the
source maxarr. if CRSP_COPY_OVERLAY is used and the loadflag is not 0, the ndays must agree.

crsp_obj_free_cal Frees a CRSP Calendar Structure

prOtOtYpe: int crsp_obj_free_cal (CRSP_CAL **calptr, int free_flag)

DeSCriptiON: Frees memory allocated for a CrSp calendar structure. Can be used to free memory allocated to period arrays or the entire structure.

arGUMeNtS: CRSP_CAL **calptr – pointer to pointer to calendar pointer to free.
int free_flag – integer code indicating which parts of the structure to free. valid code values are:
 CRSP_FREE_ARR_ONLY (=0) – free only period arrays in the calendar structure.
 CRSP_FREE_OBJ_ALL (=1) – free all periods and the structure itself

retUrN vaLUeS: CRSP_SUCCESS: if the desired arrays are freed successfully.
CRSP_FAIL: if wrong structure type, error freeing memory, or invalid flags

SiDe eFFeCtS: all calendar period types allocated are freed, and arrtype and maxarr are set to 0. if the calmap pointer is not NULL it is also freed.
if free_flag is CRSP_OBJ_FREE_ALL, the structure itself is freed. all freed pointers are set to NULL. if calptr is initially NULL the
function does nothing and returns CRSP_SUCCESS.

preCONDitiONS: calptr must be either NULL or point to a pointer to a calendar structure with accurate loadflag settings. the calmap pointer must be
NULL if never allocated. Never use this function on a calendar allocated directly with a CrSpaccess open function.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 143

crsp_obj_init_cal Initializes a CRSP Calendar Structure

prOtOtYpe: int crsp_obj_init_cal (CRSP_CAL **calptr, int maxarr, int caltype, int initflag)

DeSCriptiON: initializes a CrSp calendar structure. Can be used to allocate the structure itself, allocate calendar period type arrays, and initialize values
within the structure.

arGUMeNtS: CRSP_CAL **calptr – pointer to pointer to calendar structure pointer to initialize.
int maxarr – number of periods to allocate in each calendar type array.
int caltype – integer binary code indicating which calendar types to allocate. the sum of codes can be used to allocate multiple types.
the codes are
CRSP_CAL_ID (=1) – calendar list
CRSP_CAL_DATE (=2) – calendar dates
CRSP_CAL_DATERANGE (=4) – calendar range
CRSP_CAL_TIME(=8) – times
CRSP_CAL_TIMERANGE (=16) – time range
int initflag – integer code determining the type of initialization. valid code values are:
CRSP_CLEAR_INIT (=1) – initialize all fields in the structure
CRSP_CLEAR_RANGE (=2) – add additional calendar types to the loaded structures only

retUrN vaLUeS: CRSP_SUCCESS: if the structure is initialized and desired arrays are allocated successfully.
CRSP_FAIL: if bad parameters, error allocating memory, or inconsistent maxarr

SiDe eFFeCtS: if calptr is initially NULL, it is allocated for maxarr periods with all wanted caltypes. if calptr is already allocated, the behavior
is determined by initflag. if initflag is CRSP_CLEAR_INIT, all fields are initialized and wanted caltypes are allocated. any previous
information is overwritten. if initflag is CRSP_CLEAR_RANGE, only wanted caltypes not already loaded are allocated. Loadflag is
set to reflect the allocated period types.

preCONDitiONS: calptr must be either NULL or point to a pointer to a calendar structure with accurate loadflag settings.

crsp_cal_load Loads an Existing Calendar

prOtOtYpe: CRSP_CAL * crsp_cal_load(int crspnum, int calid, int loadflag)

DeSCriptiON: returns a pointer to a CrSpaccess calendar available in a database. the database must be previously opened with one of the crsp_
stk_open, or crsp_ind_open, or crsp_cst_open functions. all time series accessed in a set automatically have their matching
calendars loaded, so this function is only needed to access a calendar not already available in the set.

arGUMeNtS: int crspnum – database handle returned by a CrSpaccess open function
int calid – identifier of the calendar. Currently available calendars are:
100 (CRSP_CALID_DAILY) = CrSp Daily Stock Calendar
101 (CRSP_CALID_MONTHLY) = CrSp Monthly Stock Calendar
300 (CRSP_CALID_ANNUAL) = CrSp annual Stock Calendar
310 (CRSP_CALID_QUARTERLY) = CrSp Quarterly Stock Calendar
500 (CRSP_CALID_WEEKLY) = CrSp weekly Stock Calendar

int loadflag – the types of calendar period data to load. values can be added to load multiple types:
1 (CAL_TYPE_ID) = Calendar iD Lists
2 (CAL_TYPE_DATE) = Calendar Dates (yyyymmdd)
4 (CAL_TYPE_DATERNG = Calendar Date ranges
8 (CAL_TYPE_TIME) = Calendar Date and time
16 (CAL_TYPE_TIMERNG) = Calendar Date and time ranges

retUrN vaLUeS: a pointer to a loaded calendar: if successful. the calendar found is shared by all time series of that frequency in the database. if changing
values in the calendar, use crsp_obj_init_cal and crsp_obj_copy_cal to make a local copy.
NULL: if bad parameter, unopened database, or unknown calid

SiDe eFFeCtS: the calendar header data and requested calendar period arrays are allocated and loaded only if the calendar is not loaded already.
Loadflag in the calendar structure is changed if additional data is loaded.

preCONDitiONS: the database must be opened with a CrSpaccess open function and the calid must be present in the database.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 144

Compare Functions

These functions are used to compare data.

crsp_cmp_int Compares Two Integers

prOtOtYpe: int crsp_cmp_int(const void *elem1, const void *elem2)

DeSCriptiON: Compares two integers. Can be used as input functions to C search and sort functions.

arGUMeNtS: const void* – elem1 – pointer to the first element
const void* – elem2 – pointer to the second element

retUrN vaLUeS: int: <0 if elem1 < elem2, 0 if elem1 = elem2,>1 if elem1 > elem2. Based on standard integer comparisons

crsp_cmp_string Compares Two Strings

prOtOtYpe: int crsp_cmp_string(const void *elem1, const void *elem2)

DeSCriptiON: Compares two strings. Can be used as input functions to C search and sort functions.

arGUMeNtS: const void* – elem1 – pointer to the first terminated string

const void* – elem2 – pointer to the second terminated string

retUrN vaLUeS: int: <0 if elem1 < elem2, 0 if elem1 = elem2, >1 if elem1 > elem2. Based on standard string comparisons

CRSP Object Functions

These functions are used to manipulate base CRSPAccess object structures.

FUNCtiON DeSCriptiON paGe
crsp_obj_verify_ts verifies a CrSp time Series Object page 144

crsp_obj_verify_arr verifies a CrSp array Object page 145
crsp_obj_verify_row verifies a CrSp row Object page 145
crsp_obj_init_ts initializes a CrSp time Series Object page 150
crsp_obj_init_arr initializes a CrSp array Object page 146
crsp_obj_init_row initializes a CrSp row Object page 146
crsp_obj_comp_ts Compares two CrSp time Series Objects page 151
crsp_obj_comp_arr Compares two CrSp array Objects page 151
crsp_obj_comp_row Compares two CrSp row Objects page 147
crsp_obj_free_ts Frees a CrSp time Series Object page 147
crsp_obj_free_arr Frees a CrSp array Object page 155
crsp_obj_free_row Frees a CrSp row Object page 148
crsp_obj_free Frees a CrSp Object element Link List page 148

crsp_obj_verify_ts Verifies a CRSP Time Series Object

prOtOtYpe: int crsp_obj_verify_ts(CRSP_TIMESERIES *ptr, int arrtype, int subtype, int maxarr, int

caltypes)

DeSCriptiON: verifies a time series object, by comparing array type, size, calendar, and data characteristics against expected values

arGUMeNtS: CRSP_TIMESERIES *ptr – pointer to a CrSp time series object
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array
int caltype – expected calendar type in the time series

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 145

retUrN vaLUeS: CRSP_SUCCESS: if verification is correct
1251: object type does not verify in CRSP_TIMESERIES structures
1252: array type does not verify in time series
1253: subtype does not verify in time series
1254: maxarr does not verify in time series
1255: caltype does not verify in time series
1256: beg and end do not verify in time series
1257: end cannot be greater than maxarr in time series 1
258: cal pointer cannot be NULL in time series
1259: ndays cannot be greater than maxarr in time series
1260: arr pointer cannot be NULL in time series

crsp_obj_verify_arr Verifies a CRSP Array Object

prOtOtYpe: int crsp_obj_verify_arr (CRSP_ARRAY *crsp_array_ptr, int arrtype, int subtype, int maxarr)

DeSCriptiON: verifies a CrSp array object, by comparing array type, size, and data characteristics against expected values

arGUMeNtS: CRSP_ARRAY *crsp_array_ptr – pointer to a CrSp array object
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array

retUrN vaLUeS: CRSP_SUCCESS: if verification is correct
1271:object type does not verify in CRSP_ARRAY
1272: array type does not verify in CRSP_ARRAY
1273: subtype does not verify in CRSP_ARRAY
1274: maxarr does not verify in CRSP_ARRAY
1275: num cannot be greater than maxarr in CRSP_ARRAY
1276: arr pointer cannot be NULL in CRSP_ARRAY

crsp_obj_verify_row Verifies a CRSP Row Object

prOtOtYpe: int crsp_obj_verify_row (CRSP_ROW *crsp_row_ptr, int arrtype, int subtype)

DeSCriptiON: verifies a CrSp row object, by comparing array type and data characteristics against expected values

arGUMeNtS: CRSP_ROW *crsp_row_ptr – pointer to a CrSp row object to verify
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h

retUrN vaLUeS: CRSP_SUCCESS: if verification is correct
1282: object type does not verify in CRSP_ROW
1283: array type does not verify in CRSP_ROW
1284: subtype does not verify in CRSP_ROW
1285: arr pointer cannot be NULL in CRSP_ROW

crsp_obj_init_ts Initializes a CRSP Time Series Object

prOtOtYpe: int crsp_obj_init_ts (CRSP_TIMESERIES **crsp_timser_ptr, int arrtype, int subtype, int

maxarr, int caltype, int size_of_array, CRSP_CAL *calptr, void *init_ptr

DeSCriptiON: initializes a time series object. if the crsp_timeser_ptr pointer passed is NULL, the function allocates space for the object. if the array
within the object is not allocated, the function allocates space for the array. Object header values are set and the calendar is attached to the
time series. each element in the object’s array is initialized with the value in init_ptr.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 146

arGUMeNtS: CRSP_TIMESERIES **crsp_timser_ptr – pointer to a CrSp time series pointer
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array
int caltype – calendar type to allocate, =2 for caldts
int size_of_array – size of the structure for each array element
CRSP_CAL *calptr – pointer to a calendar that will be attached to the time series object
void *init_ptr – a pointer to a structure of size size_of_array with missing values to load to each element in the array. Can be NULL.

retUrN vaLUeS: CRSP_SUCCESS: if successfully initialized and space allocated
CRSP_FAIL: if error allocating memory, error in parameters

crsp_obj_init_arr Initializes a CRSP Array Object

prOtOtYpe: int crsp_obj_init_arr(CRSP_ARRAY **crsp_array_ptr, int arrtype, int subtype, int maxarr,

int size_of_array, void *init_ptr)

DeSCriptiON: initializes an array object. if the crsp_array_ptr pointer passed is NULL, the function allocates space for the object. if the array within
the object is not allocated, the function allocates space for the array. Object header values are set and each element in the object’s array is
initialized with the value in init_ptr.

arGUMeNtS: CRSP_ARRAY **crsp_array_ptr – pointer to a CrSp array structure pointer
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int maxarr – maximum elements in the array
int size_of_array – size of the structure for each array element
void *init_ptr – a pointer to a structure of size size_of_array with missing values to load to each element in the array. Can be
NULL.

retUrN vaLUeS: CRSP_SUCCESS: if successfully initialized and space allocated
CRSP_FAIL: if error allocating memory, error in parameters

crsp_obj_init_row Initializes a CRSP Row Object

prOtOtYpe: int crsp_obj_init_row(CRSP_ROW **crsp_row_ptr, int arrtype, int subtype, int size_of_array,

void *init_ptr)

DeSCriptiON: initializes a row object. if the crsp_row_ptr pointer passed is NULL, the function allocates space for the object. if the array within the
object is not allocated, the function allocates space for the array. Object header values are set and the object’s array element is initialized
with the value in init_ptr.

arGUMeNtS: CRSP_ROW **crsp_row_ptr – pointer to a CrSp row pointer
int arrtype – constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype – constant for the subcategory of data in the array. Constants are defined in crsp_const.h
int size_of_array – size of the structure for the array element
void *init_ptr – a pointer to a structure of size size_of_array with missing values to load to the row. Can be NULL.

retUrN vaLUeS: CRSP_SUCCESS: if successfully initialized and space allocated
CRSP_FAIL: if error allocating memory, error in parameters

crsp_obj_comp_ts Compares Two CRSP Time Series Objects

prOtOtYpe: int crsp_obj_comp_ts(CRSP_TIMESERIES *crsp_timser_ptr1, CRSP_TIMESERIES *crsp_timser_ptr2

)

DeSCriptiON: Compares two time series objects, by comparing array types, data characteristics, array sizes, and associated calendars

arGUMeNtS: CRSP_TIMESERIES *crsp_timser_ptr1

CRSP_TIMESERIES *crsp_timser_ptr2

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 147

retUrN vaLUeS: CRSP_SUCCESS: if comparison is correct
1261: the two CRSP_TIMESERIES have different object types
1262: the two CRSP_TIMESERIES have different array types
1263: the two CRSP_TIMESERIES have different subtypes
1264: the two CRSP_TIMESERIES have different array widths
1265: the two CRSP_TIMESERIES have different maximum arrays
1266: the two CRSP_TIMESERIES have different calendar types
1267: the two CRSP_TIMESERIES calendar pointers do not compare

crsp_obj_comp_arr Compares Two CRSP Array Objects

prOtOtYpe: int crsp_obj_comp_arr(CRSP_ARRAY *crsp_array_ptr1, CRSP_ARRAY *crsp_array_ptr2)

DeSCriptiON: Compares two CRSP_ARRAY objects, by comparing data array type, size, and data characteristics

arGUMeNtS: CRSP_ARRAY *crsp_array_ptr1

CRSP_ARRAY *crsp_array_ptr2

retUrN vaLUeS: CRSP_SUCCESS: if array objects match
1277: the two CRSP_ARRAYs have different object types
1278: the two CRSP_ARRAYs have different array types
1279: the two CRSP_ARRAYs have different subtypes
1280: the two CRSP_ARRAYs have different array widths
1281: the two CRSP_ARRAYs have different maximum array types

crsp_obj_comp_row Compares Two CRSP Row Objects

prOtOtYpe: int crsp_obj_comp_row(CRSP_ROW *crsp_row_ptr1, CRSP_ROW *crsp_row_ptr2)

DeSCriptiON: Compares two CrSp row objects, by comparing data array type and data characteristics

arGUMeNtS: CRSP_ROW *crsp_row_ptr1

CRSP_ROW *crsp_row_ptr2

retUrN vaLUeS: CRSP_SUCCESS: if row objects match
1286: the two CRSP_ROW objects have different object types
1287: the two CRSP_ROW objects have different array types
1288: the two CRSP_ROW objects have different subtypes
1289: the two CRSP_ROW objects have different array widths

crsp_obj_free_ts Frees a CRSP Time Series Object

prOtOtYpe: int crsp_obj_free_ts (CRSP_TIMESERIES **crsp timeser_ptr, int free_flag)

DeSCriptiON: Frees a CrSp time series object by deallocating memory for just the data array or the entire object

arGUMeNtS: CRSP_TIMESERIES **crsp_timser_ptr – points to a CrSp time series object pointer
int free_flag – frees only the arr part or all. valid values to be freed are:
CRSP_FREE_ARR_ONLY

CRSP_FREE_OBJ_ALL

retUrN vaLUeS: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

SiDe eFFeCtS: Frees part or whole of the CRSP_TIMESERIES, depending on the free_flag set.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 148

crsp_obj_free_arr Frees a CRSP Array Object

prOtOtYpe: int crsp_obj_free_arr(CRSP_ARRAY **crsp_array_ptr, int free_flag)

DeSCriptiON: Frees a CrSp array object by deallocating memory for just the data array or the entire object

arGUMeNtS: CRSP_ARRAY **crsp_array_ptr – points to a CrSp array object pointer
int free_flag – frees only the arr part or all. valid values to be freed are:
CRSP_FREE_ARR_ONLY

CRSP_FREE_OBJ_ALL

retUrN vaLUeS: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

SiDe eFFeCtS: Frees part or whole of the CRSP_ARRAY, depending on the free_flag set.

crsp_obj_free_row Frees a CRSP Row Object

prOtOtYpe: int crsp_obj_free_row(CRSP_ROW **crsp_row_ptr, int free_flag)

DeSCriptiON: Frees a CrSp row object by deallocating memory for just the data array or the entire object

arGUMeNtS: CRSP_ROW **crsp_row_ptr – points to a CrSp row object pointer
int free_flag – frees only the arr part or all. valid values to be freed are:
CRSP_FREE_ARR_ONLY

CRSP_FREE_OBJ_ALL

retUrN vaLUeS: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

SiDe eFFeCtS: Frees part or whole of the CRSP_ROW, depending on the free_flag set.

crsp_obj_free Frees a CRSP Object Element Link List

prOtOtYpe: CRSP_OBJECT_ELEMENT *objlist

DeSCriptiON: Frees a CrSp object element link list.

arGUMeNtS: CRSP_OBJECT_ELEMENT *objlist - object element list pointer

retUrN vaLUeS: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if free fails

String Functions

These functions can be used to manipulate strings.

FUNCtiON DeSCriptiON paGe
crsp_util_convtype Converts CrSp Constant Names to integers page 153
crsp_util_lowercase Converts Strings to all Lowercase Letters page 149
crsp_util_strtrim removes trailing Blanks from Strings page 157
crsp_util_uppercase Converts Strings to all Uppercase Letters page 149
crsp_util_squeeze removes white Space from Character Strings page 149
crsp_util_strtoken Locates the First Delimiter in a String page 150
crsp_util_cvt_date_mmddyy_i Converts Character Date String YYMMDD into a Y-2K Compliant Date page 150
crsp_util_cvt_t_i Converts a text String to an integer page 150
crsp_util_cvt_t_l Converts a Numeric text String into a Long integer page 150
crsp_util_cvt_t_f Converts a text String to a Floating point Number page 164
crsp_util_cvt_t_d Converts a text String to a Double Floating point Number page 157
crsp_util_cvt_cdate_i Convert a Character Date String into an integer page 154

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 149

FUNCtiON DeSCriptiON paGe
crsp_util_cvt_i_cdate Convert integer Date to Character Date String page 158
crsp_util_cvt_i_ingdate Convert an integer Date (YYYYMMDD) into an Date-Field-Compatible Character String Date page 152

crsp_util_convtype Converts CRSP Constant Names to Integers

prOtOtYpe: int crsp_util_convtype (char *typestring)

DeSCriptiON: converts a CrSp constant name string to an integer. all CrSp defined _NUM constants defined in crsp_const.h are supported.

arGUMeNtS: char * typename – string to convert

retUrN vaLUeS: integer code found
CRSP_FAIL: if string not supported

SiDe eFFeCtS: none

preCONDitiONS: none

crsp_util_lowercase Converts Strings to All Lowercase Letters

prOtOtYpe: void crsp_util_lowercase (char *string)

DeSCriptiON: converts a string to all lowercase letters.

arGUMeNtS: char *string – string to convert

retUrN vaLUeS: none

SiDe eFFeCtS: string may be changed. if the string is a string of spaces, the routine leaves one leading space.

preCONDitiONS: string must be a NULL-terminated character string

crsp_util_strtrim Removes Trailing Blanks From Strings

prOtOtYpe: void crsp_util_strtrim (char *string)

DeSCriptiON: converts a string by moving the string termination to after the last nonblank character.

arGUMeNtS: char *string – string to convert

retUrN vaLUeS: none

SiDe eFFeCtS: string may be changed

preCONDitiONS: string must be a NULL-terminated character string

crsp_util_uppercase Converts Strings to All Uppercase Letters

prOtOtYpe: void crsp_util_uppercase (char *string)

DeSCriptiON: converts a string to all uppercase letters.

arGUMeNtS: char *string – string to convert

retUrN vaLUeS: none

SiDe eFFeCtS: string may be changed

preCONDitiONS: string must be a NULL-terminated character string

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 150

crsp_util_squeeze Removes White Space from Character Strings

prOtOtYpe: int crsp_stk_clear (CRSP_STK_STRUCT *stk, int clearflag)

DeSCriptiON: converts a string by removing white space. all leading and trailing tabs or spaces are removed, and multiple tabs and spaces are replaced
with a single space.

arGUMeNtS: char *string – string to convert
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset num
CRSP_CLEAR_ALL – set num to 0 and set missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for all array elements between 0 and num-1
CRSP_CLEAR_SET – set ranges in the maxarr-1’th element of the CRSP_ARRAY to missing values specific to the array type.

retUrN vaLUeS: none

SiDe eFFeCtS: string may be changed

preCONDitiONS: string must be a NULL-terminated character string

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to a stock structure pointer to be cleared

crsp_util_strtoken Locates the First Delimiter in a String

prOtOtYpe: char * crsp_util_strtoken(char *ptr, char *delimiters)

DeSCriptiON: Locate the first delimiter in a string. Find the first terminator character, replace that character with a NULL and update the pointer to the
remaining string. Unlike the standard library function, strtok, this function can handle consecutive delimiters.

arGUMeNtS: char *ptr - string to parse

char *delimiters - delimiter characters in a string

retUrN vaLUeS: pointer to the remainder of the string, or NULL if no delimiter character was found

SiDe eFFeCtS: string may be changed

preCONDitiONS: strings must be NULL terminated character strings

crsp_util_cvt_date_mmddyy_i Converts Character Date String YYMMDD into a Y-2K Compliant Date

prOtOtYpe: int crsp_util_cvt_date_mmddyy_i(char *text_ptr, int *date_value)

DeSCriptiON: Converts a character date string of the format YYMMDD into a year 2000 compliant integer based on a 1950 cutoff. Year values < 50 are
assumed to be +2000.

arGUMeNtS: char *text_ptr - string to convert
int *date_value - pointer to location into which will be put the integer value

retUrN vaLUeS: CRSP_SUCCESS Normal successful completion
CRSP_FAIL One or more fields could not be converted to integer values

SiDe eFFeCtS: date value is loaded

crsp_util_cvt_t_i_ Converts a Text String to an Integer

prOtOtYpe: int crsp_util_cvt_t_i(char *text, int text_size, int *output)

DeSCriptiON: Convert a text string to an integer. Cannot convert a string larger than 11 characters. the string is assumed to NOt be NULL terminated.

arGUMeNtS: char *text - pointer to integer string
int text_size - Number of digits to convert
int *output - pointer to location into which is written the results of the conversion

retUrN vaLUeS: CRSP_SUCCESS - Normal successful completion
anything else - system error, no value
ERANGE - Number is too big to convert

SiDe eFFeCtS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 151

crsp_util_cvt_t_l Converts a Numeric Text String into a Long Integer

prOtOtYpe: int crsp_util_cvt_t_l(char *text, int text_size, long *output)

DeSCriptiON: Converts a numeric text string into a long integer

arGUMeNtS: char *text - pointer to integer string
int text_size - Number of digits to convert

int *output - pointer to long integer location into which is written the results of the conversion

retUrN vaLUeS: CRSP_SUCCESS - Normal successful completion
anything else - system error, no value
ERANGE - Number is too big to convert

SiDe eFFeCtS: output is loaded

preCONDitiONS: text string must be terminated numeric value. Output must minimally point to size (long) bytes of accessible memory.

crsp_util_cvt_t_f_ Converts a Text String to a Floating Point Number

prOtOtYpe: int crsp_util_cvt_t_f(char *text, int text_size, int precision, float *output)

DeSCriptiON: Converts a text string to a floating point number. the string is assumed to not be NULL-terminated and to contain no decimal points. this
routine does not handle scientific notation.

arGUMeNtS: char *text - pointer to character string to be converted
int text_size - Number of characters in the string
int precision - Number of characters to the right of the implied decimal point
float *output - pointer to floating point variable where the results of the conversion are written

retUrN vaLUeS: CRSP_SUCCESS - Normal successful completion
Other - system error, no value

SiDe eFFeCtS: Output is loaded

preCONDitiONS: Output must point to at least size of (float) bytes of accessible memory.

crsp_util_cvt_t_d_ Converts a Text String to a Double Floating Point Number

prOtOtYpe: int crsp_util_cvt_t_d(char *text, int text_size, int precision, double *output)

DeSCriptiON: Converts a text string to a double precision floating point number. the string is assumed to not be to NULL terminated and contain no
decimal points. this routine does not handle scientific notation.

arGUMeNtS: char *text - pointer to character string to be converted
int text_size - Number of characters in the string
int precision - Number of characters to the right of the implied decimal point
float *output - pointer to floating point variable where the results of the conversion are written

retUrN vaLUeS: CRSP_SUCCESS - Normal successful completion
Other - system error, no value

SiDe eFFeCtS: Output is loaded.

preCONDitiONS: Output must point to at least size (double) bytes of accessible memory.

crsp_util_cvt_cdate_i Convert a Character Date String into an Integer

prOtOtYpe: int crsp_util_cvt_cdate_i(char *date_str, int *date_int)

DeSCriptiON: Convert a character date string into an integer. Date format: “Mon May 19 18:05:12 1996” integer format:19960519

arGUMeNtS: char *date_str - pointer to the NULL terminated string to be converted

int *date_int - pointer to the integer into which is written the converted date value

retUrN vaLUeS: CRSP_SUCCESS - Normal successful completion

CRSP_FAIL - Conversion failed. Character string was possibly not the valid date format

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 152

SiDe eFFeCtS: String may be changed.

preCONDitiONS: String must be NULL terminated character string. Date-integer must point to at least size of (integer) bytes of accessible memory.

crsp_util_cvt_i_cdate Converts an Integer Date to a Character Date String

prOtOtYpe: int crsp_util_cvt_i_cdate(int int_date, char *char_buffer)

DeSCriptiON: Convert integer date to character date string integer format: 19960519 Date format: “Mon May 19 18:05:12 1996”

arGUMeNtS: int int_date - value to be converted to date string
char *char_buffer - pointer to the character buffer into which is written the converted text string

retUrN vaLUeS: CRSP_SUCCESS - Normal successful completion
CRSP_FAIL - Conversion failed. integer value was possibly not a valid date

SiDe eFFeCtS: Character buffer is loaded.

preCONDitiONS: Character buffer must point to at least 25 bytes of accessible memory.

crsp_util_cvt_i_ingdate Convert an Integer Date (YYYYMMDD) into an Date-Field-Compatible Character String Date

prOtOtYpe: int crsp_util_cvt_i_ingdate(int date_int, char *date_str)

DeSCriptiON: Convert an integer date (YYYYMMDD) into a date field compatible character string date. Note: integer value ‘99999999’ converted to 31-
dec-2299 integer value ‘0’ converted to blank

arGUMeNtS: int date_int integer date to be converted to character string
char *date_str - pointer to character string where new date is output

retUrN vaLUeS: CRSP_SUCCESS - Normal successful completion
CRSP_FAIL - Conversion failed. integer value was possibly not a valid date

SiDe eFFeCtS: Date string is loaded with resultant string.

preCONDitiONS: Date string must point to at least 12 bytes of accessible memory.

C Structure Copy Functions

These functions are used to copy data from one like CRSPAccess structure to another.

FUNCtiON DeSCriptiON paGe
crsp_util_copy_ts Copy time Series Data to another time Series page 152
crsp_util_copy_arr Copy CrSp array Data to another CrSp array page 153
crsp_util_copy_cal2ts Copy a Calendar to a time Series page 153

crsp_util_copy_ts Copy Time Series Data in a Given Range to Another Time Series

prOtOtYpe: int crsp_util_copy_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES **trg_ts, int beg, int end,

int appendflag)

DeSCriptiON: Copy time series data in a given range to another time series. Copies data from one time series to another within a given range. it is optional
whether to overlay the source data on top of existing target data or replace the target with only the source data in the range.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 153

arGUMeNtS: CRSP_TIMESERIES *src_ts - pointer to existing source time series
CRSP_TIMESERIES **trg_ts - pointer to pointer to target time series to be loaded. this pointer can be changed to point to a new
time series if it is NULL or a different time series type
int beg - beginning index to copy from source time series
int end - ending index to copy from source time series
int appendflag - option on whether to overlay or reset the target time series. possible values include:
CRSP_COPY_RESET - the target time series is reset. if NULL, it is initialized, and if not NULL but a different time series from the source,
it is freed and re-initialized. Beg and end will become the new beg and end for the target, and data for that range will be copied from the
source.
CRSP_COPY_OVERLAY - the source data in the range is overlaid on top of the existing target time series. the target time series must
be allocated and must compare to the source time series. the new data in the range is copied into the target, the ranges are changed
accordingly.

retUrN vaLUeS: CRSP_SUCCESS - if successfully
CRSP_FAIL - if bad parameter, mismatched time series on overlay, unable to initialize target if needed

SiDe eFFeCtS: the target time series is initialized if different from source and loaded with data in the range copied from the source time series. the 0’th
array element of the source time series (assumed containing the missing value for that time series) is copied to the target time series.

preCONDitiONS: the source time series must exist and have beg and end such that beg >= source time series beg, end <= source time series end, and
beg >= end. if appendflag is CRSP_COPY_OVERLAY, the target time series must be allocated and compare with the source time series.

crsp_util_copy_arr Copy CRSP Array Data to Another CRSP Array

prOtOtYpe: int crsp_util_copy_arr(CRSP_ARRAY *src_arr, CRSP_ARRAY *trg_arr)

DeSCriptiON: Copy CrSp array data to another CrSp array

arGUMeNtS: CRSP_ARRAY *src_arr - pointer to an existing source CrSp array
CRSP_ARRAY *trg_arr - pointer to an existing target CrSp array

retUrN vaLUeS: CRSP_SUCCESS - if successful
CRSP_FAIL - if bad parameter, mismatched time series on overlay, unable to initialize target if needed

SiDe eFFeCtS: the source CrSp array is copied to target CrSp array. all data in array is copied and target num is set.

preCONDitiONS: the source and target CrSp array must exist and must be compatible.

crsp_util_copy_cal2ts Copy a Calendar to a Time Series

prOtOtYpe: int crsp_util_copy_cal2ts(CRSP_CONFIG_CAL *cal, CRSP_TIMESERIES **ts, int cal_type)

DeSCriptiON: Copy a calendar to a time shares

arGUMeNtS: CRSP_CONFIG_CAL *cal - pointer to a calendar in the internal config structure.
CRSP_TIMESERIES **ts - pointer to a pointer to CRSP_TIMERSERIES to store the result in the internal
CRSP_ARRAY config[crspnum]->cal or equivalent. time Series will be initialized if NULL.
int caltype - determines which calendar new is copied. it must be one of:
CAL_TYPE_ID - copy callist array
CAL_TYPE_DATE - copy caldt array
CAL_TYPE_DATERANGE - copy date range array
CAL_TYPE_TIME - copy time array
CAL_TYPE_TIMERANGE - copy time range array

retUrN vaLUeS: CRSP_SUCCESS - if successful
CRSP_FAIL - if failure

SiDe eFFeCtS: time series will be allocated if necessary. See crsp_obj_init_ts on page 150 for expected allocation.

preCONDitiONS: Database must be opened with crsp_openroot or one of the crsp_*_open functions. if initialized, time series must be NULL.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 154

C Structure Generic Clear Functions

These functions are used to load missing data to CRSPAccess object structures. CRSPAccess access functions may be

used when the set type is not known ahead of time.

FUNCtiON DeSCriptiON paGe
crsp_util_clear_arr Sets a CRSP_ARRAY to missing values page 154
crsp_util_clear_elem Sets one structure to missing values page 154
crsp_util_clear_row Sets a CRSP_ROW to missing values page 155
crsp_util_clear_ts Sets a CRSP_TIMESERIES to missing values page 155
crsp_util_delete_ts Deletes ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES page 155
crsp_util_insert_ts inserts ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES page 172
crsp_util_update_ts Updates ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES page 158
crsp_util_is_missing handle missing value problem in CRSP_TIMESERIES structure parameters page 163
crsp_util_reset_enddts resets end date for an array structure page 164
crsp_util_merge_arr Merges two array structures to a third, single array page 159
crsp_util_merge_ts Merges two time series to a third, single time series page 160

crsp_util_clear_arr Load Missing Values to an Array

prOtOtYpe: int crsp_util_clear_arr (CRSP_ARRAY *arr, int clearflag)

DeSCriptiON: Loads missing values into a CRSP_ARRAY on a range level or array level.

arGUMeNtS: CRSP_ARRAY *arr – pointer to a CRSP_ARRAY
int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset num to 0
CRSP_CLEAR_ALL – set num to 0 and set missing values for all elements in the object arrays
CRSP_CLEAR_RANGE – set missing values for elements between 0 and num-1
CRSP_CLEAR_SET – set ranges in the maxarr-1’th element of the CRSP_ARRAY to missing values specific to the array type.

retUrN vaLUeS: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

SiDe eFFeCtS: the array pointer has all allocated fields initialized according to the clearflag. if clearflag is CRSP_CLEAR_INIT only num is set to
0. if clearflag is CRSP_CLEAR_RANGE all elements between 0 and num-1 are set to missing values. if clearflag is CRSP_CLEAR_
ALL num is set to 0 and missing values are set for all elements in the object arrays. if clearflag is CRSP_CLEAR_SET, the maxarr-
1’th element of the array is set to the missing value for the arrtype and subtype.

preCONDitiONS: the array pointer must be NULL or initialized with a valid arrtype and subtype.

crsp_util_clear_elem Load Missing Values to One Array Element or Structure

prOtOtYpe: int crsp_util_clear_elem (void *elem, int arrtype, int subtype)

DeSCriptiON: Loads missing values into one structure identified by array type and subtype.

arGUMeNtS: void *elem – pointer to structure to be loaded with missing values
int arrtype – integer code identifying the structure or simple data type of the element
int subtype – integer code identifying the subcategory of data loaded in the element

retUrN vaLUeS: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters or unknown arrtype or subtype

SiDe eFFeCtS: the proper missing values are loaded to the element

preCONDitiONS: arrtype and subtype must be valid

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 155

crsp_util_clear_row Load Missing Values to a Row

prOtOtYpe: int crsp_util_clear_row (CRSP_ROW *row, int clearflag)

DeSCriptiON: Loads missing values into a CRSP_ROW

arGUMeNtS: CRSP_ROW *row – pointer to a CRSP_ROW.
int clearflag – constant identifying the level of clearing. Supported values are:
 CRSP_CLEAR_INIT – just return success
 CRSP_CLEAR_ALL – set missing values for the array element
 CRSP_CLEAR_RANGE – set missing values for the array element
 CRSP_CLEAR_SET – set missing values for the array element

retUrN vaLUeS: CRSP_SUCCESS: if successfully cleared or NULL row or row array
CRSP_FAIL: if unknown arrtype or subtype

SiDe eFFeCtS: the array pointer has all allocated fields initialized according to the clearflag. if clearflag is CRSP_CLEAR_INIT it
doesn’t do anything. if any other flag is passed it set missing value in the in the arr part

preCONDitiONS: the row pointer must be NULL or initialized with a valid arrtype and subtype.

crsp_util_clear_ts Loads Missing Values to a Time Series

prOtOtYpe: int crsp_util_clear_ts (CRSP_TIMESERIES *ts, int clearflag)

DeSCriptiON: Loads missing values into a time series on a range level or array level.

arGUMeNtS: CRSP_TIMESERIES *ts – pointer to a time series to be loaded.

int clearflag – constant identifying the level of clearing. Supported values are:

CRSP_CLEAR_INIT – only reset beg and end to 0

CRSP_CLEAR_ALL – set beg and end to 0 and set missing values for all elements in the time series.

CRSP_CLEAR_RANGE – set missing values for elements between beg and end of the time shares

CRSP_CLEAR_SET – set ranges in the 0’th element of the CRSP_TIMESERIES to missing values specific to the array type.

retUrN vaLUeS: CRSP_SUCCESS: if success

CRSP_FAIL: if bad parameters

SiDe eFFeCtS: the time series pointer has all allocated fields initialized according to the clearflag. if clearflag is CRSP_CLEAR_INIT only beg
and end are set to 0. if clearflag is CRSP_CLEAR_RANGE all elements between beg and end are set to missing values. if clearflag
is CRSP_CLEAR_ALL beg and end are set to 0 and missing values are set for all elements in the time series. if clearflag is CRSP_
CLEAR_SET, the 0’th element of the time series is set to the missing value for the arrtype and subtype.

preCONDitiONS: the time series pointer must be NULL or initialized with valid arrtype and subtype.

crsp_util_clear_arr_user Load Missing Values to an Array Based on User Function

prOtOtYpe: int crsp_util_clear_arr_user (CRSP_ARRAY *arr, void (*clear_fnct) void *elem, int clearflag)

DeSCriptiON: Loads missing values into a CRSP_ARRAY on a range level or array level.

arGUMeNtS: CRSP_ARRAY *arr – pointer to a CRSP_ARRAY
void (*clear_fnct) void *elem - pointer to user’s function
int clearflag – constant identifying the level of clearing. Supported values are:
 CRSP_CLEAR_INIT – only reset num to 0
 CRSP_CLEAR_ALL – set num to 0 and set missing values for all elements in the object arrays
 CRSP_CLEAR_RANGE – set missing values for elements between 0 and num-1
 CRSP_CLEAR_SET – set ranges in the maxarr-1’th element of the CRSP_ARRAY to missing values specific to the array
type.

retUrN vaLUeS: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 156

SiDe eFFeCtS: the array pointer has all allocated fields initialized according to the clearflag. if clearflag is CRSP_CLEAR_INIT only num is set to
0. if clearflag is CRSP_CLEAR_RANGE all elements between 0 and num-1 are set to missing values. if clearflag is CRSP_CLEAR_
ALL num is set to 0 and missing values are set for all elements in the object arrays. if clearflag is CRSP_CLEAR_SET, the maxarr-
1’th element of the array is set to the missing value for the arrtype and subtype.

preCONDitiONS: the array pointer must be NULL or initialized with a valid arrtype and subtype.User’s function must exist with one void pointer argument.
this function must be able to clear one element of the user’s array.

crsp_util_clear_row_user Load Missing Values to a Row

prOtOtYpe: int crsp_util_clear_row_user (CRSP_ROW *row, oid (*clear_fnct) void *elem, int clearflag)

DeSCriptiON: Loads missing values into a CRSP_ROW

arGUMeNtS: CRSP_ROW *row – pointer to a CRSP_ROW.
void (*clear_fnct) void *elem - pointer to user’s function
int clearflag – constant identifying the level of clearing. Supported values are:
 CRSP_CLEAR_INIT – just return success
 CRSP_CLEAR_ALL – set missing values for the array element
 CRSP_CLEAR_RANGE – set missing values for the array element
 CRSP_CLEAR_SET – set missing values for the array element

retUrN vaLUeS: CRSP_SUCCESS: if successfully cleared or NULL row or row array
CRSP_FAIL: if unknown arrtype or subtype

SiDe eFFeCtS: the array pointer has all allocated fields initialized according to the clearflag. if clearflag is CRSP_CLEAR_INIT it
doesn’t do anything. if any other flag is passed it set missing value in the in the arr part

preCONDitiONS: the array pointer must be NULL or initialized with a valid arrtype and subtype.User’s function must exist with one void pointer
argument. this function must be able to clear one element of the user’s array.

crsp_util_clear_ts_user Loads Missing Values to a Time Series

prOtOtYpe: int crsp_util_clear_ts_user (CRSP_TIMESERIES *ts, void (*clear_fnct) void *elem, int

clearflag)

DeSCriptiON: Loads missing values into a time series on a range level or array level.

arGUMeNtS: CRSP_TIMESERIES *ts – pointer to a time series to be loaded.
void (*clear_fnct) void *elem

int clearflag – constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT – only reset beg and end to 0
CRSP_CLEAR_ALL – set beg and end to 0 and set missing values for all elements in the time series.
CRSP_CLEAR_RANGE – set missing values for elements between beg and end of the time shares
CRSP_CLEAR_SET – set ranges in the 0’th element of the CRSP_TIMESERIES to missing values specific to the array type.

retUrN vaLUeS: CRSP_SUCCESS: if success
CRSP_FAIL: if bad parameters

SiDe eFFeCtS: the time series pointer has all allocated fields initialized according to the clearflag. if clearflag is CRSP_CLEAR_INIT only beg
and end are set to 0. if clearflag is CRSP_CLEAR_RANGE all elements between beg and end are set to missing values. if clearflag
is CRSP_CLEAR_ALL beg and end are set to 0 and missing values are set for all elements in the time series. if clearflag is CRSP_
CLEAR_SET, the 0’th element of the time series is set to the missing value for the array type and subtype.

preCONDitiONS: the array pointer must be NULL or initialized with a valid arrtype and subtype.User’s function must exist with one void pointer
argument. this function must be able to clear one element of the user’s array.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 157

crsp_util_cmp_float Compares two floating point values at different levels of precision

prOtOtYpe: int crsp_util_cmp_float (float *item1, float *item2, int epsflag, double epsilon)

DeSCriptiON: Compares two floating point values at different levels of precision.

FOrMaL
paraMeterS:

float *item1 - pointer to the first floating point number
float *item2 - pointer to the second floating point number
int epsflag - code used to determine precision in
comparisons.
 -1 make an absolute comparison to the value in epsilon. if the difference between item1 and item2 is less than or equal to
epsilon, they are reported as equal
 0 make an exact comparison between the two numbers
 >0 the number of significant digits to compare. Format to a decimal scientific notation at that many digits, and then compare
exactly mantissa, sign, and magnitude
 if global int flt_compare_mode is 1 then positive epsflag is done as a relative comparison.

double epsilon the minimum difference between the two numbers before they are considered as equal if epsflag is -1. ignored if epsflag is not -1.

 retUrN vaLUe: 1 if item1 is greater than item2
0 if item1 is equal to item2 within epsilon parameters
-1 if item1 is less than item2

crsp_util_cmp_string Compares two character strings using preprocessing options.

prOtOtYpe: int crsp_util_cmp_string(char *item1, char *item2, int cepsflag)

DeSCriptiON: Compares two character strings using preprocessing options.

arGUMeNtS: char *item1- pointer to the first string
char *item2- pointer to the second string
int cepsflag - code used to determine preprocessing in comparison
 0 - exact string comparison using strcmp
 1 - trim strings (remove trailing white space) before comparing them
 2 - squeeze strings (remove leading and trailing white space and replace repeated white space with a single space) before
comparing them

retUrN vaLUeS: 1 if item1 is greater than item2
0 if item1 is equal to item2 after preprocessing
-1 if item1 is less than item2

SiDe eFFeCtS: if trim or squeeze options are used, the string may be modified

preCONDitiONS: Both strings must be NULL terminated

crsp_util_delete_ts Deletes Ranges from a CRSP_TIMESERIES Based on a Second CRSP_TIMESERIES

prOtOtYpe: int crsp_util_delete_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *del_ts, int exactflag, int

rangeflag, int cepsflag, int epsflag, double epsilon)

DeSCriptiON: Deletes ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES. it is optional whether the structure must match an
existing row exactly or if only key fields identify the structure to delete

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 158

arGUMeNtS: CRSP_TIMESERIES *src_ts - pointer to existing CRSP_TIMESERIES to be modified
CRSP_TIMESERIES *del_ts - pointer to existing CRSP_TIMESERIES to be removed from the source
int exactflag - option on whether the element to be deleted must be an exact much or if a match on the keys fields only is sufficient.
possible values are:
 CRSP_MATCH_EXACT the function reports CRSP_NOT_FOUND if any overlapping rows in the source and delete time series
do not match
 CRSP_MATCH_IGNORE the function only considers the ranges of the time series, not the values within the time series. int
rangeflag - option on which types of overlapping ranges are accepted. possible values are:
 CRSP_RANGE_NONE no restrictions are made on input ranges; all overlapping ranges are erased
 CRSP_RANGE_BEG the begin ranges must match between source and delete time series
 CRSP_RANGE_END the end ranges must match between source and delete time series
 CRSP_RANGE_ONE at least one of the begin or end ranges must match between source and delete time series int cepsflag -
flag used to compare string fields within structure. “crsp_util_cmp_string” on page 156 .
 int epsflag - flag used to compare float fields within structure. See “crsp_util_cmp_float” on page 156 for values.
 double epsilon - the maximum difference between two float fields in the structures before they are considered different,
used only if epsflag is -1.

retUrN vaLUeS: CRSP_SUCCESS - if successfully deleted
CRSP_NOT_FOUND - if del_ts values not found in the src_ts values according to exactflag
CRSP_FAIL - if bad parameter or fail function calls or mismatched ranges according to rangeflag

SiDe eFFeCtS: beg and end of source time series will be changed

preCONDitiONS: the time series must be allocated, and elem must be correct type with valid data in at least key fields.

crsp_util_insert_ts Data Into a CRSP_TIMESERIES from a Second CRSP_TIMESERIES

prOtOtYpe: int crsp_util_insert_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *ins_ts, int rangeflag)

DeSCriptiON: inserts ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES. Options govern handling of overlapping data

arGUMeNtS: CRSP_TIMESERIES *src_ts - pointer to existing CRSP_TIMESERIES to be modified
CRSP_TIMESERIES *ins_ts - pointer to existing CRSP_TIMESERIES to be inserted to the source
int rangeflag - option on which types of overlapping ranges are accepted. possible values are:
 CRSP_RANGE_OVER no restrictions are made on input ranges; all overlapping ranges are replaced with the insert ts values
 CRSP_RANGE_KEEP no restrictions are on input ranges; keep existing values in all overlapping ranges
 CRSP_RANGE_BEG the insert end must be one less than the source begin
 CRSP_RANGE_END the insert begin must be one higher than the source end
 CRSP_RANGE_ONE at least one of the previous two conditions must be true

retUrN vaLUeS: CRSP_SUCCESS - if successfully inserted
CRSP_NOT_FOUND - if del_ts values not found in the src_ts values according to exactflag

SiDe eFFeCtS: beg and end of source time series will be changed

preCONDitiONS: the time series must be allocated, and elements must agree on type with valid data in at least key fields

crsp_util_update_ts Updates Data in a CRSP_TIMESERIES From Data in a Second CRSP_TIMESERIES

prOtOtYpe: int crsp_util_update_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *new_ts, CRSP_TIMESERIES

*old_ts, int exactflag, int cepsflag, int epsflag, double epsilon)

DeSCriptiON: Updates ranges from a CRSP_TIMESERIES given a second CRSP_TIMESERIES. it is optional whether the structure must match an
existing row exactly or if only key fields identify the structure to delete.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 159

arGUMeNtS: CRSP_TIMESERIES *src_ts - pointer to existing CRSP_TIMESERIES to be modified
CRSP_TIMESERIES *new_ts - pointer to existing CRSP_TIMESERIES to be updated into the source
CRSP_TIMESERIES *old_ts - pointer to existing CRSP_TIMESERIES to be compared to the existing source. Used only for exact
matches (exactflag=CRSP_MATCH_EXACT)
int exactflag - option on whether the element to be updated must be an exact match or if a match on the keys fields only is sufficient.
possible values are:
 CRSP_MATCH_EXACT the function reports
 CRSP_NOT_FOUND if any overlapping rows in the source and old time series do not match
 CRSP_MATCH_IGNORE the function only considers the ranges of the time series, not the values within the time series.
int* code - pointer to location used to store structure specific results of a comparison of all fields. if code is -1, then only the key-based
comparison is made. Otherwise, code is set to a positive number containing information of the fields that are different
int cepsflag - flag used to compare string fields within structure. See “crsp_util_cmp_string” on page 156 for values.
int epsflag - flag used to compare float fields within structure. See “crsp_util_cmp_float” on page 156 for values.
double epsilon - the maximum difference between two float fields in the structures before they are considered different, only used if
epsflag is -1

retUrN vaLUeS: CRSP_SUCCESS - if successfully updated
CRSP_NOT_FOUND - if old_ts values not found in the src_ts values according to exactflag
CRSP_FAIL - if bad parameter or fail function calls or mismatched ranges according to rangeflag

SiDe eFFeCtS: beg and end of source time series will be changed and data will be loaded if successful.

preCONDitiONS: the time series must be allocated, and array types and calendars must agree, with valid data in at least key fields.

crsp_util_is_missing Determine Whether One Array Element Contains Missing Data

prOtOtYpe: int crsp_util_is_missing(void *elem, int arrtype, int subtype)

DeSCriptiON: Determines whether one passed array element contains missing data according to arrtype and subtype. this function is useful if there
are multiple missing values for a type of data. Normally the first element of a CrSp time series array, or the last element of a CRSP_ARRAY
contains the primary missing data for that type of data. this function supports all primary and secondary missing values.

arGUMeNtS: void *elem - a pointer to element to be checked
int arrtype - a CrSp-defined array type constant identifying the structures
int subtype - a CrSp-defined subtype constant identifying possible subcategories of data loaded in the element

retUrN vaLUeS: 0 - CRSP_NOT_MISSING - value present
 1 - CRSP_IS_MISSING - value missing
-1 - unknown or unsupported arrtype or subtype

SiDe eFFeCtS: none

preCONDitiONS: elem must point to valid data for the structure indicated by arrtype.

crsp_util_reset_enddts Resets End Date for the CRSP_ARRAY Histories

prOtOtYpe: int crsp_util_reset_enddts(CRSP_ARRAY *array, int lastenddt, int begdt_offset, int enddt_

offset)

DeSCriptiON: resets end date to the next begin date minus 1 for the CRSP_ARRAY structure

arGUMeNtS: CRSP_ARRAY *array - source array structure lastenddt - date in CCYYMMDD format to be used for the end date of the last event.
resets end dates for CRSP_ARRAY event histories. Sets end dates in array structure to one day before the following event’s effective
date. the end date of the last event must be provided as a parameter. Only valid for arrays containing contiguous increasing effective dates.
int begdt_offset - offset of begin date field of the specified array stucture
int enddt_offset - offset of end date field of the specified array structure

retUrN vaLUeS: CRSP_SUCCESS - if successfully set
CRSP_FAIL - if error in parameters or loading process

SiDe eFFeCtS: enddt - offset for each event from - to num-1 is updated.

preCONDitiONS: array must be allocated and loaded. begdt_offset with each event structure must be an integer date feed in YYYYMMDD format.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 160

crsp_util_merge_arr Compare Two Source Arrays; if They are Equal, Copy Main Array Data into Target Array

prOtOtYpe: int crsp_util_merge_arr(CRSP_ARRAY *trg_arr, CRSP_ARRAY *main_arr, CRSP_ARRAY *sub_arr, int

*status, int cepsflag, int epsflag, double epsilon)

DeSCriptiON: Compare two source array, put two records in order into target array, if they are equal, copy main array data into target, where the main
array takes the precedence.

arGUMeNtS: CRSP_ARRAY *trg_arr - output, pointer to CRSP_ARRAY
CRSP_ARRAY *main_arr - input, pointer to CRSP_ARRAY
CRSP_ARRAY *sub_arr - input, pointer to CRSP_ARRAY
int *status - flag to indicates the status of the data

retUrN vaLUeS: CRSP_SUCCESS - successfully ran
CRSP_FAIL - failed to run

SiDe eFFeCtS: any previously stored data in target array will be overwritten

crsp_util_merge_ts Merges Two Source Time Series to One Target Time Series

prOtOtYpe: int crsp_util_merge_ts(CRSP_TIMESERIES *trg_ts, CRSP_TIMESERIES *src1_ts, CRSP_TIMESERIES

*src2_ts)

DeSCriptiON: Merges two source ts(src1_ts, src2_ts) to target ts(trg_ts), where trg_ts takes the precedence

arGUMeNtS: trg_ts - output, pointer to CRSP_TIMESERIES
src1_ts - input, pointer to CRSP_TIMESERIES
 src2_ts - input, point to CRSP_TIMESERIES

retUrN vaLUeS: CRSP_SUCCESS - successfully ran

CRSP_FAIL - failed to run

Data to Time Series Mapping Utility Functions

FUNCtiON DeSCriptiON paGe
crsp_util_map_arr2ts Maps a subset of fields from a CRSP_ARRAY to a CRSP_TIMESERIES page 160
crsp_util_map_row2ts Maps a subset of fields from a CRSP_ROW to a CRSP_TIMESERIES page 161
crsp_util_map_ts2ts Maps a subset of fields from one CRSP_TIMESERIES to another page 170

crsp_util_map_arr2ts Maps Selected Fields in a CRSP_ARRAY into a CRSP_TIMESERIES

prOtOtYpe: int crsp_util_map_arr2ts (CRSP_ARRAY *src_arr, CRSP_TIMESERIES *trg_ts, int flags, int

rangflag, int offset, int length, int begdt_offset, int enddt_offset)

DeSCriptiON: Loads selected fields in a CRSP_ARRAY into a CRSP_TIMESERIES. the specific fields are identified with the offset within the array
structure and the length of the field. Date range fields in the array used to map to the time series calendar are specified with their offsets.
this function only works with status change event arrays where each event refers to the status values until the next event.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 161

arGUMeNtS: CRSP_ARRAY *src_arr – pointer to source array. the array must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg_ts – pointer to target time series with desired calendar loaded.
int flags – flags used to interpret date ranges
CRSP_ACTUAL – target is loaded with source at the end of target period, trg[i] = f(src[i])
CRSP_EFFECTIVE – target is loaded with source at the end of the previous target period, trg[i+1] = f(src[i])
CRSP_NLAST – last data from the source is moved to all periods on target
int rangflag – flags used to interpret time series ranges outside of explicit source ranges. Flags are:
 CRSP_RANGE_AS_IS – as it is, target set to missing outside of explicit source range
 CRSP_RANGE_FIRST – assume first source event is valid back to beginning of target range
 CRSP_RANGE_LAST – assume last source event is good forever
 CRSP_RANGE_FIRST_LAST – both first and last
int offset – the offset in bytes of the target field from the beginning of the structure in the source array.
int length – the number of bytes of the target field
int begdt_offset – the offset in bytes of the effective date field of the source structure from the beginning of the structure in the
source array.
int enddt_offset – the offset in bytes of the last effective date field of the source structure from the beginning of the structure in the
source array.

retUrN vaLUeS: CRSP_SUCCESS: if successful
CRSP_FAIL: if bad parameter, mismatched time series size or uninitialized source or target, or unmatched parameters.

SiDe eFFeCtS: the target time series is loaded with data from the source array according to flags.

preCONDitiONS: the source array must be allocated and loaded with the data to copy. the target time series and calendar must be allocated. the target
size_of_array_width must match the length parameter and target object fields arrtype and subtype must be set according to
the data to be loaded. No offsets can extend past the size of the array structure.

crsp_util_map_row2ts Maps Selected Fields in One CRSP_ROW into a CRSP_TIMESERIES

prOtOtYpe: int crsp_util_map_row2ts (CRSP_ROW *row_ts, CRSP_TIMESERIES *trg_ts, int offset)

DeSCriptiON: Loads selected fields in a CRSP_ROW into a CRSP_TIMESERIES. the specific fields are identified by the offset within the source
structure and the size_of_array_width of the target. the row field value is copied to every period in the target time series.

arGUMeNtS: CRSP_ROW *src_row – pointer to source row. it must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg_ts – pointer to target time series with desired calendar loaded and desired beg and end set.
int offset – the offset in bytes of the target field from the beginning of the structure in the source row.

retUrN vaLUeS: CRSP_SUCCESS: if successful
CRSP_FAIL: if bad parameter, uninitialized source or target, or unmatched parameters.

SiDe eFFeCtS: the target time series is loaded with data from the source. Data is copied to each period between the target beg and end.

preCONDitiONS: the source time series must be allocated and loaded with the data to copy. the target time series and calendar must be allocated and the
desired beg and end must be set. target object fields arrtype and subtype must be set according to the data to be loaded.

crsp_util_map_ts2ts Maps Selected Fields in One CRSP_TIMESERIES into Another

prOtOtYpe: int crsp_util_map_ts2ts (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int offset)

DeSCriptiON: Loads selected fields in a CRSP_TIMESERIES into another CRSP_TIMESERIES. the specific fields are identified bythe offset within
the source structure and the size_of_array_width of the target. the two time series must have identical calendars.

arGUMeNtS: CRSP_TIMESERIES *src_ts – pointer to source time series. it must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg_ts – pointer to target time series.
int offset – the offset in bytes of the target field from the beginning of the structure in the source array.

retUrN vaLUeS: CRSP_SUCCESS: if successful
CRSP_FAIL: if bad parameter, mismatched time series size or uninitialized source or target, or unmatched parameters.

SiDe eFFeCtS: the target time series is loaded with data from the source array according to flags. Data is copied on a period by period basis and the target
beg and end are copied from the source.

preCONDitiONS: the source time series must be allocated and loaded with the data to copy. the target time series and calendar must be allocated. target
object fields arrtype and subtype must be set according to the data to be loaded. the two time series must have identical calendars.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 162

CRSPAccess C Database Information Function

This function is used to retrieve information about a database.

crsp_root_info_get Load CRSPAccess Database Information

prOtOtYpe: int crsp_root_info_get (int crspnum, CRSP_ROOT_INFO *info)

DeSCriptiON: Loads database information from a CrSpaccess database into a structure. CrSp_rOOt_iNFO is defined in crsp_objects.h. the
following fields are available:
crt_date – 25-character string containing the time the database was created, in the format “Dow Mon DD hh:MM:SS YYYY”
mod_date – 25-character string containing the time the database was last modified, in the format “Dow Mon DD hh:MM:SS YYYY”
cut_date – 25-character string containing the last date of data in the database, currently loaded as YYYYMM
binary_type – L if ieee Little-endian, and B if ieee Big-endian
code version – 19-character string containing the CrSpaccess version used to create the database
product_code – 11-character CrSp product Code product_name – 47-character product name of the database version – integer
version number of the database
settypes – an array of up to eight integer settypes available in the database setids – an array of up to eight integer setids available in the
database setnames – an array of up to eight names of the sets in the database
numsets – the number of data sets in the database
calids – an array of up to eight integer calids of calendars available in the database calavail – an array of up to eight integer caltypes of
the calendars available in the database calnames – an array of up to eight names of the calendars in the database
numcals – the number of calendars in the database

arGUMeNtS: int crspnum – database identifier returned by a CrSpaccess database open function
CRSP_ROOT_INFO *info – structure that will be loaded with database information

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if database is not open or error loading information structure

SiDe eFFeCtS: none

preCONDitiONS: the database must be opened with one of the CrSpaccess open functions.

Data UtiLitY FUNCtiONSData UtiLitY FUNCtiONS

The CRSP library contains several groups of data functions described in the following table. Subsections in this sec- tion

contain the descriptions of the individual functions within each of the function groups.

FUNCtiONS GrOUp DeSCriptiON paGe

adjust Functions Functions to adjust prices or Other Data page 162

excess returns Functions Functions to Make excess returns Calculations page 179

Name array Functions Functions to Map Name history Fields to time Series page 180

NaSDaQ information Mapping Functions Functions to Map NaSDaQ information elements to time Series page 164

returns Functions Functions to Calculate returns page 166

Shares Outstanding Functions Functions to Manipulate Shares Data page 174

Subset Functions Functions to print Specialized Stock Data page 178

translation Functions Functions to translate Data to New time Series page 191

Adjust Functions

These functions adjust prices, dividends, volumes, and shares for splits or other price factors.

FUNCtiON DeSCriptiON paGe
crsp_adj_load Builds a price adjustment Structure array page 163
crsp_adj_map_ts adjusts a Source CRSP_TIMESERIES according to an adjustment array page 167
crsp_adj_map_arr adjusts a Source CRSP_ARRAY according to an adjustment array page 165
crsp_adj_stk adjusts all relevant fields in a Source Stock Structure page 164

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 163

crsp_adj_load Builds a Price Adjustment Structure Array

prOtOtYpe: int crsp_adj_load (CRSP_STK_STRUCT *stk, CRSP_ARRAY *adj_arr, int adjdt, int factyp, int

gapflg, int knowexch)

DeSCriptiON: loads a crsp_array of crsp_adj_struct structures with cumulative adjustment factors and effective dates.

arGUMeNtS: CRSP_STK_STRUCT *stk – stk structure with at least events and prices loaded.
CRSP_ARRAY *adj_arr – adj array that will be loaded. it must exist with enough space to store completed array of adjustment events
int adjdt – base anchor date guaranteed to have 1.0 factor
int factyp – code of adjustment type: 0 = stock splits and dividends only 1 = all dists with facpr
int gapflg –
 0 carry adjustments over a gap
 1 adjustments stop when trading on unknown exchange
int knowexch – unused, always set to 0.

retUrN vaLUeS: CRSP_SUCCESS: if adjustment structure successfully loaded
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: the adj_arr will be loaded. the subtype in the adj_arr is set to the adjust base date.

preCONDitiONS: it is assumed that events and prices have been loaded. the adj_arr must have arrtype CRSP_ADJ_STRUCT_NUM

crsp_adj_map_ts Adjusts a Source CRSP_TIMESERIES According to an Adjustment Array

prOtOtYpe: int crsp_adj_map_ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, CRSP_ARRAY *adj_arr,

int begrng, int endrng, int endflg, int direct)

DeSCriptiON: adjusts a source time series according to an adjust array and put the results in a target time series. the adjust array must exist.

arGUMeNtS: CRSP_TIMESERIES *src_ts – pointer to source time series, already loaded by crsp_adj_load

CRSP_TIMESERIES *trg_ts – pointer to preexisting target time series, empty

CRSP_ARRAY *adj_arr – pointer to adjustment array already loaded

int begrng – begin date index of the date range adjustment

int endrng – end date index of the date range adjustment

int endflg – determines whether adjustments can be made after the last day of prices. if set to 1 missing values are set for the range after
the end date; otherwise the last adjustment value is used

int direct – direction flag multiply or divide with adj factor 1= multiply with adjustment factor

-1= divide with adjustment factor

retUrN vaLUeS: CRSP_SUCCESS: (integer) if successfully adjusted

CRSP_FAIL: if error in parameters or adjustment

SiDe eFFeCtS: the target time series is loaded with the adjusted data items from the source time series, for the date range specified by begrng and endrng.

preCONDitiONS: the src_ts, trg_ts, and adj_arr must exist. src_ts and trg_ts must have the same arrtype and subtype and the same
calendar. the src_ts subtype cannot be any of these: CRSP_RETURN_NUM or CRSP_PRICE_ADJ_NUM or CRSP_VOLUME_ADJ_
NUM. the wanted date range must be a subset of the data date range and the adj_arr date range.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 164

crsp_adj_map_arr Adjusts a Source CRSP_ARRAY According to an Adjustment Array

prOtOtYpe: int crsp_adj_map_arr (CRSP_ARRAY *src_arr, CRSP_ARRAY *trg_arr, CRSP_ARRAY *adj_arr, int

begdt, int enddt, int endflg, int direct)

DeSCriptiON: adjusts a source CRSP_ARRAY according to an adjust array and put the results in a target CRSP_ARRAY. the adjust array must exist.

arGUMeNtS: CRSP_ARRAY *src_arr – pointer to source time series, already loaded
CRSP_ARRAY *trg_arr – pointer to preexisting target time series, empty
CRSP_ARRAY *adj_arr – pointer to adjustment array already loaded by crsp_adj_load int begdt – begin date index of the date range
adjustment
int enddt – end date index of the date range adjustment
int endflg – determines whether adjustments can be made after the last day of prices. if set to 1 missing values are set for the range after
the end date; otherwise the last adjustment value is used.
int direct – direction flag multiply or divide with adj factor
 1= multiply by adjustment factor (prices)
-1= divided by adjustment factor (shares and values)

retUrN vaLUeS: CRSP_SUCCESS: if successfully adjusted
CRSP_FAIL: if error in parameters or adjustment

SiDe eFFeCtS: the target CRSP_ARRAY is loaded with the adjusted data items from the source CRSP_ARRAY, for the date range specified by begdt and
enddt.

preCONDitiONS: the src_arr, trg_arr and adj_arr must exist. src_arr and trg_arr must have the same arrtype and subtype. the src_
arr subtype can not be any of these: CRSP_SHARES_ADJ_NUM or CRSP_DISTS_ADJ_NUM or CRSP_DELIST_ADJ_NUM. the
wanted date range must be a subset of the data date range and the adj_arr date range.

crsp_adj_stk Adjusts All Relevant Fields in a Source Stock Structure

prOtOtYpe: int crsp_adj_stk(CRSP_STK_STRUCT *src_stk, CRSP_STK_STRUCT *trg_stk, int adjdt, int factyp,

int gapflg, int endflg, int knownexch)

DeSCriptiON: adjusts a source stk structure according to an adjust array and put the results in a target stk structure. the adjust array is initialized and
loaded inside this function.

arGUMeNtS: CRSP_STK_STRUCT *src_stk – pointer to source stk structure
CRSP_STK_STRUCT *trg_stk – pointer to target stk structure
int adjdt – base anchor adjustment date guaranteed to have 1.0 factor
int factyp – code of adjustment type:
0 = stock splits and dividends only
1 = all dists with facpr
int gapflg – take into account gaps in the date range or not (values: 1,0) and set the adjfac accordingly
if adjdt < begin of gap and gapflg is set then zero out all adjfac after the gap
if adjdt > end of gap and gapflg is set then zero out all adjfac before the gap
if adjdt between the gap and gapflg is set then zero out all adjfac
int endflg – determines whether adjustments can be made after the last day of prices. if set to 1 missing values are set for the range after
the end date; otherwise the last adjustment value is used.
int knownexch – unused. always set to 0, no restriction

retUrN vaLUeS: CRSP_SUCCESS: if successfully adjusted
CRSP_FAIL: if error in parameters or adjustment

SiDe eFFeCtS: the target stk structure is loaded with the adjusted data items from the source stk structure. the subtypes of objects loaded with
adjusted data are changed to reflect the adjusted data. See crsp_const for *_NUM subtype constants.

preCONDitiONS: the source src_stk must be already loaded with all the modules wanted to be adjusted. the target trg_stk must already be
initialized. Use crsp_stk_open to initialize a new structure. if an object subtype indicates adjusted data is already loaded, no
adjustment will be made. Use the crsp_stk_clear function to reset stock structures to unadjusted subtypes.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 165

Excess Returns Functions

CRSP excess returns compare two returns time series, and produce a series of returns with the amounts a source time

series is in excess of a base time series.

crsp_xs_calc CRSP Stock Excess Returns Calculation

prOtOtYpe: int crsp_xs_calc (CRSP_TIMESERIES *bas_ts, CRSP_TIMESERIES *ind_ts, CRSP_TIMESERIES *trg_

ts, int beg, int end, int missflag)

DeSCriptiON: general CrSp stock excess returns calculation given a base return series, a reference return series, and a date range, loads excess returns
for each date in the series.

arGUMeNtS: CRSP_TIMESERIES *bas_ts – time series of issue returns
CRSP_TIMESERIES *ind_ts – time series of index returns CRSP_TIMESERIES *trg_ts – target output of excess returns int
beg, end – index range to calculate excess returns
int missflag – flag for handling missing returns
CRSP_KEEP – base missing returns are copied to target, index returns are compounded over gap
CRSP_SMOOTH – first return after gap is geometrically averaged so entire gap has the same amount
CRSP_IGNORE – missing returns are treated as 0’s; missing returns in index always generate a missing excess return it is assumed that
targ, base, and ind have been allocated and have the same calendar.
0 < start <=end < maxarr must be true for each time series

retUrN vaLUeS: CRSP_SUCCESS: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: the target time series object is loaded with excess returns data. the range is set to the min of current beg and passed start, and max of
current end and passed end. any excess returns already loaded are kept only if they are outside of start/end. if there is a gap between
existing range and new range the returns are loaded with missing values.

preCONDitiONS: the subtype of bas_st and ind_ts is CRSP_RETURN_NUM
the subtype of trg_ts is CRSP_RETURN_XS_NUM or CRSP_RETURN_CUM_NUM

crsp_xs_port Builds Portfolio Returns into One Series

prOtOtYpe: int crsp_xs_port (CRSP_TIMESERIES **ind_ts, int indtypes, CRSP_TIMESERIES port_ts, int

porttype, CRSP_TIMESERIES *trg_ts)

DeSCriptiON: builds a time series of index returns by mapping from an array of index returns time series based on a portfolio time series

arGUMeNtS: CRSP_TIMESERIES **ind_ts – pointer to indexes returns time series
int indtypes – total number of indexes types
CRSP_TIMESERIES **port_ts – time series array of portfolio assignments
int porttype – portfolio type index of interest CRSP_TIMESERIES *trg_ts – target index based on portfolio trg_ts and all
indexes must be allocated and have the same calendar

retUrN vaLUeS: CRSP_SUCCESS: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: the trg_ts time series object is loaded with index data by mapping to an index based on a portfolio time series.

preCONDitiONS: the target time series and all the indexes time series must exist prior calling the function and must all verify (see crsp_obj_verify_ts on page
144) and have the same calendar

Name Array Functions

These functions map elements in the names event array to time series.

FUNCtiON DeSCriptiON paGe
crsp_map_shrcd Map name history share codes to a time series page 166
crsp_map_exchcd Map name history exchange codes to a time series page 170
crsp_map_siccd Map name history siccd codes to a time series page 170
crsp_map_ncusip Map name history name CUSips to a time series page 167

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 166

FUNCtiON DeSCriptiON paGe
crsp_map_ticker Map name history tickers to a time series page 182
crsp_map_comnam Map name history company names to a time series page 168
crsp_map_shrcls Map name history share classes to a time series page 168
crsp_cur_name Finds index of name structure on a select date page 168

crsp_map_shrcd Map Share Codes to a Time Series

prOtOtYpe: int crsp_map_shrcd (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the share type code of the stock event’s names structure over each
restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
 CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
 CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
 CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the names_arr arrtype must be CRSP_STK_NAME_NUM
the trg_ts subtype must be CRSP_SUB_SHRCD_NUM

crsp_map_exchcd Map Exchange Codes to a Time Series

prOtOtYpe: int crsp_map_exchcd (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the exchange code of the stock event’s names structure over each
restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
 CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
 CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
 CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the names_arr arrtype must be CRSP_STK_NAME_NUM
the trg_ts arrtype must be CRSP_INTEGER_NUM and subtype must be CRSP_SUB_EXCHCD_NUM

crsp_map_siccd Map SIC Codes to a Time Series

prOtOtYpe: int crsp_map_siccd (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the SiC code of the stock event’s names structure over each restricted
period according to the target calendar file.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 167

arGUMeNtS: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
 CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
 CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
 CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the names_arr arrtype must be CRSP_STK_NAME_NUM
the trg_ts subtype must be CRSP_SUB_SICCD_NUM

crsp_map_ncusip Map CUSIPs to a Time Series

prOtOtYpe: int crsp_map_ncusip (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the cusip of the stock event’s names structure over each restricted
period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s name histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
 CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
 CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
 CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the names_arr arrtype must be CRSP_STK_NAME_NUM
the trg_ts subtype must be CRSP_SUB_NCUSIP_NUM

crsp_map_ticker Map Tickers to a Time Series

prOtOtYpe: int crsp_map_ticker (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the ticker of the stock event’s names structure over each restricted
period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s name histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
 CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
 CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
 CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the names_arr arrtype must be CRSP_STK_NAME_NUM
the trg_ts subtype must be CRSP_SUB_TICKER_NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 168

crsp_map_comnam Map Company Names to a Time Series

prOtOtYpe: int crsp_map_comnam (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flag)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the company name of the stock event’s names structure over each
restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s names histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the names_arr arrtype must be CRSP_STK_NAME_NUM
the trg_ts subtype must be CRSP_SUB_COMNAM_NUM

crsp_map_shrcls Map Share Classes to a Time Series

prOtOtYpe: int crsp_map_shrcls (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the shares class of the stock event’s names structure over each
restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *names_arr – source CRSP_ARRAY stock event’s name histories
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the names_arr arrtype must be CRSP_STK_NAME_NUM
the trg_ts subtype must be CRSP_SUB_SHRCLS_NUM

crsp_cur_name Finds Index of Name Structure on a Selected Date

prOtOtYpe: int crsp_cur_name (CRSP_ARRAY *names_arr, int ndate, int code)

DeSCriptiON: finds the index of the name structure given a date. if the name is earlier than the first name date it returns a value passed as a parameter.

arGUMeNtS: CRSP_ARRAY *names_arr – pointer to a CRSP_ARRAY with stock names data loaded.
int ndate – date in yyyymmdd format to find
int code – value to return if date earlier than first name

retUrN vaLUeS: name index – index of last name structure effective on or before date passed \
code – if date is before first name structure or names array not initialized.

SiDe eFFeCtS: None

preCONDitiONS: Source names array must exist and be allocated

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 169

NASDAQ Information Mapping Functions

These functions map data in the NASDAQ Information event arrays to time series.

FUNCtiON DeSCriptiON paGe

crsp_map_trtscd Map NaSDaQ status codes to a time series page 169

crsp_map_nmsind Map NaSDaQ National Market indicator to a time series page 169

crsp_map_mmcnt Map NaSDaQ Market Maker count to a time series page 174

crsp_map_nsdinx Map NaSDaQ index code to a time series page 174

crsp_map_trtscd Map NASDAQ Status Codes to a Time Series

prOtOtYpe: int crsp_map_trtscd (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the NaSDaQ status code of the stock event’s nasdin structure over
each restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stock event’s nasdin NaSDaQ information history
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
the trg_ts subtype must be CRSP_SUB_TRTSCD_NUM

crsp_map_nmsind Map NASDAQ National Market Indicator to a Time Series

prOtOtYpe: int crsp_map_nmsind (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the National Market indicator of the stock event’s nasdin stucture over
each restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stk events nasdin NaSDaQ information history
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
the trg_ts subtype must be CRSP_SUB_NMSIND_NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 170

crsp_map_mmcnt Map NASDAQ Market Maker Count to a Time Series

prOtOtYpe: int crsp_map_mmcnt (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the market maker count of the stock event’s nasdin structure over
each restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stk events nasdin NaSDaQ information history
CRSP_TIMESERIES *trg_ts – target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
the trg_ts subtype must be CRSP_SUB_MMCNT_NUM

crsp_map_nsdinx Map NASDAQ Index Code to a Time Series

prOtOtYpe: int crsp_map_nsdinx (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg_ts, int flags)

DeSCriptiON: loads a target time series from a source CRSP_ARRAY by copying the NaSDaQ index code of the stock event’s nasdin structure over
each restricted period according to the target calendar file.

arGUMeNtS: CRSP_ARRAY *nasdin_arr – source CRSP_ARRAY stk events nasdin NaSDaQ information history
CRSP_TIMESERIES *trg_ts target time series
int flags – flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: Source CRSP_ARRAY must be loaded with stock event’s name histories data. the target time series must exist. also, a calendar must be
associated with the target time series.
the nasdin_arr arrtype must be CRSP_STK_NASDIN_NUM
the trg_ts subtype must be CRSP_SUB_NSDINX_NUM

Returns Functions

These functions make various CRSP returns calculations.

FUNCtiON DeSCriptiON paGe
crsp_ret_calc Stock returns Calculations page 170
crsp_ret_calc_del CrSp Delisting returns Calculations page 180
crsp_ret_calc_one returns Calculation for One return page 171
crsp_ret_off_exch Marks returns when it is Not traded on the exchange page 172
crsp_ret_ordinary Determines if a Distribution is Considered Ordinary page 172
crsp_ret_payments Calculates price Factor and Cash Dividend amounts page 172
crsp_stk_ret_append_ts appends return to the End of the returns time Series page 173
crsp_stk_ret_append_dlret appends Delisting return to the returns time Series page 173
crsp_stk_delret_params parses a Delisting parameter File page 173

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 171

crsp_ret_calc Stock Returns Calculations

prOtOtYpe: int crsp_ret_calc (CRSP_STK_STRUCT *stk, CRSP_TIMESERIES *p1, CRSP_TIMESERIES *p2, CRSP_

TIMESERIES *r, CRSP_TIMESERIES *rn, int start, int end, int gapwindow, int validexch)

DeSCriptiON: general CrSp stock returns calculations, with and without dividends, allowing one or two price series for before/after, options on gap limits
before considered missing, and valid exchanges.

arGUMeNtS: CRSP_STK_STRUCT *stk – stock structure with names, distributions, and price data loaded
CRSP_TIMESERIES *p1 – time series of primary prices
CRSP_TIMESERIES *p2 – time series of secondary prices (NULL if unused)
CRSP_TIMESERIES *r – time series to load total returns
CRSP_TIMESERIES *rn – time series to load returns without dividends
int start, end – index range to calculate returns
int gapwindow – gap in periods before considered missing, use 0 for default (10 periods)
int validexch – binary code for valid exchange codes 1=nyse, 2=NYSeMKt, 4=nasd, 8=arca, 0 = no restriction

retUrN vaLUeS: CRSP_SUCCESS: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: return time series objects are loaded with returns data. the subtype of these time series will be set to CRSP_RETURN_NUM. the beg
and end ranges will be set according to start and end parameters and price range, so all previous returns ranges and data loaded will be
erased. if start and end are outside of price ranges missing returns will be generated for the range outside of prices.

preCONDitiONS: it is assumed that r and rn have been allocated and have the same calendar as the price time series. One can be NULL if that type is not
wanted. prices, names and distribution histories must be loaded.

crsp_ret_calc_del CRSP Delisting Returns Calculations

prOtOtYpe: int crsp_ret_calc_del (CRSP_STK_STRUCT *stk, float *delret, float *delretx, float *effnewprc,

int *effnewdt, int gapwindow, int crspnum, int setnum)

DeSCriptiON: CrSp stock delisting returns calculations. the delisting return is the return between the last price and the value of the stock after delisting,
either based on the value given for the stock or the price on a new exchange. returns are calculated with these steps:
find if sufficient delisting information exists to calculate a return; if not, use the correct missing value.
find a payment date and payment amount. the amount will either be the dlprc, the sum of final distributions, or the sum of both. the date
will be the delist date + 1 period, or the nextdt if one is available.
calculate a normal CrSp return between endprc and payment date, using lastprc and payment, using all distributions.

arGUMeNtS: CRSP_STK_STRUCT *stk – stock structure
float *delret – delisting return
float *delretx – delisting return without dividends
float *effnewprc – value after delisting
int *effnewdt – date of value after delisting
int gapwindow – gap in periods before considered missing
int crspnum, setnum – database and set identifiers to load prices, these can be set to -99 if prices are loaded

retUrN vaLUeS: CRSP_SUCCESS: if returns successfully loaded,
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: a delisting return with dividends is placed in dlret. a delisting return without dividends is placed in dlretx. an effective last payment is
placed in effnewprc. the effective date of the last payment is placed in effnewdt. this will load the prices time series if prices are needed
and they are not already loaded.

eXCeptiON CODeS: exception codes (in order of precedence): STK_RMISSR – issue still active, STK_RMISSD – no sources to establish value after delist,
STK_RMISSG – no acceptable previous price to calculate return, STK_RMISSP – trades on new exchange, but no price available.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 172

crsp_ret_calc_one Returns Calculation for One Period

prOtOtYpe: float crsp_ret_calc_one (CRSP_ARRAY *di, float p1, float p2, float *rn, int start, int end)

DeSCriptiON: General CrSp stock returns calculation for one period given two prices, the dates of the two prices, and a distributions array. total return is
returned; return without dividends can be loaded by reference.

arGUMeNtS: CRSP_ARRAY *di – stock distributions structure
float p1 – previous price
float p2 – current price
float *rn – place to load returns without dividends (NULL if unwanted)
int start, end – actual YYYYMMDD dates of p1 and p2
int gapwindow – gap in periods before considered missing

retUrN vaLUeS: total return
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: returns without Dividends is loaded to rn if not NULL

crsp_ret_off_exch Marks Returns when Security is Not Traded on Valid Exchange

prOtOtYpe: int crsp_ret_off_exch (CRSP_ARRAY *nam, CRSP_TIMESERIES *r1, CRSP_TIMESERIES *r2, int start,

int end, int validexch)

DeSCriptiON: uses the names history to mark returns from a time period when not on the desired exchange. returns are marked as off exchange: during
the effective range of a name structure that overlaps the returns range when the exchange code of that name structure is:
0 = (unknown)
1 = known but not one of CrSp-supported exchanges (NYSe, NYSeMKt, NaSDaQ, arCa)
2 = On one of these valid exchanges but not one part of the validexch binary code

arGUMeNtS: CRSP_ARRAY *nam – names array
CRSP_TIMESERIES *r1, *r2 – returns and returns without dividends
int start, end – effective range of returns to check
int validexch – binary code of valid exchanges: 1 = NYSe, 2 = NYSeMKt, 4 = NaSDaQ, 8 = arCa, sum for combinations

retUrN vaLUeS: CRSP_SUCCESS:
CRSP_FAIL: if bad or missing parameters

preCONDitiONS: the two returns time series must be loaded or set to NULL.

crsp_ret_ordinary Determines if a Distribution Is Considered Ordinary

prOtOtYpe: int crsp_ret_ordinary (int code, float facpr)

DeSCriptiON: uses the distribution code and price factor to determine whether a distribution is considered ordinary for the purposes of the returns without
dividends calculation

arGUMeNtS: int code – 4-digit CrSp distribution code
float facpr – CrSp distribution price factor

retUrN vaLUeS: 1 if ordinary
0 if non-ordinary
2 to use factor

SiDe eFFeCtS: None

crsp_ret_payments Calculates Price Factor and Cash Dividend Amounts

prOtOtYpe: int crsp_ret_payments (double *t_fp, double *t_odiv, double *t_ndiv, CRSP_ARRAY *di, int

dp, int date)

DeSCriptiON: calculates price factor and cash dividend amounts for a period using the distribution events array. it is passed a distribution array, a current
event, and an ending date of the period. it cumulates information for all distributions in the period and returns the number of the distribution
after the period.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 173

arGUMeNtS: double *t_fp – price factor for period
*t_odiv – ordinary cash dividends for period
*t_ndiv – non-ordinary cash dividends for period
CRSP_ARRAY *di – distributions array
int dp – current distribution event in array
int date – ending calendar date of period the first three parameters are passed as pointers so they can be loaded with the result values

retUrN vaLUeS: integer: current location in distributions array, this will be the first distribution after date

SiDe eFFeCtS: the parameters t_fp, t_odiv, and t_ndiv are set with period price factor, ordinary amount, and non-ordinary amount

CaLL SeQUeNCe: assumes exdt, distcd order

crsp_stk_ret_append_ts Appends Return to the End of the Returns Time Series

prOtOtYpe: int crsp_stk_ret_append_ts (CRSP_TIMESERIES *ret_ts, float ret, int date)

DeSCriptiON: appends return to the end of the returns time series

arGUMeNtS: CRSP_TIMESERIES *ret_ts – pointer to return time series
float ret – return to be appended to the end of return time series
int date – date (YYYYMMDD) that the return is associated with

retUrN vaLUeS: CRSP_SUCCESS: if return successfully appended
CRSP_FAIL: if date does not follow existing returns range

SiDe eFFeCtS: the return is added to the returns time series on date. all periods between the previous end of returns and the date are loaded with missing
values.

preCONDitiONS: ret_ts must be previously opened. Date must be at least as large as the last day when the return is not missing

crsp_stk_ret_append_dlret Appends Delisting Returns to the Returns Time Series

prOtOtYpe: int crsp_stk_ret_append_dlret (CRSP_STK_STRUCT *stk, CRSP_STK_DLSTCD_LIST *list)

DeSCriptiON: appends delisting returns to the returns time series

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to stock structure
CRSP_STK_DLSTCD_LIST *list – user linked list of values to use as approximations for missing delisting returns of specified delist
code ranges or exchanges.

retUrN vaLUeS: CRSP_SUCCESS: if delist return successfully added
CRSP_FAIL: if needed data not available or error in parameters

SiDe eFFeCtS: the delisting return is appended to the end of the returns time series and the delisting return without dividends is appended to returns
without dividends time series. if the delisting returns are missing or contain partial month returns, the value can be adjusted from a user list
of values. if the security matches the exchange code and delist code from the list and the delisting return is missing, the value from the list is
used. if the security matches and the delisting return is a partial month return, the value from the list is compounded with the partial month
return.

preCONDitiONS: the stock set must be previously loaded with events and returns arrays. the list can be loaded from a user file with the crsp_stk_
delret_params function.

crsp_stk_delret_params Parses a Delisting Parameter File

prOtOtYpe: int crsp_stk_dlret_params (CRSP_STK_DLSTCD_LIST **itemlist, char *filename)

DeSCriptiON: parses a delisting parameter file with information on user replacement values for missing delisting returns based on exchange or delist code.
each different exchange or delist code is represented in this file with a space delimited line with six fields. the fields are beg delisting code,
end delisting code, beg exchange code, end exchange code, delisting return, and delisting return without dividends.

arGUMeNtS: CRSP_STK_DLSTCD_LIST **itemlist – pointer to linked list that will be loaded in with replacement delisting returns information.
char *filename – pointer to string containing path of delist returns parameter file.

retUrN vaLUeS: CRSP_SUCCESS: if list is created successfully
CRSP_FAIL: if an error in parsing arguments opening or reading file, or space allocation

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 174

SiDe eFFeCtS: *filename is opened for read, loaded, and then closed.
Itemlist now points to a loaded linked list with delist parameters loaded.

preCONDitiONS: Itemlist should be set to NULL before starting. Filename must exist with read access in the format described above.

crsp_ret_map_payments Maps Adjustment Factors and Payments to a Time Series

prOtOtYpe: int crsp_ret_map_payments(CRSP_STK_STRUCT *stk, CRSP_TIMESERIES *fp_ts, CRSP_TIMESERIES

*odiv_ts, CRSP_TIMESERIES *ndiv_ts)

DeSCriptiON: calculates payments over range based on distribution events array

arGUMeNtS: CRSP_STK_STRUCT *stk – stock structure with events loaded
CRSP_TIMESERIES *fp_ts – target ts of factor of adjust prices
CRSP_TIMESERIES *odiv_ts – target ts of total ordinary dividend amount
CRSP_TIMESERIES *ndiv_ts – target ts of total dividend amount
it is assumed that at least one of the three target is not NULL and if more than one target exist then they have the same calendar

retUrN vaLUeS: CRSP_SUCCESS: (integer) if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

Shares Outstanding Functions

FUNCtiON DeSCriptiON paGe

crsp_shr_imp Converts raw Shares to imputed Shares to a CrSp array page 174

crsp_shr_reimp Converts raw Shares to imputed Shares in place page 175

crsp_shr_num returns Shares Outstanding on a Given Date page 179

crsp_shr_map Maps the imputed Shares array to a time Series page 179

crsp_shr_raw Converts imputed Shares to raw Shares page 177

crsp_shr_imp Converts Raw Shares to Imputed Shares

prOtOtYpe: int crsp_shr_imp (CRSP_STK_STRUCT *stk, CRSP_ARRAY *impshrs,int uniqflag, int skipflag, int

firstflag)

DeSCriptiON: general imputed CrSp stock shares function: given a standard stock structure with header and events structures, a pre-initialized CRSP_
ARRAY is loaded with shares observations, including those imputed from distribution events. CrSpaccess stock databases are delivered
with imputed shares already loaded.
there are two options: the first is a flag that supports collapsing duplicate events so there is only one share observation on a given date;
the second supports screening of certain types of distributions such as rights from affecting the shares outstanding results. this only uses
ex-date of distributions.

arGUMeNtS: CRSP_STK_STRUCT *stk – source data must have EVENTS loaded
CRSP_ARRAY *impshrs – array that will be loaded. it must exist with enough space to store completed array of share events
int uniqflag – flag for dates with multiple observations 0 – collapse structure so only the last observation on a date is left in the
structure. raw shares observations take precedence over derived ones 1 – allow multiple shares events on the same day. the last will be
used by crsp_shr_map
int skipflag – flag for skipping certain types of dists 1 – ignore facshr from rights 0 – use all facshrs
int firstflag – flag for creating a dummy first observation 0 – do not create a dummy first observation 1 – copy first share structure up to
begdt if available.

retUrN vaLUeS: CRSP_SUCCESS: if shares array successfully loaded,
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: the impshrs array is loaded with imputed shares structures and num is set to the number of shares observations found. shrflg is set
with the following conventions: > 0 distribution event # (index-1 into dists array of facshr) 0 raw shares observation -1 implied 1st
shrs observation (if dist with facshr precedes all raw shares observations, the first shrflg is –1 and the second > 0. -2 implied leading
shares observation, where second is copied forward and shrsdt set to begdt. a value of 2 indicates an observation generated from a
name change event. the shares outstanding for effective observation on the date of the name change is copied to the new observation and
the observation is marked with a share flag of 2.

preCONDitiONS: the impshrs array must have arrtype CRP_STK_SHARE_NUM and subtype STK_SHARES_IMP

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 175

 crsp_shr_reimp Converts Raw Shares to Imputed Shares in Place

prOtOtYpe: int crsp_shr_imp (CRSP_STK_STRUCT *stk, int skipflag)

DeSCriptiON: this function is similar to CrSp_Shr_iMp, but converts raw shares array to imputed shares in place instead of to a CRSP_ARRAY as the
CrSp_Shr_iMp does. Stock structure must loaded with header and events structures.

arGUMeNtS: CRSP_STK_STRUCT *stk – source data must have eveNtS loaded
int skipflag – flag for skipping certain types of distributions
0: ignore facshr from rights
1: use all factors to adjust shares
2:the shares outstanding for effective observation on the date of the name change is copied to the new observation

retUrN vaLUeS: CRSP_SUCCESS: if shares array successfully loaded,
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: the shares array is loaded with imputed shares structures and num is set to the number of shares observations found.
shrflg is set to one digit number with the following conventions:
 0: raw shares observation
 1: shares observation implied by distribution events
 2: shares observation implied by names change events.

preCONDitiONS: Shares must be loaded. the subflag of shares_arr must reflect whether raw (CRSP_SHARES_RAW_NUM=20) or imputed (CRSP_
SHARES_IMP_NUM=0) shares are currently loaded.

crsp_shr_num Returns Shares Outstanding on a Given Date

prOtOtYpe: int crsp_shr_num (CRSP_STK_STRUCT *stk, int date, int skipflag, CRSP_STK_SHARE *share)

DeSCriptiON: returns the shares outstanding on a given date. there is an optional parameter that can return the actual observation date of the shares
outstanding result. Uses crsp_shr_imp to build a static array of imputed shares. if the perMNO is the same, the array is not rebuilt.

arGUMeNtS: CRSP_STK_STRUCT *stk – source data must have EVENTS and HEADER loaded
int date – yymmdd or yyyymmdd date to find shares out
int skipflag – flag for skipping certain types of dists 1 – ignore facshr from rights 0 – use all facshrs
CRSP_STK_SHARE *shares_obs – shares info of actual observation used if set to NULL will not be loaded

retUrN vaLUeS: CRSP_SUCCESS: number of shares outstanding effective on date, 0 if no shares structures or date out of data range
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: if the fourth parameter is passed, it is loaded with the information from the effective shares event.

crsp_shr_map Maps The Imputed Shares Array to a Time Series

prOtOtYpe: int crsp_shr_map (CRSP_STK_STRUCT *stk, CRSP_TIMESERIES *shr_ts, int begind, int endind,

int skipflag)

DeSCriptiON: maps the imputed shares to a time series. Uses crsp_shr_imp to load an imputed shares events array if necessary, then maps the
observations by finding the effective shares outstanding for each date in the calendar.

arGUMeNtS: CRSP_STK_STRUCT *stk – stock structure loaded with heaDer and eveNtS
CRSP_TIMESERIES *shr_ts – pre-initialized time series that will be loaded. Must have array allocated at least up to endind and
calendar set.
int begind, endind – range of indexes into calendar that will be loaded to shrs
int skipflag – flag for skipping certain types of dists 1 – ignore facshr from rights 0 – use facshr loaded with shares

retUrN vaLUeS: CRSP_SUCCESS: (integer) if shares successfully loaded
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: shrs time series is loaded. arr is filled with shares outstanding values and beg and end are set. if there are no shares, structures beg and
end are set to 0; otherwise they inherit parameters begind and endind.

preCONDitiONS: the shr_ts time series must have arrtype CRSP_INTEGER_NUM and subtype CRSP_SHARES_IMP_NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 176

crsp_shr_raw Converts Imputed Shares Into Raw Shares Observations

prOtOtYpe: int crsp_shr_raw (CRSP_ARRAY *shr_arr)

DeSCriptiON: converts imputed shares outstanding events in raw shares. imputed shares are observations directly derived from CrSp distribution events.
these are removed from the shares outstanding observation array.

arGUMeNtS: CRSP_ARRAY *shr_arr – CRSP_ARRAY of imputed shares already loaded

retUrN vaLUeS: CRSP_SUCCESS: if shares successfully modified
CRSP_FAIL: if error in parameters or structures

SiDe eFFeCtS: imputed shares array is converted to raw shares, from subtype STK_SHARES_IMP to STK_SHARES_RAW

SUBSET FUNCTIONS

These functions are used to perform subsetting of stock data based on exchange, share type, NASDAQ market listing, or

when-issued status.

FUNCtiON DeSCriptiON paGe
crsp_stk_subset_all calls the indicated restriction functions page 176
crsp_stk_subset_exch restricts a stock structure by exchange page 181
crsp_stk_subset_shrcd restricts a stock structure by share code page 195
crsp_stk_subset_range restricts a stock structure by date range page 178
crsp_stk_subset_nmsind restricts a stock structure by NaSDaQ National Market status page 187
crsp_stk_subset_wi restricts a stock structure by when-issued status page 179
crsp_stk_subset_freq maps data with a new frequency into a new stock structure page 189
crsp_stk_subset_parload loads a structure of subset parameters (a CrSp_UNiv_paraM_LOaD structure) used by other subset functions page 181
crsp_stk_gen_sum_nasdin summarizes NaSDaQ market maker count page 181

crsp_stk_subset_all Calls the Indicated Restriction Functions

prOtOtYpe: int crsp_stk_subset_all (CRSP_STK_STRUCT *stk, int crspnum, int setid, CRSP_UNIV_PARAM_LOAD

*subpar, char *stat)

DeSCriptiON: Calls other stock restriction functions based on a parameter structure loaded with desired subsetting options.

arGUMeNtS: CRSP_STK_STRUCT *stk – stock structure to restrict
int crspnum – database handle returned by crsp_stk_open.
int setid – set identifier used in call to open and read the stock structure.
CRSP_UNIV_PARAM_LOAD *subpar – pointer to structure containing restriction parameters. See crsp_stk_subset_parload
on page 181 for details of this structure.
char *stat – pointer to location to store two-letter code indicating the return status of the restriction. the codes are:
 DR if restricted or eliminated because of date restriction
 EX if restricted or eliminated because of exchange restriction
 SH if restricted or eliminated because of share code restriction
 NM if restricted or eliminated because of NMS code restriction
 W1 if restricted or eliminated because of when-issued type 1 restriction
 W2 if restricted or eliminated because of when-issued type 2 restriction
 W3 if restricted or eliminated because of when-issued type 3 restriction
 OK if return 1 and no header variables changed
 O# if return 1 and header variables have changed

retUrN vaLUeS: 1: if stock structure successfully restricted and valid data remains
0: if success but issue is totally erased by some restriction
CRSP_FAIL: if error in parameters or processing

SiDe eFFeCtS: the stk structure is modified if partially restricted by one of the subset functions. price time series data may be loaded if needed to identify
ranges of data to delete. the stat character string will be set to a string based on the changes made to the security data.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 177

preCONDitiONS: the subpar structure must be loaded with the parameters specifying the restrictions to make. the stk structure must be opened with at
least header, events, and price modules, and header and events modules must be loaded. the stat pointer must point to at least three
bytes of allocated memory.

crsp_stk_subset_exch Restricts Stock Data by Exchange Code

prOtOtYpe: int crsp_stk_subset_exch (CRSP_STK_STRUCT *stk, int crspnum, int setid, int nameflag, int

shareflag, int wantexch, int subflag)

DeSCriptiON: restricts stock data based on exchange code.
this function uses the exchange Code in the name structures to decide which exchange the issue is listed on, at what time. the wanted
exchanges are specified with a binary code: 1=NYSe, 2=NYSeMKt, 4=NaSDaQ, 8=arCa. when-issued time periods with 3 prefixes are
treated as the base exchange for purposes of this function. Suspends and halts are treated as the previous exchange. Wanted exchange is
the exchange(s) that data will be restricted to.
this restricts by delist date before using the names. it moves price data back to the last delist structure if prices exist after delist. it moves
delist date back to prices if prices end before delisting. it adjusts delistings – it creates a 500 delist if there is any invalid name after the last
valid name and before the old delist date.

arGUMeNtS: CRSP_STK_STRUCT *stk – stock structure to restrict
int crspnum – database handle returned by crsp_stk_open.
int setid – set identifier used in call to open and read the stock structure.
int nameflag – code that determines how name records are handled in the restricted structure.
 0 = keep all name structures
 1 = delete name structures out of range
int shareflag – code that determines how shares outstanding observations out of range are handled: 0 = keep no shares observations
out of range
 1 = keep shares out of range that are applicable to the range
 2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first name structure for the issue with a valid exchange
int wantexch – code of exchanges to keep. the values below can be added together to select multiple exchanges.
 1 = NYSe
 2 = NYSeMKt
 4 = NaSDaQ
 8 = arCa
int subflag – subset flag
 0 = subset data during range
 1 = if ever not valid, delete entire issue 2 = if ever valid make no restrictions

retUrN vaLUeS: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never on valid exchanges
CRSP_FAIL: if error in parameters or processing

SiDe eFFeCtS: the stk structure is modified according to flags if partially restricted. price time series data may be loaded if needed to identify ranges of
data to delete.

preCONDitiONS: the stk structure must be opened with at least header, events, and price modules, and header and events modules must be loaded.

crsp_stk_subset_shrcd Restricts Stock Data by Share Code

prOtOtYpe: int crsp_stk_subset_shrcd (CRSP_STK_STRUCT *stk, CRSP_UNIV_SHRCD *scs, int nameflag, int

shareflag, int subflag)

DeSCriptiON: restricts stock data based on share code.
this function uses the shrcd in the name structures to decide the issue’s share code over time. the share code is a two-digit number where
each digit separately contains information classifying the type of share. the function allows specification of one or more valid first digits and
one or more valid second digits in deciding which share codes are valid.
this function adjusts delistings. it creates a 500 delist if there is any invalid name after the last valid name and before the old delist date.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 178

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict
CRSP_UNIV_SHRCD *scs – pointer to share code restriction structure. there are two required fields in the structure that must be set
to define the restriction. the fields are:
fstdig – bit map of valid first digits of share code. if the n’th bit of fstdig is a 1, the share code n* is considered valid. Bit positions
used in the bit map are the right-most 10 bits, numbered left to right, beginning at 0.
secdig – bit map of valid second digits of share code. if the n’th bit of secdig is a 1, the share code *n is considered valid. Bit
positions used in the bit map are the right-most 10 bits, numbered left to right, beginning at 0.
int nameflag – code that determines how name records are handled in the restricted structure.
 0 = keep all name structures
 1 = delete name structures out of range
int shareflag – code that determines how shares outstanding observations out of range are handled:
 0 = keep no shares observations out of range
 1 = keep shares out of range that are applicable to the range
 2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first valid exchcd name structure for the issue
int subflag – subset flag
 0 = subset data during range
 1 = if ever not valid, delete entire issue
 2 = if ever valid make no restrictions

retUrN vaLUeS: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never had valid share code
CRSP_FAIL: if error in parameters or processing

SiDe eFFeCtS: the stk structure is modified according to flags if partially restricted.

preCONDitiONS: the stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

crsp_stk_subset_range Restricts Stock Data by Date Range

prOtOtYpe: int crsp_stk_subset_range (CRSP_STK_STRUCT *stk, int begdata, int enddata, int nameflag, int

shareflag)

DeSCriptiON: restricts stock data based on date ranges.

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict
int begdata – beginning date in YYYYMMDD format of restricted data.
int enddata – ending date in YYYYMMDD format of restricted data.
int nameflag – code that determines how name records are handled in the restricted structure:
 0 = keep all name structures
 1 = delete name structures out of range
int shareflag – code that determines how shares outstanding observations out of range are handled:
 0 = keep no shares observations out of range
 1 = keep shares out of range that are applicable to the range
 2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first valid exchcd name structure for the issue

retUrN vaLUeS: CRSP_SUCCESS: if included and stock structure successfully restricted
CRSP_NOT_FOUND: if excluded because never had data within range
CRSP_FAIL: if error in parameters or processing

SiDe eFFeCtS: the stk structure is modified according to flags if partially restricted.

preCONDitiONS: the stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 179

crsp_stk_subset_nmsind Restricts Stock Data by NASDAQ Market

prOtOtYpe: int crsp_stk_subset_nmsind (CRSP_STK_STRUCT *stk, int crspnum, int setid, int nmsflag, int

shareflag, int subflag)

DeSCriptiON: restricts stock data based on NaSDaQ market listing.
this function uses exchange Code and NaSDaQ National Market indicator to decide whether the issue is listed on NaSDaQ, and if so, which
NaSDaQ market it is listed on. Only NaSDaQ issues are affected by this function.
the NaSDaQ National Market and SmallCap designations were introduced in 1992. the NaSDaQ National Market, originally called the
National Market System, was introduced in 1984. Before June 15, 1992, issues not listed on the National Market System were not required
to report trades.
NaSDaQ introduced a 3-tier market initiative in July 2006. as a result, the CrSp NaSDaQ National Market indicator (NMSiND) coding
scheme was changed. after July 1, 2006, SmallCap is renamed to Capital Market. National Market is split into two: Global Market and Global
Select Market.

arGUMeNtS: CRSP_STK_STRUCT *stk – stock structure to restrict.
int crspnum – database handle returned by crsp_stk_open.
int setid – set identifier used in call to open and read the stock structure.
int nmsflag – code used to specify valid NaSDaQ markets:
 1 = erase data if nmsind is not 2, 5 or 6 (keep National Market and Global and Global Select Markets only)
 2 = erase data if nmsind is 2, 5 or 6 (keep SmallCap and Capital Market only)
 3 = erase data if nmsind is 1 (keep all NaSDaQ markets with price reporting)
 4 = erase data if nmsind is not 1 (keep SmallCap before June 15, 1992)
 5 = erase data if nmsind is not 2 or 6 (keep National Market and Global Select Market)
 6 = erase data if nmsind is not 2 or 5 (keep National Market and Global Market only)
 7 = erase data if nmsind is not 6 (keep Global Select Market only)
int shareflag – code that determines how shares outstanding observations out of range are handled: 0 = keep no shares observations
out of range
 1 = keep shares out of range that are applicable to the range
 2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first valid exchcd name structure for the issue
int subflag – subset flag
 0 = subset data during range
 1 = if ever not valid, delete entire issue 2 = if ever valid make no restrictions

retUrN vaLUeS: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never on valid exchanges
CRSP_FAIL: if error in parameters or processing

SiDe eFFeCtS: the stk structure is modified according to flags if partially restricted. price time series data may be loaded if needed to identify ranges of
data to delete.

preCONDitiONS: the stk structure must be opened with at least header, events, and price modules, and header and events modules must be loaded.

crsp_stk_subset_wi Restricts Stock Data by When-Issued Status

prOtOtYpe: int crsp_stk_subset_wi (CRSP_STK_STRUCT *stk, int wiflag, int shareflag)

DeSCriptiON: restricts stock data based on when-issued status of an issue.
CrSp classifies when-issued trading into three categories:
type 1 = when-issued trading for new issues before regular-way trading.
type 2 = ex-distribution – simultaneous trading of post-distribution shares before the distribution is official.
type 3 = when-issued trading during a reorganization or bankruptcy proceedings when the market expects the security to return to regular
status.
On type 3 cases, names are not erased, but modified. NaSDaQ 5th character v’s are dropped and the exchange code has 30 subtracted.
they cannot be dropped because they are usually accompanied by a CUSip change. Only type 3 cases are present on CrSp subscriber files.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 180

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict
int wiflag – code that determines which restrictions are made. possible codes are:
 1 = ignore type 1 when-issued cases, erase range, erase name structures
 2 = ignore type 1 when-issued cases, erase range, keep name structures
 3 = ignore type 2 when-issued cases, delete entire issue
 4 = ignore type 3 when-issued cases, erase range, keep name structures
 5 = ignore type 3 when-issued cases, keep range, erase name structure
 6 = ignore type 3 when-issued cases, erase range, erase name structure
int shareflag – code that determines how shares outstanding observations out of range are handled:
 0 = keep no shares observations out of range,
 1 = keep shares out of range that are applicable to the range

retUrN vaLUeS: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never had valid data within range
CRSP_FAIL: if error in parameters or processing

SiDe eFFeCtS: the stk structure is modified according to flags if partially restricted.

preCONDitiONS: the stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

crsp_stk_subset_freq Converts Stock Data to a Different Time Series Frequency

prOtOtYpe: int crsp_stk_subset_freq (CRSP_STK_STRUCT *dstk, CRSP_STK_STRUCT *mstk, CRSP_UNIV_SUM

*summ)

DeSCriptiON: Copies stock data for one security into a new structure with converted time series calendar frequencies. the rules used are based on an
input structure of summary specifications. event data are copied as is.

arGUMeNtS: CRSP_STK_STRUCT *dstk – pointer to input stock structure
CRSP_STK_STRUCT *mstk – pointer to output stock structure
CRSP_UNIV_SUM *summ – pointer to structure with summary rules for conversion. the following fields in the summary structure are
used:
sum_prc – specifications for loading Closing price or Bid/ask average
 0 = last price or bid/ask average of source in period
 1 = average price or bid/ask average of source over period
 2 = median price or bid/ask average of source over period.
 3 = no prices are loaded
 4 = nonmissing price or bid/ask average on the day closest to the last date of the period, within the range of the target period.
sum_sp – specifications for loading Bid or Low and ask or high 0 = last bid or low and last ask or high
 1 = lowest bid or low and highest ask or high
 2 = lowest price or bid/ask average and highest price or bid/ask average
 3 = no bid or low or ask or high data
sum_vol – specifications for loading volume
 0 = last volume in period
 1 = sum of all volumes in period divided by the sum_volume factor constant.
 2 = average of volumes in period
 3 = median of volumes in period 4 = no volumes
sum_ret – specifications for loading returns
 0 = no returns loaded
 1 = compound total returns in period
 2 = compound total returns and returns without Dividends in period
sum_spread – specifications for loading spread or other secondary time series
 0 = spread on last day of period, calculated from bid and ask prices if last date has no trading price
 1 = load no spread, alternate price, bid, or ask time series
 2 = set Spread, Bid, and ask based on last day of period, Number of trades to total number of trades in period, and price
alternate to last nonmissing price or bid-ask average in period
 3 = set price alternate to last nonmissing price in period, and Number of trades to the price alternate Date.
 4 = set Bid and ask to the last value in the period, and set the Number of trades to the sum of trades in the period.

retUrN vaLUeS: number of periods in the resultant price time series for the converted security
CRSP_FAIL: if error in parameters or processing

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 181

SiDe eFFeCtS: the mstk structure is loaded with converted data.

preCONDitiONS: the dstk and mstk structures must be opened with at least header, events, and prices modules, and at least header, events, and prices
modules must be loaded in the input stock structure. the summary structure must be loaded with valid specifications. if adjusted results are
desired, the input stock structure must be adjusted before calling this function.

crsp_stk_subset_parload Loads Subsetting Parameters from a File

prOtOtYpe: int crsp_stk_subset_parload (CRSP_UNIV_PARAM_LOAD *subpar, char *parfile)

DeSCriptiON: Loads a subsetting parameter structure from an input file containing subsetting options. See below for the available options and format of
the input file.

arGUMeNtS: CRSP_UNIV_PARAM_LOAD *subpar – pointer to subset parameter structure to be loaded.
char *parfile – pointer to string containing the path of the parameter input file. the input file must contain text with one or more rows
of specifications. each row must contain one parameter keyword and a corresponding value, separated by spaces. (see parameter Options
Specifications for crsp_stk_subset utility program CUpL Guide, for description of parameter options file)

retUrN vaLUeS: CRSP_SUCCESS: if parameters successfully loaded
CRSP_FAIL: if error in parameters or processing

SiDe eFFeCtS: the subpar structure is loaded with parameter data. the input file is opened, loaded, and closed.

preCONDitiONS: the input file must exist in the proper format. the subpar pointer must point to an allocated CRSP_UNIV_PARAM_LOAD structure.

CRSPAccess C Stock General Data Utility Functions

These functions are used to make general data summaries of stock data.

crsp_stk_gen_sum_nasdin Summarizes NASDAQ Information Events

prOtOtYpe: int crsp_stk_gen_sum_nasdin (CRSP_ARRAY *nasdin_arr, int pct)

DeSCriptiON: Summarizes NaSDaQ information histories by eliminating events when the only change is the number of market makers and the change is
smaller than a certain amount. the limit of change is passed as an integer percentage.

arGUMeNtS: CRSP_ARRAY *nasdin_arr – pointer to NaSDaQ information array to restrict.
int pct – minimum percentage change in Market Maker Count compared to previous before observation is kept.

retUrN vaLUeS: CRSP_SUCCESS: if array successfully summarized
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: the nasdin_arr structure is modified according to the percentage parameter. the kept rows are shifted up and the num counter is
adjusted to reflect the remaining number of observations.

preCONDitiONS: the nasdin_arr array must be allocated with arrtype = 55 and loaded data.

crsp_stk_gen_hdr_fromnam Resets Header Identification Information

prOtOtYpe: int crsp_stk_gen_hdr_fromnam (CRSP_STK_STRUCT *stk)

DeSCriptiON: resets header identification information in a stock structure using the names array.

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to stock structure to modify

retUrN vaLUeS: CRSP_SUCCESS: if stock structure successfully summarized
CRSP_FAIL: if error in parameters or structure not loaded

SiDe eFFeCtS: the stock structure header structure is modified by the names array

preCONDitiONS: the stock structure must be allocated, opened with at least headers and events, and loaded with at least headers and events.

http://www.crsp.com/products/documentation/crspstksubset-0
http://www.crsp.com/products/documentation/crspstksubset-0

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 182

CRSPAccess C Stock Delete Range Data Utility Functions

These functions are used to delete ranges of stock data.

FUNCtiON DeSCriptiON paGe
crsp_stk_delrng_all Delete ranges of data from stock structure page 200

crsp_stk_delrng_names Delete ranges of data from names array page 182

crsp_stk_delrng_dists Delete ranges of data from distribution array page 192

crsp_stk_delrng_nasdin Delete ranges of data from NaSDaQ information array page 183

crsp_stk_delrng_groups Delete ranges of data from groups array page 184

crsp_stk_delrng_delists Delete ranges of data from delisting array page 183

crsp_stk_delrng_shares Delete ranges of data from shares array page 184

crsp_stk_delrng_resetdt reset the header beginning and ending dates page 184

crsp_stk_delrng_all Deletes Ranges of Stock Data

prOtOtYpe: int crsp_stk_delrng_all (CRSP_STK_STRUCT *stk, int beg_date, int end_date, int data_beg,

int namflg, int shrflg, int ndiflg)

DeSCriptiON: Deletes ranges of data from a stock structure by calling other delete range functions.

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to stock structure to restrict
int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.
int data_beg – first date of prices before restriction, in YYYYMMDD format
int namflg – code to determine how name history is modified by restrictions
 0 = names events are not deleted
 1 = names events are to be deleted, and data exists after the last name
 2 = names events are to be deleted, and data does not exist after the last name
int shrflg – code to determine how shares observations are modified by restrictions
 0 = delete any shares observations in the range
 1 = keep any shares observations in the range that apply outside the range
int ndiflg – code to determine how the NaSDaQ information history is modified by restrictions
 0 = no NaSDaQ information event deletions
 1 = NaSDaQ information events can be deleted

retUrN vaLUeS: 0 = if there are no data after the deletion
1 = if there are events data after the deletion
2 = if there are time series data after the deletion
3 = if there are time series and events data after the deletion
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: the stk structure is modified according to the other parameters.

preCONDitiONS: the stk structure must be allocated and loaded with at least header, events, and price data.

crsp_stk_delrng_names Deletes Ranges of Stock Names Data

prOtOtYpe: int crsp_stk_delrng_names (CRSP_ARRAY *names_arr, int beg_date, int end_date, int namflg)

DeSCriptiON: Deletes ranges of stock names data

arGUMeNtS: CRSP_ARRAY *names_arr – pointer to names array to restrict
int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.
int namflg – code to determine how name history is modified by restrictions
 0 = names events are not deleted
 1 = names events are to be deleted, and data exists after the last name
 2 = names events are to be deleted, and data does not exist after the last name

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 183

retUrN vaLUeS: 0 = if there are no data after the deletion
1 = if there are names data after the deletion
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: the names_arr array is modified according to the other parameters.

preCONDitiONS: the names_arr array must be allocated and loaded with arrtype = 54.

crsp_stk_delrng_dists Deletes Ranges of Stock Distribution Data

prOtOtYpe: int crsp_stk_delrng_dists (CRSP_ARRAY *dists_arr, CRSP_ARRAY *delist_arr, int beg_date, int

end_date)

DeSCriptiON: Deletes ranges of stock distribution data. if the delisting date is in the range to delete, all final distributions are also removed. ex-Distribution
date of distributions is used in restrictions.

arGUMeNtS: CRSP_ARRAY *dists_arr – pointer to loaded distributions array to restrict
CRSP_ARRAY *delist_arr – pointer to loaded delisting array
int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.

retUrN vaLUeS: 0 = if there are no distributions data after the deletion
1 = if there are distributions data after the deletion
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: the dists_arr array is modified according to the other parameters.

preCONDitiONS: the dists_arr array must be allocated and loaded with arrtype = 52. the delist_arr array must be allocated and loaded with
arrtype = 54.

crsp_stk_delrng_delists Deletes Ranges of Stock Delisting Data

prOtOtYpe: int crsp_stk_delrng_delists (CRSP_ARRAY *delist_arr, int beg_date, int end_date)

DeSCriptiON: Deletes ranges of stock delisting data. if no delisting events remain, one is added and coded as active.

arGUMeNtS: CRSP_ARRAY *delist_arr – pointer to loaded delisting array to modify.
int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.

retUrN vaLUeS: 1 = if there is delisting data after the deletion
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: the delist_arr array is modified according to the other parameters.

preCONDitiONS: the delist_arr array must be allocated and loaded with arrtype = 54

crsp_stk_delrng_nasdin Deletes Ranges of Stock NASDAQ Information Data

prOtOtYpe: int crsp_stk_delrng_nasdin (CRSP_ARRAY *nasdin_arr, int beg_date, int end_date)

DeSCriptiON: Deletes ranges of NaSDaQ information data.

arGUMeNtS: CRSP_ARRAY *nasdin_arr – pointer to loaded NaSDaQ information array to restrict.
int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.

retUrN vaLUeS: 0 = if there is no NaSDaQ information data after the deletion
1 = if there is NaSDaQ information data after the deletion
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: the nasdin_arr array is modified according to the other parameters.

preCONDitiONS: the nasdin_arr array must be allocated and loaded with arrtype = 55.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 184

crsp_stk_delrng_shares Deletes Ranges of Stock Shares Outstanding Data

prOtOtYpe: int crsp_stk_delrng_shares (CRSP_ARRAY *shares_arr, int beg_date, int end_date, int data_

beg int keepflg)

DeSCriptiON: Deletes ranges of shares outstanding observation data.

arGUMeNtS: CRSP_ARRAY *shares_arr – pointer to loaded shares array to restrict
int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.
int data_beg – first date of prices before restriction, in YYYYMMDD format
int keepflg:
 0 will delete all shares within delete range based on observation date only – the first will be kept if it applies to outside the range
 1 will keep any observations that apply to data before and after the delete range

retUrN vaLUeS: 0 = if there are no shares data after the deletion
1 = if there are shares data after the deletion
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: the shares_arr array is modified according to the other parameters. the shares array is modified by removing rows to beginning and end
and splitting or setting existing rows to shares outstanding = 0 when a range is removed not on an edge. this may change the observation
dates based on the subset dates. all adjacent shares outstanding 0 gaps are consolidated.

preCONDitiONS: the shares_arr array must be allocated and loaded with arrtype = 53. the function expects input of shares loaded with shsenddts
(shares end dates) set.

crsp_stk_delrng_groups Deletes Ranges of Stock Group

prOtOtYpe: int crsp_stk_delrng_groups (CRSP_ARRAY **groups_arr, int grouptypes, int beg_date, int end_

date)

DeSCriptiON: Deletes ranges of stock group data for all types.

arGUMeNtS: CRSP_ARRAY **groups_arr – pointer to array of pointers to loaded group arrays to restrict
int grouptypes – the number of group arrays in the array of pointers
int beg_date – beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date – ending date of delete range, in YYYYMMDD format. end_date is not deleted.

retUrN vaLUeS: 0 = if there are no group data after the deletion
1 = if there are group data after the deletion
CRSP_FAIL: if error in parameters

SiDe eFFeCtS: all the group_arr arrays are modified according to the other parameters.

preCONDitiONS: the group_arr arrays must be allocated and loaded with arrtype = 57.

 crsp_stk_delrng_resetdt Resets Header Date Ranges from Time Series

prOtOtYpe: int crsp_stk_delrng_resetdt (CRSP_STK_STRUCT *stk)

DeSCriptiON: resets header begdt and enddt fields from available time series in the stock structure.

arGUMeNtS: CRSP_STK_STRUCT *stk – pointer to stock structure

retUrN vaLUeS: 0 = if there are no time series data and ranges are set to 0
1 = if there are time series data after the deletion

SiDe eFFeCtS: the stk structure begdt and enddt are modified.

preCONDitiONS: the stk structure must be allocated with at least header data opened. the ranges will only be set based on the time series loaded in the
stock structure.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 185

CRSPAccess C Stock Valid Data Utility Functions

These functions are used to determine whether data are valid for different filtering criteria.

FUNCtiON DeSCriptiON paGe
crsp_stk_valid_exchcd Determines if exchange code is valid page 185
crsp_stk_valid_nmsind Determines if NaSDaQ National Market indicator is valid page 185
crsp_stk_valid_shrcd Determines if Share Code is valid page 193
crsp_stk_valid_shrcd_ld Sets up a CRSP_UNIV_SHRCD structure for checking valid share codes page 186

crsp_stk_valid_exchcd Determines if Exchange Code is Valid

prOtOtYpe: int crsp_stk_valid_exchcd (int exhave, int exwant)

DeSCriptiON: Determines if a given exchange code is valid based on a set of wanted exchanges. when-issued trading is not differentiated from regular-
way trading.

arGUMeNtS: int exhave – exchange Code to validate. Codes are standard CrSp stock exchange Codes:
 1=NYSe
 2=NYSeMKt
 3=NaSDaQ
 4=arCa
 31=NYSe when-issued
 32=NYSeMKt when-issued
 33=NaSDaQ when-issued
 34=arCa when-issued
int exwant – acceptable exchange Code or codes. if multiple exchanges are valid, exwant is the sum of the individual codes below:
 1=NYSe
 2=NYSeMKt
 4=NaSDaQ
 8=arCa

retUrN vaLUeS: 0 = if exhave is valid according to exwant
-1 = if exhave is not valid according to exwant

SiDe eFFeCtS: none

preCONDitiONS: none

crsp_stk_valid_nmsind Determines if NASDAQ National Market Indicator is Valid

prOtOtYpe: int crsp_stk_valid_exchcd (int nmscode, int nmsind)

DeSCriptiON: Determines if a given NaSDaQ National Market indicator code is valid based on a set of valid codes.

arGUMeNtS: int nmscode – acceptable NaSDaQ National Market indicator Code. Codes are:
 1 = invalid if NaSDaQ National Market indicator Code is not 2, 5 or 6 (only National Market and Global and Global Select Markets are valid)
 2 = invalid if NaSDaQ National Market indicator Code is 2, 5 or 6 (only SmallCap and Capital Market are valid)
 3 = invalid if NaSDaQ National Market indicator Code is 1 (all NaSDaQ markets with price reporting are valid)
 4 = invalid if NaSDaQ National Market indicator Code is not 1 (only SmallCap before June 15, 1992 is valid)
 5 = invalid if NaSDaQ National Market indicator Code is not 2 or 6 (only National Market and Global Select Market are valid)
 6 = invalid if NaSDaQ National Market indicator Code is not 2 or 5 (only National Market and Global Market are valid) 7 = invalid
if NaSDaQ National Market indicator Code is not 6 (only Global Select Market is valid)
int nmsind – actual NaSDaQ National Market indicator to validate.

retUrN vaLUeS: 0 = if nmsind is valid according to nmscode

-1 = if nmsind is not valid according to nmscode

SiDe eFFeCtS: none

preCONDitiONS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 186

crsp_stk_valid_shrcd Determines if Share Code is Valid

prOtOtYpe: int crsp_stk_valid_shrcd (CRSP_UNIV_SHRCD *scs, int shrcd)

DeSCriptiON: Determines if a given share code is valid based on a map of acceptable first and second digits of the CrSp Share Code.

arGUMeNtS: CRSP_UNIV_SHRCD *scs – loaded structure containing information of valid Share Codes. Desired codes are loaded as bit maps into
two fields in the structure, fstdig for the first Share Code digit, and scddig for the second Share Code digit. the bit map fields are loaded
so that the right-most 10 bits n to n+9 are set. if the nth bit is set to 1 then the Share Code digit n is valid. if the nth bit is set to 0 then the
Share code digit n is invalid. See the function crsp_stk_valid_shrcd_ld to load this structure.
int shrcd – actual Share Code to validate.

retUrN vaLUeS: 0 = if shrcd is valid according to the scs structure
-1 = if shrcd is not valid according to the scs structure

SiDe eFFeCtS: none

preCONDitiONS: none

crsp_stk_valid_shrcd_ld Loads a Structure Used to Specify Valid Share Codes

prOtOtYpe: int crsp_stk_valid_shrcd (CRSP_UNIV_SHRCD *scs, int sc_code, char *leftdig, char *rightdig)

DeSCriptiON: this function sets up a CRSP_UNIV_SHRCD structure used by crsp_stk_valid_shrcd. it is passed a pointer to the structure,
a code of possible subsets, and two strings of flags to specify subsets by digits. Certain codes are supported automatically. these are
described below.

arGUMeNtS: CRSP_UNIV_SHRCD *scs – pointer to structure to load with valid share code criteria
int sc_code – code describing a standard or user-defined set of restrictions. available codes are:
 CRSP_SUB_SCNY(=1)–CrSp NYSe and NYSeMKt standard restrictions; first digit 1,2,3,4,7 allowed, all second digits
allowed except 6 and 7
 CRSP_SUB_SCNQ(=2)–CrSp NaSDaQ standard restrictions; same but also exclude second digit 2 and 5
 CRSP_SUB_SCCAP(=3)–Cap-Based portfolios restrictions; same as 1, but also exclude first digit 3 and second digit 2,4,5,8, and 9
 CRSP_SUB_SCSIC(=4)–CrSp total return indexes; same but also include first digit of 9.
 CRSP_SUB_SCFIL(=5)–restrictions specified by user. See the following parameters.
char *leftdig – 10-digit character string made of 0’s and 1’s specifying which left digits of the Share Code are valid. if the n’th
position in the string (starting from 0) is a 1, then a Share Code with a left digit of n is valid. leftdig is ignored unless sc_code is 5.
char *rightdig – 10-digit character string made of 0’s and 1’s specifying which right digits of the Share Code are valid. if the n’th
position in the string (starting from 0) is a 1, then a Share Code with a right digit of n is valid. rightdig is ignored unless sc_code is 5.
for example, to allow only share codes of 10, 11, and 30, and 31, set leftdig to “010100000” and rightdig to “1100000000”

retUrN vaLUeS: 0 = if shrcd is valid according to the scs structure

-1 = if shrcd is not valid according to the scs structure

SiDe eFFeCtS: none

preCONDitiONS: none

Translation Functions

These functions translate stock data in one or more time series to another. The different time series can be based on

different calendars.

FUNCtiON DeSCriptiON paGe
crsp_trans_comp_returns Compounds returns from one time series to another page 187
crsp_trans_last translates time Series Based On Last value in range page 190
crsp_trans_first translates time Series Based On First value in range page 187
crsp_trans_max translates time Series Based On Maximum value in range page 198
crsp_trans_min translates time Series Based On Minimum value in range page 188
crsp_trans_average translates time Series Based On average value in range page 189
crsp_trans_median translates time Series Based On Median value in range page 187

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 187

FUNCtiON DeSCriptiON paGe
crsp_trans_total translates time Series Based On total value in range page 189
crsp_trans_last_closest translates time Series Based On Closest Nonmissing value in range page 200
crsp_trans_last_previous translates time Series Based On Last Nonmissing value in range page 195
crsp_trans_level Loads a target time Series with index Level prices page 192
crsp_trans_cumret Loads a target time Series with Cumulative returns page 191
crsp_trans_port Maps portfolio assignments to a New time Series page 191
crsp_trans_stat Maps portfolio Statistics to a New time Series page 195
crsp_trans_cap Loads a target time Series with Capitalization Data page 192
crsp_trans_gen_prc General translation price Function page 192

crsp_trans_comp_returns Compounds Returns From One Time Series to Another

prOtOtYpe: int crsp_trans_comp_returns(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the compounded returns over each restricted period according to the
calendar file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded and space allocated
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: src_ts and trg_ts arrtype is CRSP_FLOAT_NUM and subtype is CRSP_RETURN_NUM

 crsp_trans_last Translates Time Series Based on Last Value in Range

prOtOtYpe: int crsp_trans_last(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the last price or volume over each restricted period according to the calendar
file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: if the src_ts arrtype is CRSP_FLOAT_NUM thesubtype mustbe CRSP_PRICE_NUM or CRSP_PRICE_ADJ_NUM or CRSP_
LEVEL_NUM.

if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM or CRSP_VOLUME_ADJ_NUM or
CRSP_COUNT_NUM.

if the src_ts arrtype is CRSP_DOUBLE_NUM the subtype must be CRSP_WEIGHT_NUM or CRSP_CAP_NUM.
the src_ts and trg_ts must have the same arrtype and subtype.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 188

crsp_trans_first Translates Time Series Based on First Value in Range

prOtOtYpe: int crsp_trans_first (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying th.e last price or volume over each restricted period according to the calendar
file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: if the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
the src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_max Translates Time Series Based on Maximum Value in Range

prOtOtYpe: int crsp_trans_max (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the maximum price or volume over each restricted period according to the
calendar file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitONS: if the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
the src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_min Translates Time Series Based on Minimum Value in Range

prOtOtYpe: int crsp_trans_min (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the minimum price or volume over each restricted period according to the
calendar file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitONS: if the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
the src_ts and trg_ts must have the same arrtype and subtype

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 189

crsp_trans_average Translates Time Series Based on Average Value in Range

prOtOtYpe: int crsp_trans_average (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the average price or volume over each restricted period according to the
calendar file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: if the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
the src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_median Translates Time Series Based on Median Value in Range

prOtOtYpe: int crsp_trans_median (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the median price or volume over each restricted period according to the
calendar file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: if the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
the src_ts and trg_ts must have the same arrtype and subtype

SiDe eFFeCtS: possible performance hit if large time series

crsp_trans_total Translates Time Series Based on Total Value in Range

prOtOtYpe: int crsp_trans_total (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series, totalling data when converting to different calendars. if the source periods are shorter
than the target periods, values in all source periods within a target period are summed before loading. if the source periods are longer than
target periods, values of the source periods are averaged across all target periods, and the same value is loaded to all target periods in that
range.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 190

preCONDitiONS: the src_ts arrtype must be CRSP_FLOAT_NUM or CRSP_INTEGER_NUM
if it is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if it is CRSP_INTEGER_NUM, the subtype must be one of CRSP_VOLUME_NUM, CRSP_VOLUME_ADJ_NUM, or CRSP_COUNT_NUM
the target arrtype must be CRSP_INTEGER_NUM, CRSP_FLOAT_NUM, or CRSP_DOUBLE_NUM

crsp_trans_last_closest Translates Time Series Based on Closest Nonmissing Value

prOtOtYpe: int crsp_trans_last_closest (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, CRSP_ARRAY *dists, int dlylim,
int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the closest non-missing to last price (price over each restricted period
according to the calendar file). this adjusts the price if there are any distributions between it and month- end so that the return will be
calculated properly. passed a limit of days to use before giving up. if ties, preceding data gets precedence. will not go outside of current or
next period. also sets the begin and end.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series CRSP_ARRAY *dists – CRSP_ARRAY of distributions int dlylim – limit of date
periods to use before giving up
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

SiDe eFFeCtS: target, price flag, and last date time series are loaded and their ranges are set

preCONDitiONS: if the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
the src_ts and trg_ts must have the same arrtype and subtype

crsp_trans_last_previous Translates Time Series Based on Last Nonmissing Value in Range

prOtOtYpe: int crsp_trans_last_previous (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, CRSP_TIMESERIES *prcflag_
ts, CRSP_TIMESERIES *lastdt_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the previous non-missing to last price over each restricted period according to
the calendar file. also loads the prcflag and lastdt time series according to the case and the date of the non-missing value found. will not go
outside of current period.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
CRSP_TIMESERIES *prcflag_ts – price flag time series. each period is set to -1 if no non-zero price if a period- end price is found,
and 1 if an earlier price in the period is found.
CRSP_TIMESERIES *lastdt_ts – last date time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: if the src_ts arrtype is CRSP_FLOAT_NUM, the subtype must be CRSP_PRICE_NUM
if the src_ts arrtype is CRSP_INTEGER_NUM, the subtype must be CRSP_VOLUME_NUM
the src_ts and trg_ts must have the same arrtype and subtype

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 191

crsp_trans_level Loads a Target Time Series with Index Levels

prOtOtYpe: int crsp_trans_level (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int basedt, float

baseamt)

DeSCriptiON: loads a target time series with index level prices from a source time series with returns based on a base date and base amount for that date.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series of returns
CRSP_TIMESERIES *trg_ts – target time series of prices
int basedt – base date, YYYYMMDD date where levels are anchored. Level on this date is set to baseamt and other levels are set by
successively compounding returns from the starting point.
float baseamt – base amount, if = 0 the baseamt = source on basedt. target time series will contain baseamt on basedt.

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

SiDe eFFeCtS: target time series is loaded with levels. Subtype of target is set to CRSP_LEVEL_NUM

preCONDitiONS: src can be same as trg. Normally target subtype must be CRSP_LEVEL_NUM but if src=trg must be CRSP_RETURN_NUM.
src_ts and trg_ts must have the same calendar.

crsp_trans_cumret Loads a Target Time Series with Cumulative Returns

prOtOtYpe: int crsp_trans_cumret (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int basedt)

DeSCriptiON: loads a target time series with cumulative returns from a source time series with level prices based on a base date.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series of reruns
CRSP_TIMESERIES *trg_ts – target time series of prices
int basedt – base date

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: if the src_ts arrtype is CRSP_RETURN_NUM the subtype must be CRSP_RETURN_CUM_NUM
if the src_ts arrtype is CRSP_LEVEL_NUM the subtype must be CRSP_RETURN_NUM

crsp_trans_port Maps Portfolio Assignments to a New Time Series

prOtOtYpe: int crsp_trans_port (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the last portfolio number over each restricted period according to the
calendar file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: the src_ts arrtype is CRSP_STK_PORT_NUM
the trg_ts arrtype is CRSP_INTEGER_NUM and the subtype must be CRSP_PORT_PORT_NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN C PAGE 192

crsp_trans_stat Maps Portfolio Statistics to a New Time Series

prOtOtYpe: int crsp_trans_stat (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ts, int par_flag)

DeSCriptiON: loads a target time series from a source time series by copying the last portfolio statistic number over each restricted period according to the
calendar file.

arGUMeNtS: CRSP_TIMESERIES *src_ts – source time series
CRSP_TIMESERIES *trg_ts – target time series
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: the src_ts arrtype is CRSP_STK_PORT_NUM
the trg_ts arrtype is CRSP_DOUBLE_NUM and the subtype must be CRSP_PORT_STAT_NUM

crsp_trans_cap Loads a Target Time Series with Capitalization Data

prOtOtYpe: int crsp_trans_cap (CRSP_TIMESERIES *prc_ts, CRSP_TIMESERIES *shr_ts, CRSP_TIMESERIES *cap_

ts, int flags)

DeSCriptiON: loads a target time series with capitalization data from two source time series – one with prices and the other with shares – by multiplying
the two values over each period according to the calendar file.

arGUMeNtS: CRSP_TIMESERIES *prc_ts – input prices time series
CRSP_TIMESERIES *shr_ts – input shares time series
CRSP_TIMESERIES *cap_ts – output capitalization time series
int flags – flags passed to the function:
CRSP_ACTUAL means cap from the source is moved to the same period on target cap[i] = prc[i] * shr[i]
CRSP_EFFECTIVE means cap from the source is moved to the next period on target cap[i+1] = prc[i] * SHR[I]

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

preCONDitiONS: if the prc_ts subtype is CRSP_PRICE_ADJ_NUM the shr_ts subtype must be CRSP_SHARES_ADJ_NUM
if the prc_ts subtype is CRSP_PRICE_NUM the shr_ts subtype must be CRSP_SHARES_IMP_NUM
the cap_ts arrtype is CRSP_DOUBLE_NUM and the subtype is CRSP_CAP_NUM
the prc_ts shr_ts and cap_ts must have the same calendar

crsp_trans_gen_prc General Translation Price Function

prOtOtYpe: int crsp_trans_gen_prc (CRSP_TIMESERIES *srcprc_ts, CRSP_TIMESERIES *trgprc_ts, CRSP_STK_

STRUCT *stkptr, int case_flag, int adj_flag, int par_flag)

DeSCriptiON: loads a target time series from a source time series by linking between the two calendars and copying the price values to the target time
series. Uses other translation functions to adjust, use last or last nonmissing price in range. General translation price function, used for prc,
ask, bid, askhi, bidlo, adjprc, adjask, adjbid, adjaskhi, adjbidlo

arGUMeNtS: CRSP_TIMESERIES *srcprc_ts – source price time series
CRSP_TIMESERIES *trgprc_ts – target price time series
CRSP_STK_STRUCT *stkptr – stock structure pointer
int case_flag – last value or previous nonmissing price in range (0, 1)
int adj_flag – adjust or not (1, 0)
int par_flag – determines how missing values affect beg and end of target:
 0 = allow missing values at beginning and ending of target range
 1 = not allow missing values at beginning of target range
 2 = not allow missing values at ending of target range
 3 = not allow missing values at beginning and ending of target range

retUrN vaLUeS: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if error in parameters or loading process

PAGE 192

Chapter 6: LeGaCY Set aCCeSS iN FOrtraN

FOrtraN-95 Data StrUCtUreS
FORTRAN-95 Programming provides complete support for CRSP databases, including direct access on PERMNO, CUSIP

and other header variables, and full support of all data items. INCLUDE files containing TYPE definitions, an object library

to support linking, and sample programs illustrating access methods are available.

DATA ORGANIZATION FOR FORTRAN-95 PROGRAMMING

The basic levels of a CRSPAccess database are the database, set type, set id, module, object, and array. They are defined

as follows:

• Database (CRSPDB) is the directory containing the database files. A CRSPDB is identified by its database path.

• Set Type is a predefined type of financial data. Each set type has its own defined set of data structures, specialized
access functions, and keys. CRSPAccess databases support stock (STK) and index (IND) set types. A CRSPDB can
include more than one set type.

• Set Identifier (SETID) is a defined subset of a set type. SETIDs of the same set type use the same access functions,
structures, and keys, but have different characteristics within those structures. For example, daily stock sets use the
same data structure as monthly stock sets, but time series are associated with different calendars. Multiple SETIDs of
the same set type can be present in one CRSPDB.

• Modules are the groupings of data found in the data files in a CRSPDB. Multiple data items can be present in a module.
Data are retrieved from storage on disk at the module level, and access functions retrieve data items for keys based on
selected modules. Modules correspond to physical data files.

• Objects are the fundamental data types defined for each set type. There are three fundamental object types: time
series (CRSP_TIMESERIES), arrays (CRSP_ARRAY), and headers (CRSP_ROW). Objects contain header information
such as counts, ranges, or associated calendars (CRSP_CAL) plus arrays of data for zero or more observations. Some
set types support arrays of objects of a single type. In this case, the number of available objects is determined by the
SETID, and each of the objects in the list has independent counts, ranges, or associated calendars.

• Arrays are attached to each object. Each array contains a set of observations and is the basic level of program- ming
access. An observation can be a simple data type such as an integer from an array of volumes, or a complex struc-
ture such as one record from name history. When there is an array of objects, there is a corresponding array of arrays
within the data.

DATA OBJECTS

There are four basic types of information stored in CRSP databases. Each is associated with a CRSP object structure.

• Header Information. These are identifiers with no implied time component. Header data contain the most current
CRSPAccess information stored in the databases.

• Event Arrays. Arrays can represent status changes, sporadic events, or observations. The time of the event and rel-
evant information is stored for each observation. There is a count of the number of observations for each type of event
data.

• Time Series Arrays. An observation is available for each period in an associated calendar. Beginning and ending valid
data are available for each type of time series data. Data are stored for each period in the range – missing values are
stored as placeholders if information is not available for a period.

• Calendar Arrays. Each time series corresponds to an array of relevant dates. This calendar array is used in conjunction

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 193

with the time series arrays to attach dates to observations.

An observation can be a simple value or contain multiple components such as codes and amounts. Time series, except

Portfolios, are based on calendars which share the frequency of the database. In a monthly database, the time series are

based on a month-end trading date calendar. In a daily database, the time series are based on a daily trading date calendar

that excludes market holidays. Portfolio calendars are dependent on the rebalancing methodology of the specific portfolio

type. All calendars are attached automatically to each requested time series object when the database is opened.

There are four base CRSPAccess FORTRAN-95 structures called objects used in CRSPDBs. The following table contains

each of the objects in bold upper-case, followed by the components, lower-case and indented, which each object type

contains. All data items are defined in terms of the following objects:

OBJeCt Or FieLD USaGe Data tYpe
CRSP_ARRAY StrUCtUre FOr StOriNG eveNt-tYpe Data
objtype object type code identifies the structure as a CRSP_ARRAY, always = 3 INTEGER

arrtype array type code defines the structure in the array. Base FOrtraN-95 types or CrSp-defined structures each have
associated codes defined in the constants header file

INTEGER

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type
fields.

INTEGER

maxarr maximum number of array elements containing valid data INTEGER

num number of array elements containing valid data INTEGER

dummy data secondary subtype code INTEGER

CRSP_ROW Structure for storing header data
objtype object type code identifies the structure as a CRSP_ROW, always = 5 INTEGER

arrtype array type code defines the structure in the array. Base FOrtraN-95 types or CrSp-defined structures each have
associated codes defined in the constants header file

INTEGER

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type
fields.

INTEGER

CRSP_TIMESERIES StrUCtUre FOr StOriNG tiMe SerieS Data
objtype object type code identifies the structure as a CRSP_TIMESERIES, always = 2 INTEGER

arrtype array type code defines the structure in the array. Base FOrtraN-95 types or CrSp-defined structures each have
associated codes defined in the constants header file

INTEGER

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type
fields.

INTEGER

maxarr maximum number of array elements INTEGER

beg first array index having valid data for the current record. (0 if no valid range.) INTEGER

end last array index having valid data for the current record. (0 if no valid range.) INTEGER

caltype calendar time period description code describes the type of time periods. Calendar type (caltype) is always 2,
indicating time periods are described in the Calendar trading Date (caldt) array by the last trading date in the period.

INTEGER

cal calendar associated with time series is a pointer to the calendar associated with the time series array. the calendar
includes the matching period- ending dates for each array index.

CRSP_CAL,

POINTER

CRSP_CAL tYpe FOr StOriNG CaLeNDar periOD Data
objtype object type code identifies the structure as a CRSP_CAL, always = 1 INTEGER

calid calendar identification number is an identifier assigned to each specific calendar by CrSp INTEGER

maxarr maximum number of trading periods allocated for the calendar INTEGER

loadflag calendar type availability flag is a code indicating the types of calendar arrays loaded. Currently = 2 for calendar
trading date (caldt) only

INTEGER

ndays number of valid dates in calendar (index of last valid date in caldt) INTEGER

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 194

OBJeCt Or FieLD USaGe Data tYpe
name the calendar name in text CHAR[80]

callist calendar period grouping identifiers reserved for array of alternate grouping identifiers for calendar periods *

caldt calendar trading date is an array of calendar period ending dates, stored in CCYYMMDD format. Calendars start at
element 1 and end at element number of days (ndays)

*

calmap used to store array of first and last calendar period array elements in a calendar linked to elements in this calendar CRSP_CAL_MAP *

basecal used to point to a calendar linked in calmap CRSP_CAL *

SET STRUCTURES AND USAGE

Stock and index access functions initialize and load data to FORTRAN-95 top-level defined set structures. Top- level

structures are built from general object and array structure definitions and contain object and array pointers that have

memory allocated to them by access open functions.

Two set types and six set identifiers are currently supported for stock and index data. The identifier must be specified when

opening or accessing data from the set.

Data Set tYpe Set iDeNtiFierS FreQUeNCY

CrSp Stock Data StK 10 StK_DaiLY Daily

20 StK_MONthLY Monthly

CrSp indexes Data iND 400 MONthLY_iNDeX_GrOUpS Monthly Groups (in CrSp index product only)

420 MONthLY_iNDeX_SerieS Monthly Series

440 DaiLY_iNDeX_GrOUpS Daily Groups (in CrSp index product only)

460 DaiLY_iNDeX_SerieS Daily Series

Each set structure has three types of pointer definitions.

• Module pointers to CRSP_OBJECT_ELEMENT linked lists are needed internally to keep track of the objects in a module.
These have the suffix _obj and can be ignored by ordinary programming.

• Object pointers define a CRSP_ARRAY, CRSP_ROW, or CRSP_TIMESERIES object type. A suffix, _arr, _ts, or _row is ap-
pended to the variable name. Valid range variables num, beg, and end are accessed from these variables.

• Array pointers define a data item array. The array has the same rank as the object but without the suffix. It is a pointer
to the array element of the object and is used for general access to the data item.

If a module has multiple types of objects, a group structure is created with definitions for those objects and is included in

the main structure.

If a module has a variable number of objects of one type, an integer variable keeps track of the actual number. These

variables end with the suffix types and are based on the set type.

Each of the top-level structures contains three standard elements:

• PERMNO – the actual key loaded

• loadflag, a binary flag matching the set wanted parameters indicating which pointers have been allocated.
See the open function for the set for more information about wanted parameters.

• setcode, a constant identifying the type of set (1=STK, 3=IND)

For example, the TYPE crsp_stk item has a CRSP_TIMESERIES object named prc_ts containing an array named prc.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 195

FOrtraN-95 LaNGUaGe Data OBJeCtS FOr CrSp StOCK DataFOrtraN-95 LaNGUaGe Data OBJeCtS FOr CrSp StOCK Data

Each TYPE (crsp_stk) item contains a fixed set of possible objects. These objects contain the header information required to use the CRSP data structures, as well

as the data arrays. Data elements are described in the FORTRAN-95 Data Structure Table under the array name.

Time series beg and end are both 0 if there are no data. Otherwise beg > 0, beg <= end, and end <= maxarr.

The TYPE (crsp_stk) contains an array of portfolio time series. Each component contains the portfolio statistic and assignment data for one portfolio type. Each

component can have an individual range and calendar. The number of Portfolio Types is found in the port types variable.

NaMe OBJeCt vaLiD Data raNGe

Stock header Structure header_row stk % stkhdr

Security Name history names_arr stk % names_arr(i), i from 1 to stk % num_names

Distribution history array dists_arr stk % dists_arr(i), i from 1 to stk % num_dists

Shares Structure array shares_arr stk % shares_arr(i), i from 1 to stk % num_shares

Delisting Structure array delist_arr stk % delist_arr(i), i from 1 to stk % num_delist

NaSDaQ Structure array nasdin_arr stk % nasdin_arr(i), i from 1 to stk % num_nasdin

portfolio Statistics and assignments port_ts() stk % port_ts(i) % port(j), i from 1 to stk % porttypes, j from stk % port_beg to stk % port_end

array of Group arrays group_arr() stk % group_arr(i) % group(j), i from 1 to grouptypes, j from 1 to stk % num_groups

Closing price or Bid/ask average prc_ts stk % prc(i), from stk % prc_beg to stk % prc_end

holding period total return ret_ts stk % ret(i), from stk % ret_beg to stk % ret_end

Bid or Low bidlo_ts stk % bidlo(i), from stk % bidlo_beg to stk % bidlo_end

ask or high askhi_ts stk % askhi(i), from stk % askhi_beg to stk % askhi_end

NaSDaQ Closing Bid bid_ts stk % bid(i), from stk % bid_beg to stk % bid_end

NaSDaQ Closing ask ask_ts stk % ask(i), from stk % ask_beg to stk % ask_end

return without Dividends retx_ts stk % retx(i), from stk % retx_beg to stk % retx_end

alternate price altprc_ts stk % altprcdt(i), from stk % altprcdt_beg to stk % altprcdt_end

Open price openprc_ts stk % openprc(i), from stk % openprc_beg to stk % openprc_end

Month end Bid/ask Spread spread_ts stk % spread(i), from stk % spread_beg to stk % spread_end

exchange price exchprc_ts stk % exchprc(i), from stk % exchprc_beg to stk % exchprc_end

volume traded vol_ts stk % vol(i), from stk % vol_beg to stk % vol_end

NaSDaQ Number of trades or alternate price Date numtrd_ts stk % numtrd(i), from stk % numtrd_beg to stk % numtrd_end

alternate price Date altprcdt_ts stk % altprc(i), from stk % altprc_beg to stk % altprc_end

FOrtraN-95 LaNGUaGe Data StrUCtUre FOr CrSp StOCK DataFOrtraN-95 LaNGUaGe Data StrUCtUre FOr CrSp StOCK Data

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 196

All CRSP-defined data type structures have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next level of

indentation

Index and Date Ranges for all elements in a structure are the same as for the structure itself. There are three structure levels indicated by the indentation in the

mnemonic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates

data grouped in modules. See the CRSPAccess Stock Users Guide for data item definitions.

All character strings, indicated by character(#), are NULL terminated. The number of characters – 1 is the maximum string length allowed. Actual maxi- mums

may be lower. The top level stk structure is an example used by CRSP Stock sample programs. Other names can be used, and multiple CRSP_STK_STRUCTs can be

declared in a program. See the CRSP_STK open access function for initializing a stock structure.

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

stk_data Master Stock Structure stk_data stk

header Data Stock header Structure
hcusip CUSip - header char[16] stk % stkhdr %

hcusip

permno perMNO int stk % stkhdr %

permno

permco perMCO int stk % stkhdr %

permco

issuno NaSDaQ issue Number int stk % stkhdr %

issuno

compno NaSDaQ Company Number int stk % stkhdr %

compno

hexcd exchange Code - header int stk % stkhdr %

hexcd

hsiccd Standard industrial
Classification (SiC) Code -
header

int stk % stkhdr %

hsiccd

hshrcd Share Code - header int stk % stkhdr %

hshrcd

hnamecd Name Code - header int stk % stkhdr %

hnamecd

begdt Begin of Stock Data int stk % stkhdr %

begdt

enddt end of Stock Data int stk % stkhdr %

enddt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 197

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

dlstcd Delisting Code - header int stk % stkhdr %

dlstcd

htick ticker Symbol - header char[16] stk % stkhdr %

htick

hnaics North american industry
Classification System
(NaiCS) - header

char[8] stk % stkhdr %

hnaics

hcomnam Company Name - header char[36] stk % stkhdr %

hcomnam

htsymbol trading ticker Symbol -
header

char[12] stk % stkhdr %

htsymbol

hcntrycd Country Code - header char[4] stk % stkhdr %

hcntrycd

primexch primary exchange - header char[1] stk % stkhdr %

hprimexch

hsubexch Sub-exchange - header char[1] stk % stkhdr %

hsubexch

trdstat trading Status - header char[1] stk % stkhdr %

htrdstat

hsecstat Security Status - header char[1] stk % stkhdr %

hsecstat

hshrtype Share type - header char[1] stk % stkhdr %

shrtype

hissuercd issuer Code - header char[1] stk % stkhdr %

hissuercd

hinccd incorporation Code -
header

char[1] stk % stkhdr %

hinccd

hits intermarket trading System
indicator - header

char[1] stk % stkhdr % hits

hdenom trading Denomination -
header

char[1] stk % stkhdr %

hdenom

heligcd eligibility Code - header char[1] stk % stkhdr %

heligcd

hconvcd Convertible Code - header char[1] stk % stkhdr %

hconvcd

hnameflag Name Flag - header char[1] stk % stkhdr %

hnameflag

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 198

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

hrating interest rate or Strike price
- header

real * stk % stkhdr %

hrating

Name history
Data

Security Name history i between 1 and stk %
num_names

i between 1 and stk %
num_names

name effective from stk %
names(i) % namedt
to stk % names(i) %
nameenddt

namedt Name effective Date int stk % names(i) %

namedt

stk % names_arr %

names(i) % namedt

nameenddt Last Date of Name int stk % names(i) %

nameenddt

stk % names_arr

% names(i) %

nameenddt

ncusip CUSip char[16] stk % names(i) %

ncusip

stk % names_arr %

names(i) % ncusip

ticker ticker Symbol char[8] stk % names(i) %

ticker

stk % names_arr %

names(i) % ticker

comnam Company Name char[36] stk % names(i) %

comnam

stk % names_arr %

names(i) % comnam

shrcls Share Class char[4] stk % names(i) %

shrcls

stk % names_arr %

names(i) % shrcls

shrcd Share Code int stk % names(i) %

shrcd

stk % names_arr %

names(i) % shrcd

exchcd exchange Code int stk % names(i) %

exchcd

stk % names_arr %

names(i) % exchcd

siccd Standard industrial
Classification (SiC) Code

int stk % names(i) %

siccd

stk % names_arr %

names(i) % siccd

naics North american industry
Classification System
(NaiCS) Code

char(8) stk % names(i) %

naics

stk % names_arr %

names(i) % naics

tsymbol trading ticker Symbol char[12] stk % names(i) %

tsymbol

stk % names_arr %

names(i) % tsymbol

cntrycd Country Code char[4] stk % names(i) %

cntrycd

stk % names_arr %

names(i) % cntrycd

primexch primary exchange char[1] stk % names(i) %

primexch

stk % names_arr %

names(i) % primexch

subexch Sub-exchange char[1] stk % names(i) %

subexch

stk % names_arr %

names(i) % subexch

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 199

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

trdstat trading Status char[1] stk % names(i) %

trdstat

stk % names_arr %

names(i) % trdstat

secstat Security Status char[1] stk % names(i) %

secstat

stk % names_arr %

names(i) % secstat

shrtype Share type char[1] stk % names(i) %

shrtype

stk % names_arr %

names(i) % shrtype

issuercd issuer Code char[1] stk % names(i) %

issuercd

stk % names_arr %

names(i) % issuercd

inccd incorporation Code char[1] stk % names(i) %

inccd

stk % names_arr %

names(i) % inccd

its intermarket trading System
indicator

char[1] stk % names(i) %

its

stk % names_arr %

names(i) % its

denom trading Denomination char[1] stk % names(i) %

denom

stk % names_arr %

names(i) % denom

eligcd eligibility Code char[1] stk % names(i) %

eligcd

stk % names_arr %

names(i) % eligcd

convcd Convertible Code char[1] stk % names(i) %

convcd

stk % names_arr %

names(i) % convcd

nameflag Name Flag char[1] stk % names(i) %

nameflag

stk % names_arr %

names(i) % nameflag

dists Distribution history array i between 1 and stk %
num_dists

i between 1 and stk %
num_dists

distribution effective on stk
% dists(i) % exdt

distcd Distribution Code int stk % dists(i) %

distcd

stk % dists_arr %

dists(i) % distcd

divamt Dividend Cash amount real stk % dists(i) %

divamt

stk % dists_arr %

dists(i) % divamt

facpr Factor to adjust price real stk % dists(i) %

facpr

stk % dists_arr %

dists(i) % facpr

facshr Factor to adjust Shares
Outstanding

real stk % dists(i) %

facshr

stk % dists_arr %

dists(i) % facshr

dclrdt Distribution Declaration
Date

int stk % dists(i) %

dclrdt

stk % dists_arr %

dists(i) % dclrdt

exdt ex-Distribution Date int stk % dists(i) %

exdt

stk % dists_arr %

dists(i) % exdt

rcrddt record Date int stk % dists(i) %

rcrddt

stk % dists_arr %

dists(i) % rcrddt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 200

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

paydt payment Date int stk % dists(i) %

paydt

stk % dists_arr %

dists(i) % paydt

acperm acquiring perMNO int stk % dists*(i) %

acperm

stk % dists_arr %

dists*(i) % acperm

accomp acquiring perMCO int stk % dists(i) %

accomp

stk % dists_arr %

dists(i) % accomp

shares Shares Structure array i between 1 and stk %
num_shares

i between 1 and stk %
num_shares

shares observation effective
from stk % shares(i)
% shrsdt to stk
% shares[i] %
shrsenddt

shrout Shares Outstanding int stk % shares(i) %

shrout

stk % shares_arr %

shares(i) % shrout

shrsdt Shares Outstanding
Observation Date

int stk % shares(i) %

shrsdt

stk % shares_arr %

shares(i) % shrsdt

shrsenddt Shares Outstanding
Observation end Date

int stk % shares(i) %

shrsenddt

stk % shares_arr

% shares(i) %

shrsenddt

shrflg Shares Outstanding
Observation Flag

int stk % shares(i) %

shrflg

stk % shares_arr %

shares(i) % shrflg

delist Delisting Structure array i between 1 and stk %
num_delist

i between 1 and stk %
num_delist

delist observation on stk %
delist(i) % dlstdt

dlstdt Delisting Date int stk % delist(i) %

dlstdt

stk % delist_arr %

delist(i) % dlstdt

dlstcd Delisting Code int stk % delist(i) %

dlstcd

stk % delist_arr %

delist(i) % dlstcd

nwperm New perMNO int stk % delist(i) %

nwperm

stk % delist_arr %

delist(i) % nwperm

nwcomp New perMCO int stk % delist(i) %

nwcomp

stk % delist_arr %

delist(i) % nwcomp

nextdt Delisting Date of Next
available information

int stk % delist(i) %

nextdt

stk % delist_arr %

delist(i) % nextdt

dlamt amount after Delisting real stk % delist(i) %

dlamt

stk % delist_arr %

delist(i) % dlamt

dlretx Delisting return without
Dividends

real stk % delist(i) %

dlretx

stk % delist_arr %

delist(i) % dlretx

dlprc Delisting price real stk % delist(i) %

dlprc

stk % delist_arr %

delist(i) % dlprc

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 201

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

dlpdt Delisting payment Date int stk % delist(i) %

dlpdt

stk % delist_arr %

delist(i) % dlpdt

dlret Delisting return real stk % delist(i) %

dlret

stk % delist_arr %

delist(i) % dlret

nasdin NaSDaQ Structure array i between 1 and stk %
num_nasdin

i between 1 and stk %
num_nasdin

Nasdaq status effective
from stk % nasdin(i)
% trtsdt to stk
% nasdin[i] %
trtsenddt

trtscd NaSDaQ traits Code int stk % nasdin(i) %

trtscd

stk % nasdin_arr %

nasdin(i) % trtscd

trtsdt NaSDaQ traits Date int stk % nasdin(i) %

trtsdt

stk % nasdin_arr %

nasdin(i) % trtsdt

trtsenddt NaSDaQ traits end Date int stk % nasdin(i) %

trtsenddt

stk % nasdin_arr

% nasdin(i) %

trtsenddt

nmsind NaSDaQ National Market
indicator

int stk % nasdin(i) %

nmsind

stk % nasdin_arr %

nasdin(i) % nmsind

mmcnt Market Maker Count int stk % nasdin(i) %

mmcnt

stk % nasdin_arr %

nasdin(i) % mmcnt

nsdinx NaSD index Code int stk % nasdin(i) %

nsdinx

stk % nasdin_arr %

nasdin(i) % nsdinx

port portfolio Statistics and
assignments

j between 1 and stk %
porttypes, i between
stk % port_ts(j) % beg
and stk % port_ts(j)
% end

j between 1 and stk %
porttypes, i between
stk % port_ts(j) % beg
and stk % port_ts(j)
% end

value for period ending stk
% port_ts(j) % cal %
caldt(i)

port portfolio assignment
Number

int stk % port(j,i) %

port

stk % port_ts(j) %

port(i) % port

stat portfolio Statistic value double

precision

stk % port(j,i) %

stat

stk % port_ts(j) %

port(i) % stat

group Group array j between 1 and stk %
grouptypes, i between 1 and
stk % group_arr(j)
% group_parms % num

value for period ending stk
% group_arr(j) %
group(i) % grpenddt

grpdt Begin of Group Data int stk % group_arr(j)

% group(i) % grpdt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 202

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

grpenddt end of Group Data int stk % group_arr(j)

% group(i) %

grpenddt

grpflag Group Flag of associated
index

int stk % group_arr(j)

% group(i) % grpflag

grpsubflag Group Secondary Flag int stk % group_arr(j)

% group(i) %

grpsubflag

time Series Data arrays
prc price or Bid/ask average real * stk % prc(i) stk % prc_ts %

prc(i)
i between stk %
prc_beg and stk %
prc_end

i between stk %
prc_beg and stk %
prc_end

value on date stk %
prc_ts % prc_parms

% cal % caldt(i)

ret holding period total return real * stk % ret(i) stk % ret_ts %

ret(i)
i between stk %
ret_beg and stk %
ret_end

i between stk %
ret_beg and stk %
ret_end

value on date stk %
ret_ts % ret_parms

% cal % caldt(i)

bidlo Bid or Low price real * stk % bidlo(i) stk % bidlo_ts %

bidlo(i)
i between stk %
bidlo_beg and stk %
bidlo_end

i between stk %
bidlo_beg and stk %
bidlo_end

value on date stk %
bidlo_ts % bidlo_

parms % cal %

caldt(i)

askhi ask or high price real * stk % askhi(i) stk % askhi_ts %

askhi(i)
i between stk %
askhi_beg and stk %
askhi_end

i between stk %
askhi_beg and stk %
askhi_end

value on date stk %
askhi_ts % askhi_

parms % cal %

caldt(i)

bid Bid real * stk % bid(i) stk % bid_ts %

bid(i)
i between stk %
bid_beg and stk %
bid_end

i between stk %
bid_beg and stk %
bid_end

value on date stk %
bid_ts % bid_parms

% cal % caldt(i)

ask ask real * stk % ask(i) stk % ask_ts %

ask(i)
i between stk %
ask_beg and stk %
ask_end

i between stk %
ask_beg and stk %
ask_end

value on date stk %
ask_ts % ask_parms

% cal % caldt(i)

retx return without Dividends real * stk % retx(i) stk % retx_ts %

retx(i)
i between stk %
retx_beg and stk %
retx_end

i between stk %
retx_beg and stk %
retx_end

value on date stk %
retx_ts % retx_

parms % cal %

caldt(i)

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 203

MNeMONiC NaMe Data tYpe
Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON iNDeX raNGe - ShOrtCUt

iNDeX raNGe - FULL
verSiON Date USaGe

openprc Open price (daily only) real * stk % openprc(i) stk % openprc_ts %

openprc(i)
i between stk %
altprc_beg and stk %
altprc_end

i between stk %
openprc_beg and stk
% openprc_end

value on date stk
% openprc_ts %

openprc_parms % cal

% caldt(i)

altprc price alternate (monthly
only)

real * stk % altprc(i) stk % altprc_ts %

altprc(i)
i between stk %
altprc_beg and stk %
altprc_end

i between stk %
altprc_beg and stk %
altprc_end

value on date stk %
altprc_ts % altprc_

parms % cal %

caldt(i)

spread Spread Between Bid and
ask

real * stk % spread(i) stk % spread_ts %

spread(i)
i between stk %
spread_beg and stk %
spread_end

i between stk %
spread_beg and stk %
spread_end

value on date stk %
spread_ts % spread_

parms % cal %

caldt(i)

vol volume traded int * stk % vol(i) stk % vol_ts %

vol(i)
i between stk %
vol_beg and stk %
vol_end

i between stk %
vol_beg and stk %
vol_end

value on date stk %
vol_ts % vol_parms

% cal % caldt(i)

numtrd NaSDaQ Number of trades
(daily only)

int * stk % numtrd(i) stk % numtrd_ts %

numtrd(i)
i between stk %
numtrd_beg and stk %
numtrd_end

i between stk %
numtrd_beg and stk %
numtrd_end

value on date stk %
numtrd_ts % numtrd_

parms % cal %

caldt(i)

altprcdt alternate price Date
(monthly only)

int * stk % altprcdt(i) stk % altprcdt_ts %

altprcdt(i)
i between %
altprcdt_end

i between stk %
altprcdt_beg and stk
% altprcdt_end

value on date stk %
altprcdt_ts %

altprcdt_parms %

cal % caldt(i)

caldt Calendar trade Date int * stk % caldt(i) stk % caldt(i) i between 1 and stk %
ndays

i between 1 and stk %
ndays

n/a

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 204

eXaMpLeS OF FOrtraN-95 variaBLe USaGe FOr CrSp StOCK Data eXaMpLeS OF FOrtraN-95 variaBLe USaGe FOr CrSp StOCK Data

These assume a FORTRAN-95 variable stk of TYPE (crsp_stk)

CrSp row/header DataCrSp row/header Data
Object Variable: (sub-TYPE) stk_header
Data Structure: stk % stkhdr
Sample WRITE Statement:

WRITE (*, 1) stk % stkhdr % permno, &

& stk % stkhdr % begdt, stk % stkhdr % enddt

1 FORMAT (1X, I5, 1X, I8, 1X, I8)

CrSp array/DistributionsCrSp array/Distributions
Object variable: (sub-TYPE) stk_dist
Data Structure: stk % stk_dists_arr % dists
Sample WRITE Statement:

DO i = 1, stk % dists_arr % dists_parms % num

WRITE (*,1) stk % dists_arr % dists(i) % distcd, &

& stk % dists_arr % dists(i) % exdt

1 FORMAT (1X, I4, 1X, I8)

END DO

CrSp time Series/pricesCrSp time Series/prices
Object Variable: (sub-TYPE) stk_prc_ts
Data Structure: stk % stkprc_ts
Sample WRITE statement:

DO i = stk % stkprc_ts % prc_ts % beg, &

& stk % stkprc_ts % prc_ts % end

WRITE (*, 1) stk % stkprc_ts % prc(i), &

& stk % stkprc_ts % prc_ts % cal % caldt(i)

1 FORMAT (1X, F11.5, 1X, I8)

END DO

CrSp array of time Series/portfoliosCrSp array of time Series/portfolios
Object Variable: (sub-TYPE) stk_port
Data array: stk % stk_port_ts(j)
there are SiZe (stk % stkport_ts) portfolios available; j above ranges from 1 to SIZE
(stk % stkport_ts)

Sample WRITE statement: this statement prints the date and the assignment for each
year in the issue’s range for stk % stkport_ts(1), the NYSe / NYSeMKt / NaSDaQ
capitalization deciles.

DO i = stk % stkport_ts(1) % port_ts % beg, stk % stkport_ts(1) %

port_ts % end

WRITE (*,1) stk % stkport_ts(1) % port_ts % &

& cal % caldt(i), &

& stk % stkport_ts(1) % port(i) % port

1 FORMAT (1X, I8, 1X, I2)

CrSp array of Group arraysCrSp array of Group arrays
Object Variable: (sub-TYPE) stk_group_arr
Data array: stk % stkgroup_arr(j) % group(i)
there are SIZE (stk % stkgroup_arr) groups available; j above is between 1 and
SIZE (stk % stkgroup_arr).
Sample WRITE statement:

This statement is executed only if the security has ever been included in the

S&P 500 uni- verse (group type 16).

j = 16

IF (stk % stkgroup_arr(16) % croup_arr % num > 0) THEN

DO i = 1, stk % stkgroup_arr(16) % group_arr % num

 WRITE (*, 1) stk % stkgroup_arr(j) % &

 & group(i) % grpdt, stk % stkgroup_arr(j) % &

 & group(i) % grpeenddt, stk % stkgroup_arr(j) % &

 & group(i) % grpflag, stk % stkgroup_arr(j) % &

 & group(i) % grpsubflag

 1 FORMAT (1X, I8, 1X, I8, 1X, I2, 1X, I2)

 END DO

 END IF

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 205

FORTRAN-95 LANGUAGE DATA OBJECTS FOR CRSP INDEXES DATA

CRSP assigns a Permanent Index Identification Number (INDNO) to access the index data in FORTRAN-95 for individual series or portfolio groups. In the CRSP US

Stock Database, a subset of market series is available. Additional series and groups are available when you subscribe to the CRSP US Historical Indexes Database

and Security Portfolio Assignment Module. The index structure supports data for one series or group and includes header, rebalancing, and result information for one

or more portfolios comprising the index.

Each index structure contains a fixed set of possible objects. Objects contain the header information needed to use the CRSP data structures as well as the data

arrays. Data elements are described in the FORTRAN-95 Data Structure Table under the array name.

Time series beg and end are both equal to 0 if there are no data. Otherwise beg > 0, beg <= end, and end < maxarr. The 0th element of a time series array is

reserved for the missing value for that data type.

Multiple series in the index structure refers to portfolio subgroups. Each of these will have the same beg, end, and calendar. In a SERIES SETID, the multiple series

has a count of 1. In a GROUP SETID, the count of series is found in the corresponding xxxtypes variable.

NaMe OBJeCt OBJeCt arraY NaMe

indexes header Object indhdr_row ind % indhdr

rebalancing arrays rebal_arr() ind % rebal(j), j from 1 to ind % rebaltypes

List arrays list_arr() ind % list(j), j from 1 to ind % listtypes

total value time Series totval_ts() ind % totval(j), j from 1 to ind % indtypes

total Count time Series totcnt_ts() ind % totcnt(j), j from 1 to ind % indtypes

Used value time Series usdval_ts() ind % usdval(j), j from 1 to ind % indtypes

Used Count time Series usdcnt_ts() ind % usdcnt(j), j from 1 to ind % indtypes

total return time Series tret_ts() ind % tret(j), j from 1 to ind % indtypes

Capital appreciation time Series aret_ts() ind % aret(j), j from 1 to ind % indtypes

income return time Series iret_ts() ind % iret(j), j from 1 to ind % indtypes

total return index Level time Series tind_ts() ind % tind(j), j from 1 to ind % indtypes

Capital appreciation index Level time Series aind_ts() ind % aind(j), j from 1 to ind % indtypes

income return index Level time Series iind_ts() ind % iind(j), j from 1 to ind % indtypes

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 206

FOrtraN-95 LaNGUaGe Data StrUCtUre FOr CrSp iNDeXeS DataFOrtraN-95 LaNGUaGe Data StrUCtUre FOr CrSp iNDeXeS Data

All CRSP-defined data types have names in all capitals beginning with CRSP_ and are immediately followed by the definitions in the next indented level.

Index and date ranges for all elements in a structure are the same as for the structure itself. There are four structure levels indicated by the indentation in the Mne-

monic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates

data grouped in modules. See the Data Description Guide for data item definitions.

All character strings, indicated by char[#], are null terminated. The number of characters - 1 is the maximum string length allowed. Actual maximums may be

lower. The top level ind structure is an example used by CRSP Indexes sample programs. Other names can be used, and multiple CRSP_IND_STRUCTs may be

declared in a program.

MNeMONiC NaMe Data tYpe Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON

iNDeX raNGe -
ShOrtCUt

iNDeX raNGe - FULL
verSiON

Date USaGe

ind_data Master indexes Structure CRSP_IND ind

indhdr indexes header Object
indno iNDNO int ind % indhdr % indno

indco iNDCO int ind % indhdr % indco

primflag index primary Link int ind % indhdr %

primflag

portnum portfolio Number if Subset
Series

int ind % indhdr %

portnum

indname index Name char[80] ind % indhdr %

indname

groupname index Group Name char[80] ind % indhdr %

groupname

method index Methodology
Description Structure

CRSP_IND_METHOD ind % indhdr %

method

methcode index Method type Code int ind % indhdr %

method % methcode

primtype index primary Methodology
type

int ind % indhdr %

method % primtype

subtype index Secondary
Methodology Group

int ind % indhdr %

method % subtype

wgttype index reweighting type Flag int ind % indhdr %

method % wgttype

wgtflag index reweighting timing
Flag

int ind % indhdr %

method % wgtflag

flags index exception handling
Flags

CRSP_IND_FLAGS ind % indhdr % flags

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 207

MNeMONiC NaMe Data tYpe Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON

iNDeX raNGe -
ShOrtCUt

iNDeX raNGe - FULL
verSiON

Date USaGe

flagcode index Basic exception types
Code

int ind % indhdr % flags

% flagcode

addflag index New issues Flag int ind % indhdr % flags

% addflag

delflag index ineligible issues Flag int ind % indhdr % flags

% delflag

delretflag return of Delisted issues Flag int ind % indhdr % flags

% delretflag

missflag index Missing Data Flag int ind % indhdr % flags

% missflag

partuniv index Subset Screening
Structure

CRSP_UNIV_PARAM ind % indhdr %

partuniv

partunivcode Universe Subset types Code
in a partition restriction

int ind % indhdr %

partuniv % univcode

begdt partition restriction
Beginning Date

int ind % indhdr %

partuniv % begdt

enddt partition restriction end Date int ind % indhdr %

partuniv % enddt

wantexch valid exchange Codes in
the Universe in a partition
restriction

int ind % indhdr %

partuniv % wantexch

wantnms valid NaSDaQ Market Groups
in the Universe in a partition
restriction

int ind % indhdr %

partuniv % wantnms

wantwi valid when-issued Securities
in the Universe in a partition
restriction

int ind % indhdr %

partuniv % wantwi

wantinc valid incorporation of
Securities in the Universe in a
partition restriction

int ind % indhdr %

partuniv % wantinc

shrcd Share Code Screen Structure
in a partition restriction

CRSP_UNIV_SHRCD ind % indhdr %

partuniv % shrcd

sccode Share Code Groupings
for Subsets in a partition
restriction

int ind % indhdr %

partuniv % shrcd %

sccode

fstdig valid First Digit of Share Code
in a partition restriction

int ind % indhdr %

partuniv % shrcd %

fstdig

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 208

MNeMONiC NaMe Data tYpe Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON

iNDeX raNGe -
ShOrtCUt

iNDeX raNGe - FULL
verSiON

Date USaGe

secdig valid Second Digit of Share
Code in a partition restriction

int ind % indhdr %

partuniv % shrcd %

secdig

induniv partition Subset Screening
Structure

CRSP_UNIV_PARAM ind % indhdr %

induniv

indunivcode Universe Subset types Code
in an index restriction

int ind % indhdr %

induniv % univcode

begdt restriction Begin Date int ind % indhdr %

induniv % begdt

enddt restriction end Date int ind % indhdr %

induniv % enddt

wantexch valid exchange Codes in
the Universe in an index
restriction

int ind % indhdr %

induniv % wantexch

wantnms valid NaSDaQ Market Groups
in the Universe in an index
restriction

int ind % indhdr %

induniv % wantnms

wantwi valid when-issued Securities
in the Universe in an index
restriction

int ind % indhdr %

induniv % wantwi

wantinc valid incorporation of
Securities in the Universe in
an index restriction

int ind % indhdr %

induniv % wantinc

shrcd Share Code Screen Structure
in an index restriction

CRSP_UNIV_SHRCD ind % indhdr %

induniv % shrcd

sccode Share Code Groupings
for Subsets in an index
restriction

int ind % indhdr %

induniv % shrcd %

sccode

fstdig valid First Digit of Share Code
in an index restriction

int ind % indhdr %

induniv % shrcd %

fstdig

secdig valid Second Digit of Share
Code in an index restriction

int ind % indhdr %

induniv % shrcd %

secdig

rules portfolio Building rules
Structure

CRSP_IND_RULES ind % indhdr % rules

rulecode index Basic rule types Code int ind % indhdr % rules

% rulecode

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 209

MNeMONiC NaMe Data tYpe Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON

iNDeX raNGe -
ShOrtCUt

iNDeX raNGe - FULL
verSiON

Date USaGe

buyfnct index Function Code for Buy
rules

int ind % indhdr % rules

% buyfnct

sellfnct index Function Code for Sell
rules

int ind % indhdr % rules

% sellfnct

statfnct index Function Code for
Generating Statistics

int ind % indhdr % rules

% statfnct

groupflag index Statistic Grouping Code int ind % indhdr % rules

% groupflag

assign related assignment
information

CRSP_IND_ASSIGN ind % indhdr %

assign

assigncode index Basic assignment
types Code

int ind % indhdr %

assign % assigncode

asperm iNDNO of associated index int ind % indhdr %

assign % asperm

asport portfolio Number in
associated index

int ind % indhdr %

assign % asport

rebalcal Calendar identification
Number of rebalancing
Calendar

int ind % indhdr %

assign % rebal_cal

assigncal Calendar identification
Number of assignment
Calendar

int ind % indhdr %

assign % assigncal

calccal Calendar identification
Number of Calculations
Calendar

int ind % indhdr %

assign % calccal

rebal array of rebalancing arrays j between 1 and ind
% rebaltypes, i
between 1 and ind %
ind_rebal_arr (j)
% num

data valid from ind
% rebal (j,i) %
rbbegdt to ind %
rebal (j,i) %
rbenddt

rbbegdt index rebalancing Begin Date int ind % rebal %

rebal(j,i) % rbbegdt

rbenddt index rebalancing end Date int ind % rebal %

rebal(j,i) % rbenddt

usdcnt Count Used as of rebalancing int ind % rebal%

rebal(j,i) %

usdcnt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 210

MNeMONiC NaMe Data tYpe Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON

iNDeX raNGe -
ShOrtCUt

iNDeX raNGe - FULL
verSiON

Date USaGe

maxcnt Maximum Count During
period

int ind % rebal %

rebal(j,i) %

maxcnt

totcnt Count available as of
rebalancing

int ind % rebal %

rebal(j,i) %

totcnt

endcnt Count at end of rebalancing
period

int ind % rebal %

rebal(j,i) %

endcnt

minid Statistic Minimum identifier int ind % rebal %

rebal(j,i) %

minid

maxid Statistic Maximum identifier int ind % rebal %

rebal(j,i) %

maxid

minstat Statistic Minimum in period double

precision

ind % rebal %

rebal(j,i) %

minstat

maxstat Statistic Maximum in period double

precision

ind % rebal %

rebal(j,i) %

maxstat

medstat Statistic Median in period double

precision

ind % rebal %

rebal(j,i) %

medstat

avgstat Statistic average in period double

precision

ind % rebal %

rebal(j,i) %

avgstat

list List indexes arrays j between 1 and ind %
listtypes, i between
1 and ind % ind_
list_arr(j) % num

j between 1 and ind %
listtypes, i between
1 and ind % ind_
list_arr(j) % num

valid from ind %
list(j,i) % beg to
ind % list(j,i) %
enddt

list List arrays int ind % list(j,i) %

permno

ind % ind_list_

arr % list(j,i) %

permno

permno permanent Number of
Securities in index List

int ind % list(j,i) %

permno

ind % ind_list_

arr % list(j,i) %

permno

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 211

MNeMONiC NaMe Data tYpe Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON

iNDeX raNGe -
ShOrtCUt

iNDeX raNGe - FULL
verSiON

Date USaGe

begdt First Date included in List int ind % list(j,i) %

begdt

ind % ind_list_

arr % list(j,i) %

begdt

enddt Last Date included in a List int ind % list(j,i) %

enddt

ind % ind_list_

arr % list(j,i) %

enddt

subind index Subcategory Code int ind % list(j,i) %

subind

ind % ind_list_

arr % list(j,i) %

subind

weight weight of an issue double

precision

ind % list(j,i) %

weight

ind % ind_list_

arr % list(j,i) %

weight

time Series Data arrays
aind index Capital appreciation

index Level

real * ind % aind(j,i) ind % indaind_ts

% aind(j,i)
j between 1 and
indtypes, i between
ind % aind_ts(j)
% beg and ind_data
% aind_ts(j) %
end

j between 1 and
indtypes, i between
ind % aind_ts(j)
% beg and ind %
aind_ts(j) % end

value on date ind %
aind_ts(j) % cal

% caldt(i)

aret index Capital appreciation
return

real * ind % aret(j,i) ind % indaret_ts

% aret(j,i)
j between 1 and
indtypes, i between
ind % aret_ts(j)
% beg and ind_data
% aret_ts(j) %
end

j between 1 and
indtypes, i between
ind % aret_ts(j)
% beg and ind %
aret_ts(j) % end

value on date ind %
aret_ts(j) % cal

% caldt(i)

iind index income return index
Level

real * ind % iind(j,i) ind % indiind_ts

% iind(j,i)
j between 1 and
indtypes, i between
ind % iind_ts(j)
% beg and ind_data
% iind_ts(j) %
end

j between 1 and
indtypes, i between
ind % iind_ts(j)
% beg and ind %
iind_ts(j) % end

value on date ind %
iind_ts(j) % cal

% caldt(i)

iret index income return real * ind % iret(j,i) ind % indiret_ts

% iret(j,i)
j between 1 and
indtypes, i between
ind % iret_ts(j)
% beg and ind_data
% iret_ts(j) %
end

j between 1 and
indtypes, i between
ind % iret_ts(j)
% beg and ind %
iret_ts(j) % end

value on date ind %
iret_ts(j) % cal

% caldt(i)

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 212

MNeMONiC NaMe Data tYpe Data USaGe -
ShOrtCUt

Data USaGe - FULL
verSiON

iNDeX raNGe -
ShOrtCUt

iNDeX raNGe - FULL
verSiON

Date USaGe

tind index total return index Level real * ind % tind(j,i) ind % indtind_ts

% tind(j,i)
j between 1 and
indtypes, i between
ind % tind_ts(j)
% beg and ind_data
% tind_ts(j) %
end

j between 1 and
indtypes, i between
ind % tind_ts(j)
% beg and ind %
tind_ts(j) % end

value on date ind %
tind_ts(j) % cal

% caldt(i)

tret index total return real * ind % tret(j,i) ind % indtret_ts

% tret(j,i)
j between 1 and
indtypes, i between
ind % tret_ts(j)
% beg and ind_data
% tret_ts(j) %
end

j between 1 and
indtypes, i between
ind % tret_ts(j)
% beg and ind %
tret_ts(j) % end

value on date ind %
tret_ts(j) % cal

% caldt(i)

usdcnt index Used Count real * ind % usdcnt(j,i) ind % indusdcnt_

ts % usdcnt(j,i)
j between 1 and
indtypes, i
between ind %
usdcnt_ts(j) %
beg and ind_data
% usdcnt_ts(j) %
end

j between 1 and
indtypes, i
between ind %
usdcnt_ts(j)
% beg and ind %
usdcnt_ts(j) %
end

value on date ind %
usdcnt_ts(j) %

cal % caldt(i)

totcnt index total Count real * ind % totcnt(j,i) ind % indtotcnt_

ts % totcnt(j,i)
j between 1 and
indtypes, i
between ind %
totcnt_ts(j) %
beg and ind_data
% totcnt_ts(j) %
end

j between 1 and
indtypes, i
between ind %
totcnt_ts(j)
% beg and ind %
totcnt_ts(j) %
end

value on date ind %
totcnt_ts(j) %

cal % caldt(i)

usdval index Used value real * ind % usdval(j,i) ind % indusdval_

ts % usdval(j,i)
j between 1 and
indtypes, i between
ind % usdval_
ts(j) % beg
and ind_data %
usdval_ts(j) %
end

j between 1 and
indtypes, i between
ind % usdval_
ts(j) % beg and ind
% usdval_ts(j) %
end

value on date ind %
usdval_ts(j) %

cal % caldt(i)

totval index total value real * ind % totval(j,i) ind % indtotval_

ts % totval(j,i)
j between 1 and
indtypes, i between
ind % totval_
ts(j) % beg
and ind_data %
totval_ts(j) %
end

j between 1 and
indtypes, i between
ind % totval_
ts(j) % beg and ind
% totval_ts(j) %
end

value on date ind %
totval_ts(j) %

cal % caldt(i)

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 213

FORTRAN-95 STOCK SAMPLE PROGRAMS AND SUBROUTINES

SaMpLe prOGraMS — *SaMp*.F90SaMpLe prOGraMS — *SaMp*.F90

The FORTRAN-95 sample programs provide examples of how to access the CRSPAccess stock file daily or monthly data

with universal stock access routines. The 14 stock & indexes sample programs give basic examples of the CRSP access

routines, and illustrate tasks while using the access and utility routines. To use a sample program, copy it to your directory

from the CRSP sample directory. Edit the program to meet your needs and compile, link, and run. See the CRSPAccess

Release Notes for FORTRAN-95 Supported Systems. All sample programs that call on an input file have one available in

the sample directory.

The sample programs are written to use either daily or monthly data. To switch between daily and monthly data, change

the setid from STK_DAILY to STK_MONTHLY.

StKSaMp1.F90 reads all securities sequentially -
outputs a security list to a file

STKSAMP1.F90 makes a sequential pass through the daily file in perMNO order, retrieves
header data, and creates a company list containing CUSip - header, perMNO, Company Name -
header, exchange Code - header, SiC Code - header, and beginning and ending dates the CrSp file
contains time series data for the security. the output is printed into a file called dcnames.dat.

StKSaMp2.F90 reads an input file of historical cusips
- outputs current cusips to a file and
writes header data to terminal window

STKSAMP2.F90 reads an historical CUSip list, with CUSips in columns 1-8, from a user-created
file called hcusips.dat. it outputs a partial company list to the terminal, including all historical
CUSips found in the monthly file and their corresponding current CUSips, names, and last price for
each security. it also creates a file, cusips.dat, with the current CUSips.
STKSAMP2.F95 is particularly suited for updating CUSip lists after some of the CUSips have
changed.

StKSaMp3.F90 reads an input file of permnos - outputs
security identification & basic delist
information to a file

STKSAMP3.F90 reads desired perMNOs from a user-created input file called permnos.dat
for daily data containing perMNOs in columns 2-6. it looks for each of the perMNOs in the indicated
database and data are retrieved for each perMNO in the input file that exactly matches a security on
the file. the output file, outperm.dat contains perMNO, name, and returns data for the last date,
date of price after delisting, and delisting return are printed for each stock found.

StKSaMp4.F90 reads securities within a range of sic
codes - writes header and portfolio data
to terminal window

STKSAMP4.F90 makes a partial sequential pass through the monthly file by processing all stocks
whose most recent SiC Code falls between 2000 and 2100. this range of current SiC codes can easily
be changed to select different industry groups. it prints to the terminal a partial namelist including
initial capitalization and portfolio assignment for each stock found.

StKSaMp5.F90 reads an input file of historical cusips
- outputs header data, returns and
compound returns to a file

STKSAMP5.F90 reads the daily database and extracts data using an input file of historical
CUSips with beginning and ending date ranges. the input file, retinp.dat, has CUSips in positions
2-9, begin dates (YYYYMMDD) in positions 11-18 and end dates (YYYYMMDD) in positions 20-27.
the output file, returns.dat, will contain CUSip - header, perMNO, Calendar dates, and the
Compound return followed by returns for each security over the date range specified in the retinp.
dat file. if a CUSip included in retinp.dat is not in the CrSp database, the begin date and CUSip
will print to the screen.

StKSaMp6.F90 Year-end capitalization & portfolio
assignments for current companies that
have traded 3 consecutive years are
written to a file

STKSAMP6.F90 makes a sequential pass through the daily file in perMNO order, and outputs
CUSip - header, perMNO, year-end Capitalizations and decile portfolio assignments for all firms that
traded in the past three years to a file, mktcaps.dat.

StKSaMp7.F90 reads stock and indexes data - writes
daily market indexes within a date
range to a file

STKSAMP7.F90 reads daily stock and indexes data by perMNO from an input file, permno_
date.dat which contains perMNO in columns 2-6 and a start date in columns 8-15. the default
relative date range is 3 years before and after the start date specified in permno_date.dat. the
program writes perMNO, Calendar Date, Company Name, return without Dividends for the Stock and
returns without Dividends for iNDNO 100080, the NYSe/NYSeMKt/NaSDaQ value-weighted Market
index over a relative date range to an output file, permno_returns.dat.
to use this program with indexes not included in the Stock product, you must also subscribe to the
indexes product.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 214

StKSaMp8.F90 reads stock file for mergers within
a date range - outputs header and
distribution data to a file

STKSAMP8.F90 reads the monthly stock database for mergers (delist code 2**) that delisted
between 19820101 and 19871231. For all securities found, perMNO, the CUSip - header, Company
Name - header, SiC Code - header, Delisting Date, Delisting return, and New perMNO are written to
an output file, delist.dat.

StKSaMp9.F90 reads stock file for spin-offs within
a date range - outputs header,
distribution data, and market
capitalization to a file

STKSAMP9.F90 reads the daily stock database for spin-offs (distribution codes 3753 and 3763)
between 19871231 and 19891231. For each spinoff found, the perMNO, Company Name at the
time of the spinoff, Distribution Declaration Date, Distribution amount, and the capitalization portfolio
of the security during the year the spin-off occurred are printed to an output file, spinoff.dat.t

StKSaMp10.F90 reads stock file for nasdaq bid, ask, &
number of trades data - outputs permno,
company name and nasdsaq time series
data to a file

STKSAMP10.F90 sequentially reads the daily stock database for NaSDaQ time series data; Bid,
ask and NaSDaQ Number of trades. Outputs perMNO, Company Name corresponding to the calendar
date, and the NaSDaQ time series data to an output file, nmsdata.dat. Note that NaSDaQ Number
of trades is a daily- only data item. to use this sample program with monthly data, remove NaSDaQ
Number of trades from the output.

StKiNDSaMp1.F90 Compare the returns of a company to a
specified index

the daily excess returns for a stock compared to an index are calculated over teh specified date range.
For each date, the Stock return, the index return and the Negative or positive excess return are
written to an output file, excess_return.dat, for the most recent 50 days.

StKiNDSaMp2.F90 Compare the returns of a company
to its peer group based on market
capitalization decile ranking

the returns of the portfolio to which a specified company belongs at each point in time are combined
into one-time series to create a peer group index. a time series of excess returns is calculated for the
company against this peer group index. the output file, portfolio_xs_ret.dat, is created and contains
for each date: Company return, index return and Negative or positive excess returns.

StKiNDSaMp3.F90 Compare company returns based on
trade-only data

returns are calculated using trade-only prices, with and without dividends. the output file, trade_
only_ret.dat, contains perMNO, Calendar Date, price, trade-Only price, return without Dividends and
return with Dividends.

iNDSaMp1.F90 reads indexes data for multiple indexes
- outputs desired data a file

INDNO INDEX NAME

1000040 CrSp NYSe/NYSeMKt value-weighted Market index

1000041 CrSp NYSe/NYSeMKt equal-weighted Market index

1000052 S&p 500 Composite index

1000060 CrSp NaSDaQ value-weighted Market index

1000061 CrSp NaSDaQ equal-weighted Market index

1000503 NaSDaQ Composite index

1000080 CrSp NYSe/NYSeMKt/NaSDaQ value-weighted Market index

1000081 CrSp NYSe/NYSeMKt/NaSDaQ equal-weighted Market index

1000502 S&p 500 Composite index

1000080 CrSp NYSe/NYSeMKt/NaSDaQ value-weighted Market index

1000081 CrSp NYSe/NYSeMKt/NaSDaQ equal-weighted Market index

1000092 CrSp NYSe/NYSeMKt/NaSDaQ Market Capitalization Deciles

1000357 CrSp NYSe/NYSeMKt/NaSDaQ Nationa Market Cap-Based portfolios

1000700 Cti treasury - CrSp 30 Year Bond returns

1000709 Consumer price index

FOrtraN-95 iNCLUDe FiLeS aND Data StrUCtUreSFOrtraN-95 iNCLUDe FiLeS aND Data StrUCtUreS

crsp.inc defines all structures and constants used by the CRSP FORTRAN-95 access and utility functions, and the function

definitions. crsp.inc includes several other header files. The primary definitions needed for stock databases are in f95_
params.inc, f95_cal.inc, f95_datatypes.inc, f95_stock.inc, and f95_ind.inc.

The following list summarizes the individual stock and indexes include files that are included in crsp.inc. All ind- clude

files are kept in the CRSP_INCLUDE directory.

heaDer FiLe DeSCriptiON

Crsp_params.inc Contains all parameters used in FOrtraN-95 source programs.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 215

Crsp_data_types.inc Declares all generic FOrtraN-95 tYpes that are used to process CrSp stock and index data – exclusive of tYpe crsp_stk and tYpe crsp_ind,
together with their immediate SUB-tYpeS

Crsp_cal.inc Contains all FOrtraN-95 data which reflect the CrSp calendar for stock and index data

Crsp_stk.inc Contains all data and pointers used to support manipulation of CrSp stock data.

Crsp_ind.inc Contains all data and pointers used to support manipulation of CrSp index data.

Crsp_for_unit.inc provides the data structure for managing Fortran unit numbers during run-time execution of FOrtraN-95 programs

all_ind.inc includes all FOrtraN-95 data tYpes required to support manipulation of CrSp index data: crsp_params.inc, crsp_data_types.inc and crsp_ind.inc

all_stk.inc includes all FOrtraN-95 data tYpes required to support manipulation of CrSp stock data: crsp_params.inc, crsp_data_types.inc and crsp_stk.inc

all_stk_ind.inc includes all FOrtraN-95 data tYpes required to support (simultaneous) manipulation of CrSp stock and index data: crsp_params.inc, crsp_
data_types.inc, crsp_stk.inc and crsp_ind.inc

CrSpaCCeSS FOrtraN-95 LiBrarYCrSpaCCeSS FOrtraN-95 LiBrarY

The CRSPAccess FORTRAN-95 Library contains the Application Programming Interface (API) used to access and to process

CRSP stock and index data. The library is broken into sections based on the type of operations. The following major groups

are available. Each can be further subdivided into subgroups. Functions within subgroups are alphabetical. Each function

includes a function prototype, description, list of arguments, return values, side effects, and preconditions for use.

FOrtraN-95 LiBrarY CateGOrY DeSCriptiON paGe

Stock access Functions Functions used to load stock data from the database into structures page 215

index access Functions Functions used to load index data from the database into structures page 220

General access Functions General calendar and access functions page 221

General Utility Functions Functions utility to process base CrSpaccess structures page 222

StOCK aCCeSS FUNCtiONSStOCK aCCeSS FUNCtiONS

The following tables list the available functions to access CRSPAccess Stock Data. Standard usage is to employ an open

function, followed by successive reads and a close. Different databases and sets can be processed simulta- neously if there

is a matching structure defined for each one.

FUNCtiON DeSCriptiON paGe
stock_open Opens an existing Stock Set in a CrSpaccess Database page 215
stk_read_permno Loads wanted Stock Data Using CrSp perMNO as the Key page 230
stk_read_cusip Loads wanted Stock Data Using Current CUSip as the Key page 217
stk_read_permco Loads wanted Stock Data Using CrSp perMCO as the Key page 217
stk_read_hcusip Loads wanted Stock Data Using historical CUSip as the Key page 218
stk_read_siccd Loads wanted Stock Data Using historical SiC Code as the Key page 233
stk_read_ticker Loads wanted Stock Data Using Current ticker Symbol as the Key page 219
stock_close Closes a Stock Set page 219

stock_open Opens an Existing Stock Set in a CRSPAccess Database

prOtOtYpe: stock_open(TYPE(crsp_stk)stk, TYPE(name_string), POINTER:: user_path, crspnum, setid,

wanted, status)

DeSCriptiON: opens an existing stock set in a CrSpaccess Database

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 216

arGUMeNtS: stk TYPE(crsp_stk) - data object to be allocated and loaded.
user_path TYPE(name_string) - directory path to user’s CrSpaccess data; if NULL, default CrSpaccess data are used
crspnum – returned value associated with stock set which is opened; used in future data retrievals
setid – the set identifier
10 – Daily CrSp Stock Database - STK_DAILY
20 – Monthly CrSp Stock Database - STK_MONTHLY
wanted – composite mask indicating which modules will be used. the list below shows the wanted values for the stock modules. the
wanted values may be summed, or summary wanted values may be used to open multiple modules. Only modules that are specified by the
wanted parameter have memory allocated in stk, and only those modules can be accessed in further data retrieval functions from the
database. Note that header data is the default wanted, and it is included with all other options.
individual modules:
STK_HEAD header structure
STK_EVENTS names, dists, shares, delists, nasdin
STK_LOWS lows
STK_HIGHS highs
STK_PRICES close or bid/ask average
STK_RETURNS total returns
STK_VOLUMES volumes
STK_PORTS portfolios
STK_BIDS bids
STK_ASKS asks
STK_RETXS returns without dividends
STK_SPREADS spreads
STK_TRADES number of trades
or
STK_ALTPRCDTS alternate price date
STK_OPENPRCS open prices
or
STK_ALTPRCS alternate prices
STK_GROUPS groups
Group of modules:
STK_INFOS header and event data
STK_DDATA price, high, low, volume and returns time series
STK_SDATA bids, asks, and number of trades time series
STK_STD header, events, prices, high, low, volume, returns, and ports
STK_ALL all modules

retUrN vaLUeS: status – returned value indicating success/failure (CRSP_SUCCESS/CRSP_FAIL) of stock_open()
crspnum – (integer) if opened successfully. this crspnum is used in further data retrieval functions from the database.
CRSP_SUCCESS - successful invocation of stock_open()
CRSP_FAIL – (integer) if error opening or loading files, if bad parameters, root already opened exclusively, stock set already opened rw,
wanted not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for
internal or stock structures.

SiDe eFFeCtS: this will load root and stock initialization files if needed, open the root including loading the configuration structure and index structures to
memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the log
file. Files will be opened for all wanted modules, associated calendars will be loaded, and wanted stock structures will be allocated.

preCONDitiONS: None. the root may already be open under a different set in r mode.

stk_read_permno Loads Wanted Stock Data Using CRSP PERMNO as the Key

prOtOtYpe: stk_read_permno (crspnum, stk, setid, permno, permno_select, wanted, status)

DeSCriptiON: loads wanted stock data for a perMNO

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 217

arGUMeNtS: crspnum – crspdb root identifier previously established by stock_open()
stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
permno – explicit perMNO of data to load, or integer that will be loaded with the perMNO key value found if positional permno_select
is used.
permno_select – constant to search for the perMNO in *key, or positional constant:
CRSP_EXACT - match the specified key value exactly CrSp_FirSt – the first key in the database CrSp_prev – the previous key
CRSP_LAST – the last key in the database CrSp_SaMe – the same key CrSp_NeXt – the next key
wanted – mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_permno()

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found in root
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in stk. the position to be used for the next positional read is reset
based on the key value found. if permno_select is a positional qualifier, the actual perMNO found is loaded to permno. Data are
loaded only to wanted data structures within the range of valid data for the security.

preCONDitiONS: the stock set must have been opened previously. crspnum must have been returned from a previous stock_open() call. stk must
have been passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to the stock_
open() function.

stk_read_cusip Loads Wanted Stock Data Using Current CUSIP as the Key

prOtOtYpe: stk_read_cusip (crspnum, stkstk, setid, cusip, cusip_select, wanted, status)

DeSCriptiON: loads wanted stock data for a security using the CUSip identifier - header (hcusip) as the key

arGUMeNtS: crspnum - crspdb root identifier returned by stock_open()
stk - TYPE(crsp_stk) data object to be loaded
setid - the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
cusip - CUSip - header to load, or TYPE(cusip_string) data that will be loaded with the CUSip found if a positional cusip_
select is used.
cusip_select - qualify matching conditions of key value searches:
CRSP_EXACT - accept only an exact match
CRSP_BACK - find greatest prior key value if no exact match CrSp_FOrwarD – find least following key value if no exact match or
positional constant:
CRSP_FIRST - the first key in the database CrSp_prev – the previous key CrSp_LaSt – the last key in the database CrSp_SaMe – the
same key
CRSP_NEXT - the next key
wanted - mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_cusip()

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
CUSIP index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location(s) in the stock structure. the position used for the next positional read is
reset based on the key value found. if cusip_flag is a positional qualifier, the actual CUSip identifier - header found is loaded to cusip.
Data are loaded only to wanted data structures within the range of valid data for the security.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous stock_open() call. stk must have been
passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to the stock_open() function.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 218

stk_read_permco Loads Wanted Stock Data Using CRSP PERMCO as the Key

prOtOtYpe: stk_read_permco (crspnum, stk, setid, permco, permco_select, wanted, status)

DeSCriptiON: loads wanted stock data for a security using PERMCO as the key

arGUMeNtS: crspnum – crspdb root identifier established by stock_open()
stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
permco – PERMCO to load, or an integer that will be loaded with the key value found if a positional permco_select is used.
permco_select – positional qualifier or match qualifier – see stk_read_cus
wanted – mask of flags indicating which data modules to load. See stock_open for module codes.
status - returned value indicating success/failure of stk_read_permco()

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
PERMCO index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read is
reset based on the key value found. if permco_select is a positional qualifier, the actual PERMCO found is loaded to permno. Data are
loaded only to wanted data structures within the range of valid data for the security.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous stock_open() call. stk must have been
passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to the stock_open()
function.

stk_read_hcusip Loads Wanted Stock Data Using Historical CUSIP as the Key

prOtOtYpe: stk_read_hcusip (crspnum, stk, setid, hcusip, hcusip_select, wanted, status)

DeSCriptiON: loads wanted stock data for a security using name history CUSIP as the key

arGUMeNtS: crspnum – crspdb root identifier established by stock_open()
stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
hcusip – historical CUSip identifier to load, or TYPE(cusip_string) data
hcusip_select – positional qualifier or match qualifier– see stk_read_cusip()
wanted – mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_hcusip()

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid CUSip index value

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read is
reset based on the key value found. if cusip_flag is a positional qualifier, the actual historical CUSip found is loaded to cusip. Data are
loaded only to wanted data structures within the range of valid data for the security.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous stock_open() call. stk must have been
passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to the stock_open() function.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 219

stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key

prOtOtYpe: stk_read_siccd (crspnum, stk, setid, siccd, siccd_select, wanted, status)

DeSCriptiON: loads wanted stock data for a security using name history Standard industrial Classification (SiC) Code (siccd) as the key

arGUMeNtS: crspnum – crspdb root identifier returned by stock_open()
stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
siccd – siccd to load, or an integer that will be loaded with the key value found if a positional siccd_select is used.
siccd_select – positional qualifier or match qualifier– see stk_read_siccd()
wanted – mask of flags indicating which data modules to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_siccd()

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid siccd index value

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read is
reset based on the key value found. if siccd_flag is a positional qualifier, the actual SiC Code found is loaded to siccd. Data are loaded
only to wanted data structures within the range of valid data for the security.

preCONDitiONS: the stock set must be previously opened. crspnum must be returned from a previous stock_open() call. stk must have been passed
to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to the stock_open() function.

stk_read_ticker Loads the Wanted Stock Data Using Current Ticker Symbol - Header as the Key

prOtOtYpe: stk_read_ticker (crspnum, stk, setid, ticker, ticker_select, wanted, status)

DeSCriptiON: loads wanted stock data for a security using ticker - header as the key

arGUMeNtS: crspnum – crspdb root identifier established by stock_open()
stk - TYPE(crsp_stk) data object to be loaded
setid – the set identifier used (10 - monthly stock data, 20 - daily stock data) STK_DAILY / STK_MONTHLY
ticker – pointer to ticker Symbol - header to load, or TYPE(ticker-string) data that will be loaded with the key found if a
positional ticker_select is used.
ticker_select – positional qualifier or match qualifier– see stk_read_ticker()
wanted – mask of flags indicating which module data to load. See stock_open() for module codes.
status - returned value indicating success/failure of stk_read_ticker()

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if ticker not found
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid ticker index

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the stock structure. the position used for the next positional read
is reset based on the key found. if ticker_flag is a positional qualifier, the actual header ticker found is loaded to ticker. Data are
loaded only to wanted data structures within the range of valid data for the security.

preCONDitiONS: the stock set must be previously opened. the crspnum must be returned from a previous stock_open() call. stk must have been
passed to a previous stock_open() call. wanted must be a subset of the wanted parameter passed to the stock_open()
function.

stock_close Closes a Stock Set

prOtOtYpe: stock_close (crspnum, setid)

DeSCriptiON: closes a stock set

arGUMeNtS: crspnum – identifier of crsp database, as returned by stock_open()
setid – stock set orignially associated with crspnum at invocation of stock_open()

SiDe eFFeCtS: all stock module files are closed, memory allocated by them is freed. if these are the last modules open in the database, the root is also
closed.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 220

preCONDitiONS: the crspnum and setid must be taken from a previous invocation of stock_open.

CaLL SeQUeNCe: Called by external programs, must be preceded by invocation of stock_open().

iNDeX aCCeSS FUNCtiONSiNDeX aCCeSS FUNCtiONS

The following tables list the available functions to access CRSPAccess indexes data. Standard usage is to use an open

function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if there

is a matching structure defined for each one.

aCCeSS FUNCtiON DeSCriptiON paGe
index_open Opens an existing index Set in an existing CrSpaccess Database page 220

ind_read_indno Loads Wanted Data For a CrSp iNDNO page 236

index_close Closes an indexes Set page 221

index_open Opens an Index Set in an Existing CRSPAccess Database

prOtOtYpe: index_open (ind_data, user_path, crspnum, setid, wanted, status)

DeSCriptiON: opens an index set in an existing crspdb. this opens database files, allocates needed memory to a structure, and initializes internal
structures so index data can be used.

arGUMeNtS: ind_data – TYPE(crsp_ind) data object to be allocated and loaded
crspnum – returned value assocaited with index set which is opened; used in future data retrievals
setid – the set identifier
400 = monthly index groups - MONTHLY_INDEX_GROUPS
420 = monthly index series - MONTHLY_INDEX_SERIES
440 = daily index groups - DAILY_INDEX_GROUPS
460 = daily index series - DAILY_INDEX_SERIES
wanted – mask indicating which modules will be used. the list below shows the wanted values for the index modules. the wanted
values may be summed, or summary wanted values may be used to open multiple modules. Only modules that are selected in the wanted
parameter have memory allocated in the index structure and only those modules can be accessed in further access functions to the
database.
IND_HEAD header structure and index description
IND_REBALS 2rebalancing information for index groups
IND_LISTS issue lists
IND_USDCNTS portfolio used counts
IND_TOTCNTS portfolio total eligible counts
IND_USDVALS portfolio used weights
IND_TOTVALS portfolio eligible weights
IND_TRETURNS total returns
IND_ARETURNS capital appreciation returns
IND_IRETURNS income returns
IND_TLEVELS total return index levels
IND_ALEVELS capital appreciation index levels
IND_ILEVELS income return index levels
Symbols are available for common groups of modules. IND_ALL selects all the index data.
IND_INFO=IND_HEAD+ IND_REBALS+IND_LISTS

IND_RETURNS=IND_TRETURNS+ IND_ARETURNS+IND_IRETURNS

IND_LEVELS=IND_TLEVELS+ IND_ALEVELS+IND_ILEVELS

IND_COUNTS=IND_USDCNTS+ IND_TOTCNTS+IND_USDVALS+IND_TOTVALS

IND_RESULTS=IND_HEAD+ IND_USDCNTS+IND_USDVALS+IND_TRETURNS

IND_ARESULTS=IND_HEAD+ IND_USDCNTS+IND_USDVALS+IND_ARETURNS

IND_IRESULTS=IND_HEAD+ IND_USDCNTS+IND_USDVALS+IND_IRETURNS

IND_STD=IND_HEAD+ IND_COUNTS+IND_TRETURNS+IND_ARETURNS

IND_ALL=IND_INFO+ IND_RETURNS+IND_LEVELS+IND_COUNTS

status – returned value indicating success/failure of index_open()

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 221

retUrN vaLUeS: CRSP_SUCCESS: successful invoation of index_open()
CRSP_FAIL: if error opening or loading files, if bad parameters, root already opened exclusively, index set already opened rw, wanted
not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for internal or
index structures.

index_open Opens an Index Set in an Existing CRSPAccess Database

prOtOtYpe: index_open (ind_data, user_path, crspnum, setid, wanted, status)

SiDe eFFeCtS: this will load root and index initialization files if needed, open the root including loading the configuration structure and index structures to
memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the log
file. Files will be opened for all wanted modules. associated calendars will be loaded. wanted index structures will be allocated.

preCONDitiONS: None; the root may already be open. if a new index structure is passed additional fields may be allocated.

ind_read_indno Loads Wanted Index Data For a CRSP INDNO

prOtOtYpe: ind_read_indno (crspnum, ind_data, setid, indno, indno_select, wanted, status)

DeSCriptiON: loads wanted index data for an iNDNO

arGUMeNtS: crspnum – crspdb root identifier returned by index_open()
ind_data – TYPE(crsp_ind) data object to be allocated and loaded
setid – the set identifier used in index_open()
indno – explicit iNDNO of data to load, or integer that will be loaded with the key value found if a positional
indno_flag is used.
indno_select – constant to search for the iNDNO in key, or positional constant:
CRSP_EXACT - match specified key value exactly CrSp_FirSt – the first key in the database CrSp_prev – the previous key
CRSP_LAST – the last key in the database CrSp_SaMe – the same key CrSp_NeXt – the next key
wanted – mask of flags indicating which module data to load. See index_open() for module codes.
status – returned value indicating success/failure of ind_read_indno()

retUrN vaLUeS: CRSP_SUCCESS: if data loaded successfully
CRSP_NOT_FOUND: if explicit key value not found in database
CRSP_EOF: if end-of-file / end-of-data is encountered
CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and setid, error in read, impossible wanted

SiDe eFFeCtS: Data from the wanted modules will be loaded to the proper location in the index structure. the position used for the next positional read is
reset based on the key found. if indno_select is a positional qualifier, the actual INDNO found is loaded to indno. Data are loaded
only to wanted data structures within the range of valid data for the index.

preCONDitiONS: the index set must be previously opened. the crspnum must be returned from a previous index_open() call. ind_data must have
been passed to a previous index_open() call. wanted must be a subset of the wanted parameter passed to the index_open()
function.

index_close Closes an Index Set

prOtOtYpe: index_close (crspnum, setid)

DeSCriptiON: close an index set

arGUMeNtS: crspnum – identifier of the CrSp database, as returned by index_open()
setid – identifier of the index set code to close, as used in the open

SiDe eFFeCtS: all index module files are closed, and memory allocated by them in the index structure is freed. if these are the last modules open in the
database, the root is also closed.

preCONDitiONS: the crspnum and setid must be taken from a previous ind_open() call.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 222

GeNeraL aCCeSS FUNCtiONSGeNeraL aCCeSS FUNCtiONS

The CRSPAccess general access functions include error functions and portable file operation functions.

crsp_allocate_unit Allocates Unused Unit for FORTRAN-95-95 I/O

prOtOtYpe: crsp_allocate_unit()

DeSCriptiON: allocates a unique integer value in the range 10-79 for use in FOrtraN-95-95 i/O

arGUMeNtS: none

retUrN vaLUeS: integer unit number not previously allcoated;
-1 - if no unallocated units available

SiDe eFFeCtS: none

preCONDitiONS: none

crsp_deallocate_unit Deallocates Unit Allocated by crsp_allocate_unit()

prOtOtYpe: crsp_deallocate_unit(unit)

DeSCriptiON: deallocates integer unit number allocated by crsp_allocate_unit()

arGUMeNtS: unit: integer unit number allocated by crsp_allocate_unit()

retUrN vaLUeS: none

SiDe eFFeCtS: none

preCONDitiONS: none

crsp_free_all_units Deallocates All Units Currently Allocated by crsp_allcoate_unit()

prOtOtYpe: crsp_free_all_units

DeSCriptiON: deallocates all units currently allocated by crsp_allocate_unit()

arGUMeNtS: none

retUrN vaLUeS: none

SiDe eFFeCtS: none

preCONDitiONS: none

GeNeraL UtiLitY FUNCtiONSGeNeraL UtiLitY FUNCtiONS

The utility functions operate on the base CRSPAccess data structures and are not specific to a type of data. They include

operations on calendars CRSP object structures and general utilities.

Calendar Utility Functions

These functions are used to manipulate calendar data in CRSPAccess databases.

cal_index Finds CRSP Calendar Index of Date

prOtOtYpe: cal_index (cal, date)

DeSCriptiON: Finds CrSp Calendar index of Date

arGUMeNtS: cal - TYPE(crsp_cal) calendar object
date - YYYYMMDD format date whose index in cal % caldt is desired

retUrN vaLUeS: index of YYYYMMDD argument in cal % caldt, or zero if out of range

SiDe eFFeCtS: matches forward to next valid date in cal % caldt if YYYYMMDD argument not found

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 223

date_index Finds CRSP Calendar Index of Date

prOtOtYpe: date_index (cal, date, option)

DeSCriptiON: Finds CrSp Calendar index of Date

arGUMeNtS: cal - TYPE(crsp_cal) calendar object
date - YYYYMMDD format date whose index in cal % caldt is desired
option - -1, 0, 1 : match backwared, exact, forward

retUrN vaLUeS: index of YYYYMMDD argument in cal % caldt, or zero if not found

SiDe eFFeCtS: none

stk_usdate Index of Calendar Trading Date

prOtOtYpe: stk_usdate(stk, datein, dateout, position)

DeSCriptiON: index of Calendar trading Date

arGUMeNtS: stk - tYpe(crsp_stk)must have been used in prior invocation of stk_open()
datein - YYYYMMDD format date
dateout - YYYYMMDD formate date, to be loaded
position - integer index value in active stk % caldt()

retUrN vaLUeS: dateout is loaded with the next trading date greater than or equal to datein position is the index of dateout in stk % caldt()

SiDe eFFeCtS: none

CRSPAccess Stock Utility Functions

These functions can be used to access stock data.

FUNCtiON DeSCriptiON paGe
stk_comp_ret Compound returns page 238
stk_curdis Finds Distributions Between Specified Dates page 224
stk_curnam Finds Name Data on Specified Date page 224
stk_curndi Finds effective NaSDaQ information Structure on Specified Date page 224
stk_curshr Finds Shares Outstanding on Specified Date and Calendar index page 224
stk_exrdat restricts real array Data Between Selected Dates and by exchange page 225
stk_exrinf restricts event Data Between Selected Dates and by exchange page 225
stk_exrint restricts integer array Data Between Selected Dates and by exchange page 225
stk_loadba Loads Bid and ask Data to price arrays page 225
stk_loadhl Loads trade Only Data to price arrays page 242
stk_namrng Finds Calendar index ranges Corresponding to a Name Structure page 226
stk_valexc Determines if exchange Code is valid page 226
xs_ret_calc Calculates a Stock excess return Over an index page 227
comp_ind_calc Calculates a Composition return page 227
stk_ret_calc Calculates a return Based on trade-Only prices page 227

stk_comp_ret Compound Returns

prOtOtYpe: compret=stk_compret (retv, begind, endind)

DeSCriptiON: Compound returns

arGUMeNtS: retv - array of REAL returns to be compounded
begind - initial index of range to be compounded
endind - terminal index of range to be compounded

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 224

retUrN vaLUeS: REAL compound return over internal begind - endind

SiDe eFFeCtS: none

preCONDitiONS: retv must have DIMENSION (0:*); [stk % ret is allocated as (0:maxarr)]

stk_curdis Finds Distribtutions Between Specified Dates

prOtOtYpe: stk_curdis (stk, dist_type, begdt, enddt)

DeSCriptiON: Finds distributions between two dates

arGUMeNtS: stk - TYPE(crsp_stk) data object loaded
dist_type - integer distribution type required:
1 = declaration date
2 = ex-distribution date
3 = record date
4 = payment date
begdt - YYYYMMDD initial date
enddt - YYYYMMDD terminal date

retUrN vaLUeS: the sequential index values of the distributions in stk % dists which fall in the specifed range begdt - enddt.
-1 - if dist_type not in range 1-4 or if begdt > enddt
0 - if no distributions exist (or if distributions in range begdt - enddt have been exhausted.)

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with distribution data via invocation of stock_read_xxx()

stk_curnam Finds Name Data on Specified Date

prOtOtYpe: curnam=stk_curnam (stk, date)

DeSCriptiON: Finds name data on specified date

arGUMeNtS: stk - TYPE(crsp_stk) data object loaded
date - YYYYMMDD date in stk % caldt

retUrN vaLUeS: index in stk % names if record valid on date or current record if date follows date of latest name change

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with names data via the invocation of stk_read_xxx()

stk_curndi Finds Effective NASDAQ Information Structure on Specified Date

prOtOtYpe: stk_curndi (stk, date)

DeSCriptiON: Finds effective NaSDaQ information structure on specified date

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
date - YYYYMMDD date in active stk % caldt

retUrN vaLUeS: index in stk % nasdin of record valid on date
0 - if no nasdin data is available or date is outside the range of valid nasdin data

SiDe eFFeCtS: none

preCONDitiONS: stk must have been laoded with nasdin data via the invocation of stk_read_xxx()

stk_curshr Finds Shares Outstanding on Specified Date and Calendar Index

prOtOtYpe: shares=stk_curshr (stk, date)

DeSCriptiON: Finds shares outstanding on specified date and calendar index

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
date - YYYYMMDD date in active stk % caldt

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 225

retUrN vaLUeS: number of shares outstanding in stk % shares of record valid on date
0 - if no shares data are available or if the date is outside the range of valid shares data

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loded with shares data via the invocation of stk_read_xxx()

stk_exrdat Restricts Real Array Data Between Select Dates and by Exchange

prOtOtYpe: stk_exrdat (stk, excode, begind, endind, array, missval)

DeSCriptiON: restricts REAL array data between select dates and by exchange

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
excode - CrSp exchange code 1-7
begind - initial index for data validation
endind - terminal index for data validation
array - array of REAL data to be scanned and validated
misval - value to be substituted in array() for days in begind-endind range when the security is not trading on the specified
exchange

retUrN vaLUeS: adjusted array()

SiDe eFFeCtS: original values in array() may be superseded by misval

preCONDitiONS: stk must have been loded with names data via the invocation of stk_read_xxx()

stk_exrinf Restricts Event Data Between Selected Dates And by Exchange

prOtOtYpe: stk_exrinf (stk, excode)

DeSCriptiON: restricts event data between selected dates and by exchange

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
excode - CrSp exchange code: 1-7

retUrN vaLUeS: event arrays are “compressed” to exclude periods when the security did not trade on the specified exchange

SiDe eFFeCtS: parts of events arrays may be overwritten and lost

preCONDitiONS: stk must have been loaded with events data via the invocation of stk_read_xxx()

stk_exrint Restricts Integer Array Data Between Selected Dates by Exchange

prOtOtYpe: stk_exrint (stk, excode, begind, endind, array, missval)

DeSCriptiON: restricts integer array data between selected dates by exchange

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
excode - CrSp exchange code: 1-7
begind - initial index of data to be screened / reset endind - terminal index of data to be screened / reset array - integer array to be
screened / reset
misval - code to be used as replacement value in array when the security is not trading on the specified exchange

retUrN vaLUeS: adjusted array()

SiDe eFFeCtS: parts of array() data may be overwritten and lost

preCONDitiONS: stk must have been loaded with names data via the invocation of stk_read_xxx()

stk_loadba Loads Bid and Ask Data to Price Arrays

prOtOtYpe: stk_loadba (stk)

DeSCriptiON: Loads bid and ask data to price arrays

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded

retUrN vaLUeS: First if stk % prc(i) is non-negative, stk % prc(i), stk % bidlo(i), and stk % askhi(i) are set to 0. then NMS bid
and ask data are loaded into bidlo and askhi. Finally resulting bid-ask averages are copied to the price field.

SiDe eFFeCtS: prc(), bidlo(), and askhi() data may be overwritten and lost

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 226

preCONDitiONS: stk must have been loaded with price, bid, and ask data via the invocation of stk_read_xxx()

stk_loadhl Loads Trade Only Data to Price Arrays

prOtOtYpe: stk_loadhl (stk)

DeSCriptiON: Loads trade only data to price arrays

arGUMeNtS: stk - TYPE(crsp_stk) data object loaded

retUrN vaLUeS: stk % prc, stk % bidlo, and stk askhi are reset when price (prc) represents an average of bid and ask. Data remain
unchanged only when high, low, and price represent valid trading data.

SiDe eFFeCtS: prc(), bidlo(), and askhi() may be overwritten and lost

preCONDitiONS: stk must have been loaded with price, bid and ask data via the invocation of stk_read_xxx()

stk_namrng Finds Calendar Index Ranges Corresponding to a Name Structure

prOtOtYpe: stk_namrng (stk, ind, bind, eind)

DeSCriptiON: Finds calendar index ranges corresponding to a name structure

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
ind - index of stk % names()
bind - index in stk % caldt() corresponding to initial valid date of stk % names (ind)
eind - index of stk_caldt() corresponding to terminal valid date of stk % names (ind)

retUrN vaLUeS: bind, eind
0 - if ind is not a valid index in stk % names()

SiDe eFFeCtS: none

preCONDitiONS: skt_data must have been loaded with names data via the invocation of stk_read_xxx()

stk_valexc Determines if Exchange Code is Valid

prOtOtYpe: valid=stk_valexc (exhave, exwant)

DeSCriptiON: Determines if a given exchange code is valid based on a set of wanted exchanges. when-issued trading is not differentiated from regular-
way trading.

arGUMeNtS: exhave – exchange Code to validate. Codes are standard CrSp stock exchange Codes:
1=NYSe
2=NYSeMKt
3=NaSDaQ
4=arCa
31=NYSe when-issued
32=NYSeMKt when-issued
33=NaSDaQ when-issued
34=arCa when-issued
exwant – acceptable exchange Code or codes. if multiple exchanges are valid, exwant is the sum of the individual codes below:
1=NYSe
2=NYSeMKt
4=NaSDaQ
8=arCa

retUrN vaLUeS: .TRUE. – if exhave is valid according to exwant
.FALSE. – if is not valid according to exwant

SiDe eFFeCtS: none

preCONDitiONS: none

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 227

CRSPAccess Excess Return Functions

xs_ret_calc Calculates Stock Excess Return Over an Index

prOtOtYpe: xs_ret_calc (ret_ts, indtret_ts, xs_ret, MISSFLAG, STATUS)

DeSCriptiON: loads into TYPE (stk_ret_ts) xs_ret the excess returns for each date in the supplied tiMeSerieS: based on the intrinisic
“returns” data from the TYPE (stk_ret_ts) subtype of TYPE (crsp_stk), versus the CrSp iNDeX returns of the subtype TYPE
(ind_tret_ts) of TYPE (crsp_ind)

arGUMeNtS: TYPE (stk_ret_ts) ret_ts [a component of TYPE (crsp_stk)]
TYPE (ind_tret_ts) indtret_ts [a component of TYPE (crsp_ind)]
TYPE (stk_ret_ts) xs_ret [a component of TYPE (crsp_stk)]
INTEGER MISSFLAG: one of
CRSP_KEEP: missing returns in ret_ts are copied to xs_ret, and indtret_ts returns are compounded across the gap,
CRSP_SMOOTH: first return following any gap is averaged geometrically so that the entire gap has a constant value, or
CRSP_IGNORE: missing returns in ret_ts are treated as zero, missing returns in indtret_ts generate a missing xs_ret data point
INTEGER STATUS: CRSP_SUCCESS or CRSP_FAIL

retUrN vaLUeS: none, though STATUS indicates success/failure of calculations

SiDe eFFeCtS: data, including missing values – where appropriate – are loaded into xs_ret

preCONDitiONS: ret_ts, indtret_ts, and xs_ret should have the same CrSp calendar

comp_ind_calc Calculates a Composite Index Return

prOtOtYpe: comp_ind_calc (ind, stk, port_type, composite_index_return, status)

DeSCriptiON: loads into TYPE (stk_ret_ts) comp_ind_ret the “composite index” for the security, based on the specified portfolio type and
using, for each date, the index for the security’s portfolio decile on that date, thereby creating a TIMESERIES of index values which is not
a “standard” CrSp data item

arGUMeNtS: TYPE (crsp_ind) ind
TYPE (crsp_stk)
INTEGER port_type: the portfolio index to be used for generation of the composite index return
TYPE (stk_ret_ts) composite_index_return: loaded with the values of the composite index
INTEGER STATUS: CRSP_SUCCESS or CRSP_FAIL

retUrN vaLUeS: none, though STATUS indicates success/failure of calculations

SiDe eFFeCtS: composite index returns values are loaded into composite_index_return

preCONDitiONS: ind and stk must have the same CrSp calendar

stk_ret_calc Calculates a Stock Return based on Trade Only Prices

prOtOtYpe: stk_ret_calc (stk_setid, stk_wanted, stk, trade_only_prc_ts, alt_prc_ts, trade_only_ret_ts,

trade_only_retx_ts, trade_only_start, trade_only_end, gap_window, valid_exch)

DeSCriptiON: loads into TYPE (stk_ret_ts) trade_only_ret_ts and TYPE (stk_ret_ts) trade_only_retx_ts the “returns
data” [with and without dividends, respectively] based on the user’s supplied values in TYPE (stk_prc_ts) trade_only_prc_ts
over the range of indexes bounded inclusively by the user’s values for “trade_only_start” and “trade_only_end”; values are
computed in accordance with CrSp conventions for missing values over a maximum allowable interval indicated by “gap_window” and
“on-” or “off-” exchange trading

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 228

arGUMeNtS: INTEGER stk_setid: the dataset identifier of TYPE (crsp_stk) used (below)
INTEGER stk_wanted: the CrSp identifier of the data loaded into TYPE (crsp_stk) stk (below)
TYPE (crsp_stk) stk
TYPE (stk_prc_ts) trade_only_prc_ts: TIMESERIES created from
TYPE (crsp_stk) by setting to zero all values for “stk % prc_ts” which are negative (i.e., those NOt arising from a valid value for
“closing price”)
TYPE (stk_prc_ts) alt_prc: TIMESERIES to be used to supply “valid” values to supersede zero values present in “trade_
only_prc_ts”
TYPE (stk_ret_ts) trade_only_ret_ts: TIMESERIES to be loaded with returns calculated from the trade- only- price
TIMESERIES
TYPE (stk_ret_ts) trade_only_retx_ts: TIMESERIES to be loaded with “returns without dividends” calculated from the
trade-only-price TIMESERIES
INTEGER trade_only_start: index value indentifying the first data point for which trade-only returns are to be calculated
INTEGER trade_only_end: index value identifying the last data point for which trade-only returns are to be calculated
INTEGER gap_window: permitted successive missing values in trade_only_prc without computed returns being set to missing
(zero is default)
INTEGER valid_exch: binary code specifying valid exchange(s):
1 = NYSe, 2 = NYSeMKt, 4 = NaSD, 8 = arCa, 0 = all

retUrN vaLUeS: none

SiDe eFFeCtS: computed returns are loaded into trade_only_ret_ts and trade_only_retx_ts

preCONDitiONS: “stk” must contain data corresponding to “stk_setid” and “stk_wanted”; trade_only_prc_ts” must contain zero values
wherever stk % prc(k) is negative (i.e., represents “bid-asked” average)

CRSPAccess Print Utility Functions

The following functions are FORTRAN-95 print utiltiy functions.

FUNCtiON DeSCriptiON paGe
stk_outdat Outputs price, volume, and return Data
stk_outdel Outputs Delisting Data
stk_outdis Outputs Distribution Data
stk_outhdr Outputs header Data
stk_outint Outputs Data for One integer array
stk_outnam Outputs Name Data
stk_outndi Outputs NaSDaQ information Data
stk_outnms Outputs NaSDaQ time Series Data
stk_outone Outputs Data for One real array
stk_outshr Outputs Shares Data
stk_outyr Outputs Year and portfolio Data

stk_outdat Outputs Price, Volume, and Return Data

prOtOtYpe: StK_OUtDat (StK, UNit, BiND, eiND, Step)

DeSCriptiON: Outputs price, volume, and return data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
bind - initial index of stk % prc() to be used
eind - terminal index of stk % prc() to be used
step - “stride” increment for traversal of stk % prc()

retUrN vaLUeS: records from stk % bidlo(), stk % askhi(), stk % prc(), stk % vol, and stk % ret() are written to the file open on
unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with prc(), bidlo(), askhi(), vol(), and ret() via invocation of stk_read_xxx()

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 229

stk_outdel Outputs Delisting Data

prOtOtYpe: STK_OUTDEL (STK, UNIT, FIRST, LAST)

DeSCriptiON: Outputs delisting data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
first - initial index of stk % delist() to be used
last - terminal index of stk % delist() to be used

retUrN vaLUeS: records from stk % delist() are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with delisting records via invocation of stk_read_xxx()

stk_outdis Outputs Distribution Data

prOtOtYpe: STK_OUTDIS (STK, UNIT, FIRST, LAST)

DeSCriptiON: Outputs distribution data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
first - initial index of stk % dists() to be used
last - terminal index of stk % dists() to be used

retUrN vaLUeS: records from stk % dists() are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with distribution data via invocation of stk_read_xxx()

stk_outhdr Outputs Header Data

prOtOtYpe: STK_OUTHDR (STK, UNIT)

DeSCriptiON: Outputs header data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing

retUrN vaLUeS: HEADER data values are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with header data via invocation of stk_read_xxx()

stk_outint Outputs Data for One Integer Array

prOtOtYpe: STK_OUTINT (STK, UNIT, TITLE, ARRAY, BIND, EIND, STEP)

DeSCriptiON: Outputs data for one integer array

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - unit - FOrtraN-95 i/O unit open for writing
title - TYPE(name string) character string
array - iNteGer array whose values are to be displayed
bind - initial index of array() to be used
eind - terminal index of array() to be used
step - “stride” increment for traversal of stk % array()

retUrN vaLUeS: data from array() are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk % caldt() must have valid data, generally read via invocation of stk_read_xxx()

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 230

stk_outnam Outputs Name Data

prOtOtYpe: STK_OUTNAM (STK, UNIT, FIRST, LAST)

DeSCriptiON: Outputs Name data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
first - initial index of stk % names() to be used
last - terminal index of stk % names() to be used

retUrN vaLUeS: records from stk % names() are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with names data via invocation of stk_read_xxx()

stk_outndi Outputs NASDAQ Information Data

prOtOtYpe: STK_OUTNDI (STK, UNIT, FIRST, LAST)

DeSCriptiON: Outputs NaSDaQ information data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
first - initial index of stk % nasdin() to be used
last - terminal index of stk % nasdin() to be used

retUrN vaLUeS: records from stk % nasdin() are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with nasdin data via invocation of stk_read_xxx()

stk_outnms Outputs NASDAQ Time Series Data

prOtOtYpe: STK_OUTNMS (STK, UNIT, BIND, EIND, STEP)

DeSCriptiON: Outputs NaSDaQ data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
bind - initial index of stk % bid(), stk % ask(), stk % numtrd() to be used
eind - terminal index of stk % bid(), stk % ask(), stk % numtrd() to be used
step - “stride” increment for traversal of stk % bid(), stk % ask(), stk % numtrd()

retUrN vaLUeS: records from stk % bid(), stk % ask(), stk % numtrd() are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with bid(), ask(), numtrd() data via invocation of stk_read_xxx()

stk_outone Outputs Data for One Real Array

prOtOtYpe: STK_OUTONE (STK, UNIT, TITLE, ARRAY, BIND, EIND, STEP)

DeSCriptiON: Outputs data for one real array

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - unit - FOrtraN-95 i/O unit open for writing
title - TYPE(name string) character string
array - array whose valies are to be displayed
bind - initial index of array() to be used
eind - terminal index of array() to be used
step - “stride” increment for traversal of array()

retUrN vaLUeS: data from array() are written to the file open on unit

SiDe eFFeCtS: none

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 231

preCONDitiONS: stk % caldt() must have valid data, generally read via invocation of stk_read_xxx()

stk_outshr Outputs Shares Data

prOtOtYpe: STK_OUTSHR (STK, UNIT, FIRST, LAST)

DeSCriptiON: Outputs shares data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
first - initial index of stk % shares() to be used
last - terminal index of stk % shares() to be used

retUrN vaLUeS: records from stk % shares() are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been loaded with shares data via invocation of stk_read_xxx()

stk_outyr Outputs Year and Portfolio Data

prOtOtYpe: STK_OUT_PORT (STK, UNIT, BIND, EIND, PORT_NUM)

DeSCriptiON: Outputs year and portfolio data

arGUMeNtS: stk - TYPE(crsp_stk) data object to be allocated and loaded
unit - FOrtraN-95 i/O unit open for writing
bind - initial index of portfolio data to be used
eind - terminal index of portfolio data to be used
port_num - index of stk % port_ts() to be used

retUrN vaLUeS: portfolio statistics - port and stat are written to the file open on unit

SiDe eFFeCtS: none

preCONDitiONS: stk must have been laoded with portfolio data via invocation of stk_read_xxx()

	COverviewapter 1: 1
	Notational Conventions

	CItem-Based Access in Capter 2: 4
	Introduction
	CRSP C API Data Objects
	Supporting Information
	Generic Data Types

	Accessing CRSP Databases
	CRSP US Stock Database
	CRSP US Index Database
	CRSP/Compustat Merged Database

	Supporting Types
	Container Objects
	CRSP C API Data Types

	CItem-Based Access in Fortranapter 3: 28
	CRSP Fortran 95 API Data Objects
	Supporting Information
	Generic Data Types

	Accessing CRSP Databases
	CRSP US Stock Database
	CRSP US Index Database
	CRSP/Compustat Merged Database

	CRSP Fortran 95 API Functions
	Supporting Types
	Container Objects
	CRSP Fortran 95 API Data Types
	CRSP_VARSTRING_T Type

	CItem-Based Samplesapter 4: 72
	Building and Executing Programs
	Visual Studio 2010 - C Compiler Instructions

	CLegacy Set Access in Capter 5: 92
	CRSPAccess C Data Structures
	Data Organization for C Programming
	Data Objects
	Set Structures and Usage
	C Sample Programs
	CRSPAccess C Library

	CLegacy Set Access in Fortranapter 6: 198
	FORTRAN-95 Data Structures
	Data Organization for FORTRAN-95 Programming
	Data Objects
	Set Structures and Usage
	FORTRAN-95 Stock Sample Programs and Subroutines
	CRSPAccess FORTRAN-95 Library

