C RS P CENTER FOR RESEARCH
IN SECURITY PRICES, LLC
go Booth School of Business

PROGRAMMER’S
GUIDE

CRSP US Stock & US Index Databases
CRSP/Compustat Merged Database

dddddddddddddddddd

CENTER FOR RESEARCH

C RS P IN SECURITY PRICES, LLC

An Affiliate of the University of Chicago Booth School of Business

CENTER FOR RESEARCH IN SECURITY PRICES, LLC
An Affiliate of the University of Chicago Booth School of Business

105 West Adams, Suite 1700
Chicago, IL 60603

Phone: 312.263.6400
Fax: 312.263.6430

Email: support@crsp.org
Website: www.crsp.org

Table of Contents

Chapter 1: OVervieWccieiiiiiri v s s sr e s e s e e e e e e e 5
Overview of CRSPAccess Databases........cccccceceeiiimiemmiciiniecceccsssrreeesseeeeeeas 5
LAY o I o SRS 6
Notational Conventionscooeeeciiiiiiicccr e e 7
Chapter 2: Item-Based AccesS iN C....covviiiiiiiiciiiic e 8
€Yo L1 Cod 4T o S 8
CRSP C APl Data Objectscuuuirirrrmmnriiimrreeessnssrrressssssrsrsnsssssssssnnnssssseennnns 8
Supporting INformationcecceiiiiieriiir e 11
Generic Data TYPEeS...uuuuemmmmmnnnrssrsrssrrrrrrrrrrsnennnnssssssssssssssssseeemmemesnnnnnnnnnnses 11
Accessing CRSP Databases........ccccrmmmmmmmmeeememssssssssnssssssss s ssssssessssssssses 12
CRSP US Stock Database.........ccooimiemmiiiiiiriccrcs s rrs s er e 12
CRSP US Index Databasecccccuiiimiiimiiinsececemessssssssssss s e e e e e sessssensnssssnses 14
CRSP/Compustat Merged Databasecceeeeemmmmmnccciisiinsse e e e eeeeeecessnnnnns 15
CRSP C APl Data TYPEeS ceuueuuunnnrrsrsssssrrrrrrssnsnsnmnmssssssssssssssssssersmsssssnnnnnnnnnses 27
(020 31 =713 L= g 0 =T o 3O 27
SUPPOItING TYPES. . ciieeeeiiririeme e e e rreme s s e sne s s e e s emns s s e renmnsssssernnnnsssnsenns 29
Chapter 3: Iltem-Based Access in Fortranccovevvieiviinnnannnes 32
CRSP Fortran 95 APl Data Objectsccuvveeeeemmmmmnnssssssssssss e e eeesssesensmsssnnses 32
Supporting Information ... —————— 35
GeNEriC Data TYPES...ccu i ree s s e e e s re s s e s e mn e s rmmnn s 35
Accessing CRSP Databases........cueeeeiiirireeesiiinirneessssssrsessssssrsssmssssssssnnnas 37
CRSP US Stock Database......ccccovrmremmeiiimmmiceiisirrecesss s srecesss s s s eesssssenns 37
CRSP US Index Databasec..cceiriremmeiiiimrecensisirremsns s e sssmsssssssssnssssnsenes 42
CRSP/Compustat Merged Databasecceeeemmmmmncniniiiniinriinnnssseeeeeesnnnnes 45
CRSP Fortran 95 APl FUNCEIONScooceeeeiiiree e 59
CRSP Fortran 95 APl Data TYPeS ...iveeeuriirrrremmniirrrreessssssesssmsssssserssnsssssseens 68
(020701 ¢ 11 41 g0 0T 1= o3 -3 69
K0T 0] 0T g 4] 4 V=00 17/ o =T 71
CRSP_VARSTRING_T TYPE .uuuuuiiiiiirrriiriirrseeenmnnnnsssssssssssssssessssssssnnnnnnnnnses 73
Chapter 4: Iltem-Based Samples ..covcvviiiiiiiiiiiiiicic i rneeaes 76
Building and Executing Programscccccceerrnrnmrmrmmmmssssssssmmssssssssssssssens 76
Visual Studio 2010 - C Compiler Instructions.......c...coommmemceiiiiiccccinineeee. 85
Chapter 5: Legacy Set AccessinC......ccoeeiiiiiiinnn, 96
CRSPAccess C Data Structurescccvvvveeeeecmmmmnssssssssssssr e e sessseesnsmssssnses 96
Data Organization for C Programming..........cceeceecceiimmecmnsisersecnssssesensnnnnns 926

[12 = T 0 o [T ot 3 96

Set Structures and USAgecccevvvirrrrrmmrmmseeecmmsssssssssssssssssseeesssssssssmssssnses 98

C Sample Programsceceeeeiississnsnnismnnnssssssnssssssssssssssssssssssssssssssssnnnes 115
CRSPACCESS C Libraryeeeeeiciiiiiniiiiinnnnnssssssmmssssssss s s ssnnnnnes 116
Chapter 6: Legacy Set Access in Fortran.........cccoovveevnnnnnen. 204
FORTRAN-95 Data Structures ... e 204
Data Organization for FORTRAN-95 Programming......ccccceerreeemnenerrrennnnns 204
(D212 10 o 1T o 3 204
Set Structures and USagecceeviiiiieeeiiiiiirecesss s reesss s s s smms s e s remsssnes 206
FORTRAN-95 Stock Sample Programs and Subroutines...........ccccevveeens 226

CRSPAccess FORTRAN-95 Library.....cccccumeeeeemmmmmnsssssssssssssssssssssssssnnnees 228

CHAPTER 1: OVERVIEW

The supplied suite of CRSP utilities allows full-featured access to CRSP databases and is intended to cover a variety of

the most typical queries and uses of CRSP data. The features of CRSP tools can often save end-users the whole effort of
programming their own reporting utilities. In other cases the user-program flow can be significantly simplified by the use of
output files produced from CRSP tools in a number of widely accepted formats.

OVERVIEW OF CRSPACCESS DATABASES

A CRSPAccess database is a customized financial database system supporting time-series, event, and header data for
various financial data structures. A single CRSPAccess Database is a set of defined configuration and module files in a
directory. Configuration files track the location of data in the module files.

The basic levels of a CRSPAccess database are:

1. Database (crspDB) is the directory containing the database files. A CRSPDB is identified by the database path.

2. Set Type is a predefined type of financial data; stock or indexes. Each set type has its own defined set of data structures,
specialized access functions, and keys. CRSPAccess databases support stock (sTx) and index (1nD) set types. A CRSPDB
can support multiple set types.

3. Set Identifier (seT1D) is a defined subset of a set type. sET1Ds of the same set type use the same access functions,
structures, and keys, but have different characteristics within those structures. For example, daily stock sets use the
same data structure as monthly stock sets, but time series are associated with different cal- endars. Multiple SETIDs of
the same set type can be present in one CRSPDB.

4. Modules are the groupings of data found in the data files in a crRspDB. Multiple data items can be present in a module.
Data are retrieved at a module level, and access functions retrieve data items for keys based on selected modules. A
module corresponds to a single physical data file.

5. Objects are the fundamental data types defined for each set type. There are three fundamental object types: time series
(CRSP_TIMESERIES), event arrays (CRSP_ARRAY), and headers (crsp_Rrow). Objects con- header information such
as counts, ranges, or associated calendars, plus arrays of data for zero or more observations. Some set types allow arrays
of objects of one type. In this case, the number of available objects is determined by the seT1D, and each of the objects
in the list has independent counts, ranges, or associated calendars.

6. Arrays are attached to each object. The array contains the set of observations and is the basic level of pro- gramming
access. An observation can be a simple data type, such as an integer for an array of volumes, or a complex structure such
as for a name history. When there is an array of objects, there is a corresponding array of arrays with the data.

Configuration Files contain information about supported sets and modules in the crspPDB, a list of keys, addresses of data
for each key in different data modules, a set of shared calendars, a set of secondary indexes, and a list of free space within
the module files. Module files contain the data for groups of objects for keys.

MISSING VALUES

Missing values are relevant for time-series with scalar data type elements. Scalar data types are predefined data types used
in C and Fortran. Examples include integer, floating point, real, logical, double precision. Missing values are not meaningful
for arrays, C-LANGUAGE structures, and Fortran-95 TYPES; values used in these cases are merely place-holders.

For all time-series, missing values are stored at index zero. Index values 1 through MAX contain meaningful values of the
time-series. These may be compared against the missing value at index O to determine whether they are miss- ing.

A C application programming interface supports access to defined set structures, such as stock security or index data.

PAGE 5

A FORTRAN-95 programming interface is also built into the system. The FORTRAN-95 access utilizes direct access by
module and by key.

API LIBRARY

For situations when a user-program requires direct access to CRSP datasets, a CRSP API library is provided. The CRSP
API comprises the platform-specific object library and a set of precompiled modules and include files. Additionally, a set of
sample program sources is supplied along with respective make files and test data to build and test the samples.

ITEM-BASED ACCESS

The CRSP API introduces item-based access which generally supersedes the older set-based method of programming
access to CRSP databases.

Conceptually, the item-based access allows uniform access to the whole array of CRSP datasets by presenting them as
collections of items that are instances of a generic item object. Each specific CRSP dataset is represented as an instance
of a generic access-handle object.

In item-access context users are shielded from the internal mechanics of access to the specific structures of CRSP
datasets. This adds more uniformity to your code, especially in cases of accessing a mixed set of CRSP data, thus
simplifying code development and maintenance.

In addition to its dynamic and extensible nature, item-access also introduces a set of derived items that are defined as
parameterized functional combinations of underlying regular items. These items significantly improve code consistency
and simplicity by internally performing all of the necessary calculations that previously had to be coded explicitly in user
programs.

LEGACY SET-BASED ACCESS

The supplied CRSP API contains the needed underlying functions for set-based access. However, mixing the legacy set-
based access and item-access contexts in the same program is not recommended. Any new user programs that access
CRSP data should be implemented in the item-access context. CRSP supplies a set of sample programs that demonstrate
the flow of programs using item-access.

CRSP PROGRAMMER'S GUIDE | OVERVIEW PAGE 6

NOTATIONAL CONVENTIONS

All names that occur within CRSP’s FORTRAN-95 and C sample programs and include files are printed using a con-
stant-width, Courier font. These names include variable names, parameter names, subroutine names, subprogram
names, function names, library names, and keywords. For example, CUSIP refers to the CUSIP Agency identifier, while
custp refers to the variable that the programs use to store this identifier. CRSP’s variable mnemonics, used as names
and in the descriptions, are displayed capitalized using a constant-width font. C and FORTRAN-95 are displayed in
lower case, excepting constants, which are displayed in UPPER CASE.

All names that refer to the CRSP data utilities, sample programs or include file titles are printed using an italic sans
serif font.

Names with a similar format are sometimes referenced collectively, using three x’s where the names differ. For ex-
ample, the FORTRAN-95 variables BEGVOL, BEGRET, BEGPRC, etc. are sometimes referred to as BEGxxx.

In the variable definitions section, the variables i and j are sometimes used in referencing a variable in a FOR- TRAN-
95 or C array. In this case, i refers to a possible range of valid data in this array for this company, where the valid range
is determined by the number of header variables. For example, in FORTRAN-95, the names date is referred to as stk
% names_arr % names(i) % namedt. Here i is an integer between 1 and stk % names_arr % num, which represents the
number of name structures that exist for any specified issue in the CRSP US Stock Database.

In C, all CRSP-defined data types have names in all capitals beginning with CRSP_.

The text of this document is in Times New Roman. Italics and bold styles are used to emphasize headings, names,
definitions and related functions.

CRSP PROGRAMMER'S GUIDE | OVERVIEW PAGE 7

CHAPTER 2: ITEM-BASED ACCESS IN C

INTRODUCTION

The supplied suite of CRSP utilities allows full-featured access to CRSP databases and is intended to cover a variety of
the most typical queries and uses of CRSP data. The features of CRSP tools can often save end-users the whole effort of
programming their own reporting utilities. In other cases the user-program flow can be significantly simplified by the use of
output files produced from CRSP tools in a number of widely accepted formats.

For situations when a user-program requires direct access to CRSP datasets, a CRSP API library is provided. The CRSP API
comprises the platform-specific object library and a set of precompiled modules and include-files. Additionally, a set of
sample program sources is supplied along with respective make files and test data to build and test the samples.

CRSP C API DATA OBJECTS

Access to CRSP databases is achieved through two principal objects: the access handle — of type crRsp_1TM HNDL, and the
item — of type crRsp_1TM.

CRSP_ITM_HNDL

The item-access handle object type (CRSP_ITM HNDL) encapsulates the information required to establish and maintain a
single item-access session to a given CRSP database. Additional access sessions (either to the same or to another CRSP
database), concurrent in the same program, require a separate access handle object. All of the item objects available in the
active session are grouped within the respective access handle.

The main properties of the access handle object are listed on the following table:

NAME CTYPE DESCRIPTION

keytype character(LEN=CRSP_NAME_LEN) Determines the keys used to select data in read functions. Supported keytypes for the application are
included in the reference data. A default will be set.

keyset_disp_cd character(LEN=CRSP_TYPE_LEN) Determines whether keyset items are labeled by the keyset number (NUM), the keyset tag (TAG), or the
expanded list of all items comprising the keyset (EXP). The default display is TAG.

fiscal_disp_cd character(LEN=CRSP_TYPE_LEN) Determines whether fiscal-based time series items are reported on a calendar basis (C) or a fiscal basis
(F). The default it C.

curr_disp_cd character(LEN=CRSP_TYPE_LEN) Determines whether monetary values are reported in the currency reported by Compustat (REP) or in US
Dollars (USD). The default currency display code is REP.

grp_fill_cd character(LEN=CRSP_TYPE_LEN) Determines whether group item lists are filled so that every selected item is included for every selected
keyset (Y or N). The default is Yes (Y).

dataset CRSP_ITM_SET Pointer to descriptor of currently attached CRSP dataset; includes root info for the CRSP dataset.

In a user-program the access handle objects are normally declared and allocated directly then passed to C itm-API
functions as a parameter. The function crsp_itm init initializes the contents of the access handle and connects it to the
specified CRSP database.

CRSP_ITM

The item object type (CRSP_ITM) represents a generic container for a single data item defined in a given CRSP database.
It unifies the data types defined for each of the supported CRSP databases and allows uniform access to the associated
CRSP data containers from your programs.

The main properties of the item object are listed in the following table:

PAGE 8

NAME CTYPE DESCRIPTION

itm_name character(LEN=CRSP_NAME_LEN) name of the item from a CRSP dataset.

keyset integer number of the keyset defined in a CRSP dataset.

itm_info CRSP_ITM_INFO item metadata; includes description, default keyset, and stored data type.

obj CRSP_ITM_0BJ describes the underlying CRSP data-object.

arr CRSP_ITM_OBJARR describes the C container associated with the defined CRSP data-object.

itmkeyset CRSP_ITM_KEYSET describes the details of the keyset (when non-zero and loaded), including its number, name, tag, and
array of composing items of same CRSP_ITM type.

itmcal CRSP_ITM_CAL for calendar-bound items, describes the details of the attached calendar, including its id, keyset

,frequency, and attached calendar object of CRSP_CAL type. When requested, the calendar may be
‘shifted’, based on the currently loaded company’s FYE to attribute properly the item’s period data.

Item objects are normally declared as C pointers and then attached to the actual defined item objects by calling the crsp
itm_find function for the given access handle and the specified item name and keyset.

CRSP_ITM_0BJ

Item data is accessed from the data-object itm->obj and associated to a C container itm->arr. The item data container
object type (CRSP_ITM_OBJ) describes an instance of a CRSP data-object (time-series, array, row) that is defined for the
specific item. Only a single data-object can be defined for a given item, which is identified by the objtype property.

Properties of the item data-object are listed in the following table:

NAME CTYPE DESCRIPTION

type of the defined and allocated object:
CRSP_TS_QTID: CRSP time-series
CRSP_ARRAY_QOTID: CRSP array
CRSP_ROW_QTID: CRSP row

objtype integer

ts CRSP_TS pointer to allocated CRSP time-series data-object.

arr CRSP_ARRAY pointer to allocated CRSP array data-object.

row CRSP_ROW pointer to allocated CRSP row data-object.

is_empty logical indicates whether the allocated CRSP data-object contains no data.

The item data-object normally has an associated C container, which is either C array or scalar of the data type
corresponding to the actual stored data, as identified by arrtype property. Details of the CRSP container objects types are
listed in the reference section CRSP Container Objects.

CRSP_ITM_OBJARR

The item data array, type crsp_1TM OBJARR describes the associated C container object. The C container is allocated
based on the object’s type (obijtype) and contained data type (arrtype). The respective scalar member has suffix _val to
its name, and _arr for the array type. Time-series and array data are stored in array type, while row data is kept in scalar

type:

Itm->arr->arrtype:

CRSP_TS OTID: itm->arr-><arrtype name> arr - time-series object data array
CRSP_ARARY OTID: itm->arr-><arrtype name> arr - array object data array

CRSP_ROW OTID: itm->arr-><arrtype name> val -IOW object data scalar.

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 9

NOTE: Throughout the implementation of the CRSP C API, the C array indexing is 0-based, thus the first element of an
array is data_arr(0).

Properties of the item data array for the item data types that are common to all of the supported CRSP datasets are listed
in the following table:

NAME CTYPE DESCRIPTION

arrtype integer data type of the defined and allocated C container. Common data types:
e CRSP_INTEGER_TID: integer

e CRSP_FLOAT_TID: real

e CRSP_DOUBLE_TID: double precision

e CRSP_CHAR_TID: character(1)

e CRSP_CHARACTER_TID: CRSP_VARSTRING type

int_val / arr integer / dimension (:) pointer to allocated scalar / array of integer type

flt_val / arr real / dimension (:) pointer to allocated scalar / array of real type

dbl_val/arr double precision / dimension (:) pointer to allocated scalar / array of double precision type
char_val/ arr character(LEN=1) / dimension (:) pointer to allocated scalar / array of single-character type
vstr_val / arr CRSP_VARSTRING / dimension (:) pointer to allocated scalar / array of variable-length string type

structured types specific to CRSP datasets | Refer to the description of data types for the specific CRSP dataset.

In a user-program the item container data is usually accessed directly as defined by item’s data type, e.g.:

print *, sale itm->arr->dbl arr (i)
The item data container is normally accessed in association with its item data-object.

NOTE: If an incorrect data container is referenced, an access violation error should occur on the referenced null-pointer.
In such situations the recommended action is to verify that the appropriate containers are being accessed for the selected
items.

Data for items of CRSP array type is accessed in the valid [0..num-1] index range, as defined in the corresponding arr
data-object. For example:

itm->arr->dbl arr(i), i=0..itm->obj->arr->num-1

Data for items of CRSP time-series type is accessed in the valid [beg, end] index range, as defined in the corresponding ts
data-object, e.g.:

itm->arr->dbl arr (i), i=itm->obj->ts->beg..itm->obj->ts->end

Data for items of CRSP row type is not indexed and is accessed directly from the value as defined by the corresponding
scalar/structured type, e.g.:

itm->arr->master val->ccmid

To verify if an element of an array item contains a missing value, call the function crsp itm is miss _arrval.

SUPPORTING INFORMATION

Various supporting information about CRSP databases, items, keysets and other item-access objects is stored in the
following derived types:

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 10

C TYPE NAME DESCRIPTION ACCESSVIATYPE USAGE
NAME
CRSP_ITM_INFO Item information; includes item’s full name, description, display format, data type and size CRSP_ITM itm->itm_info
information. Also includes the default keyset number associated with this item.
CRSP_ITM_KEYSET | Keyset descriptor; includes keyset information and the array of items composing the keyset. CRSP_ITM itm->itmkeyset
CRSP_ITM_CAL Calendar descriptor; includes calendar’s id, associated keyset number, base calendar name, CRSP_ITM itm->itmcal

and calendar’s frequency, also the base calendar object. Additionally, for fiscal calendars
indicates whether the calendar has been shifted based on the currently loaded company’s
FYE.

CRSP_KEYSET

Keyset information; includes keyset's number, name, tag, and description. Indicates whether
the keyset has been loaded and associated with any of the requested items.

CRSP_ITM_KEYSET

itmkeyset->keyset_info

CRSP_ITM_SET

CRSP data set descriptor; includes the set’s path, name, id, and database root information.

CRSP_ITM_HNDL

hndl->dataset

CRSP_ROOT_INFO

CRSP data set root information; includes internal service information about the currently
loaded database such as creation/modification date, product code and name, and descriptors
of available calendars. Mainly intended for internal use.

CRSP_ITM_SET

dataset->root_info

NOTE: While selected supported information is populated on initiating of the connection to a CRSP data set (on return
from call to crsp_itm init), the listed supported information becomes available only on opening of the CRSP data set (on

return from call to crsp_itm open).

The relevant details of the derived types shown above are listed in the Supporting Types on page 25.

GENERIC DATA TYPES

All CRSP databases contain data items of both simple C data types and of database-specific structured data types.
Moreover, each composing field of the structured data type can instead be requested as an individual data item of the
simple C data type.

The vast majority of the data items defined in CRSP datasets are of CRSP time-series container object type, with the stored
values commonly of generic C data types. A limited set of items is stored in CRSP array and CRSP row container objects;
these items are mostly of structured data types and are listed in the following sections regarding particular CRSP database

products.

The following table lists the supported generic data types and ways to access data from the item-associated container:

ITEM OBJECT TYPE C TYPE NAME INTERNAL STORAGE ACCESS VIA CRSP_ITM
time-series CRSP_TS itm->0bj->ts
int int(4) [tm->arr->int_arr(i)
float float(4) [tm->arr->flt_arr(i)
double double(8) [tm->arr->dbl_arr(i)
char(LEN=1) char (1) [tm->arr->char_arr(i)
array CRSP_ARRAY itm->obj->arr
int int(4) [tm->arr->int_arr(i)
float float(4) [tm->arr->flt_arr(i)
double double(8) [tm->arr->dbl_arr(i)
char(LEN=1) char (1) Itm->arr->char_arr(i)

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C

PAGE 11

ITEM OBJECT TYPE C TYPE NAME INTERNAL STORAGE ACCESS VIA CRSP_ITM

row CRSP_ROW itm->0bj->row
int int(4) [tm->arr->int_val
float float(4) [tm->arr->flt_val
double double(8) [tm->arr->dbl_val
char(LEN=1) char (1) Itm->arr->char_val

ACCESSING CRSP DATABASES

The following sections describe the details of accessing CRSP databases supported by the API. Supported databases are
the CRSP US Stock Database, the CRSP US Index Database, and the CRSP/Compustat Merged Database. Each section
presents database connection information, available access keys, as well how to access a database’s data groups and items
from your programs.

CRSP US STOCK DATABASE

To connect to the specific CRSP Stock database instance the path to its database root should be specified. When installed
on your system, CRSP Stock data set will be assigned an environment variable pointing to the CRSP Stock database root.

Additionally, an application ID should be specified on the call to crsp_itm init to indicate the item-universe to be loaded
for the session and describes the available items and item groups, e.g.:

sts = crsp itm init (hndl,’CRSP_DSTK’,app id,’stkl’)

User-programs should access the CRSP Stock data set with the app id as listed in the following table:

STKROOT/APP ID CTYPE DESCRIPTION

CRSP_DSTK CRSP Daily Stock data set
CRSP_DSTKITM_ID | integer CRSP Daily Stock data items and groups
CRSP_MSTK CRSP Monthly Stock data set
CRSP_MSTKITM_ID | integer CRSP Monthly Stock data items and groups

The details on included items and item groups can be found starting on page 13.

ACCESS KEYS

CRSP Stock data set contains various data on companies and securities. Access key is composed of access key items the
values of which can be retrieved or set from the user-program to control the direct access to STK data.

Default access key is loaded automatically on opening the access session to the CRSP STK data set

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP
PERMNO, CUSIP, and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set
on the selected access key. The function crsp_itm get key can also be used to retrieve the value of the access key items
for the currently read record.

To switch to access by an alternative key, a user calls crsp_itm load key to set the access key index, followed by calls to
crsp_itm set key to set the value of the key items used on subsequent reading of the database.

The defined STK access keys and associated key items are listed in the following table:

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 12

CCM ACCESS KEY/KEY ITEMS CTYPE DESCRIPTION NOTES

PERMNO CRSP historical PERMNO default

KYPERMNO Integer CRSP company issue’s PERMNO primary key item

PERMCO CRSP historical PERMCO

KYPERMCO | Integer CRSP company’s PERMCO | primary key item

CusIp CRSP Stock CUSIP

KYCUSIP | char(CRSP_CUSIP_LEN) CRSP Stock issue’s CUSIP | primary key item

HCUSIP CRSP Stock Historical CUSIP

KYHCUSIP | char(CRSP_CUSIP_LEN) CRSP issue’s Historical CUSIP | primary key item

Ticker CRSP Stock ticker

KYTICKER | char(CRSP_STK_TIC_LEN) CRSP issue’s ticker | primary key item

siccb CRSP Stock SIC code

KYSIC | Integer CRSP Stock security’s SIC | primary key item
DATA TYPES

Generally, individual CRSP Stock database data items are of common simple C data types and stored data can be accessed
through itm->arr and corresponding scalar or array member.

Additionally, selected CRSP supplemental STK data groups can be accessed by the entire group as a defined structured
type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm name, but
recommended programming access is through the itm name of the structure. To access the structured type and its fields,
load the structured type itm name during initialization, create a crsp_1TM pointer matching the itm name, attach it to the
data, and access the structured type and its fields through the pointer:

sts = crsp itm load(hndl,’HEADER’,match flag)
sts = crsp_itm find(hndl,’HEADER’,0,header itm)

permno = header itm->arr->header val->permno

CRSP US INDEX DATABASE

To connect to the specific CRSP Index database instance the path to its database root should be specified. When installed
on your system, CRSP Index data sets will be assigned an environment variable pointing to the CRSP Index database root.

Additionally, an application ID should be specified on the call to crsp itm init to indicate the item-universe to be
loaded for the session and describes the available items and item groups, e.g.:

sts = crsp itm init (hndl,’CRSP DSTK’,app id,’indl’)

User-programs should access the CRSP Index data sets with the app id as listed in the following table:

STKROOT/APP ID CTYPE DESCRIPTION

CRSP_DSTK CRSP Daily Stock and Index data sets
CRSP_DINDITEMS_ID integer CRSP Daily Index series data items and groups
CRSP_DINDGITEMS_ID integer CRSP Daily Index group data items and groups
CRSP_MSTK CRSP Monthly Stock and Index data sets
CRSP_MINDITEMS_ID integer CRSP Monthly Index series data items and groups

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 13

STK ROOT/APP ID C TYPE DESCRIPTION
CRSP_MINDGITEMS_ID integer CRSP Monthly Index group data items and groups

ACCESS KEYS

CRSP Index data sets include various data on market indexes. Access key is composed of access key items the values of
which can be retrieved or set from the user-program to control the direct access to IND data.

Default access key is loaded automatically on opening the access session to the CRSP IND data set.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set
on the selected access key. The function crsp_itm get key can also be used to retrieve the value of the access key items
for the currently read record.

The defined IND access keys and associated key items are listed in the following table:

CCM ACCESS KEY/KEY ITEMS CTYPE DESCRIPTION NOTES

indno CRSP Index’s INDNO default

KYINDNO | integer CRSP index’s INDNO primary key item
DATA TYPES

Generally, individual CRSP Index database data items are of common simple C data types and stored data can be accessed
through itm->arr and corresponding scalar or array member.

Additionally, selected CRSP supplemental IND data groups can be accessed by the entire group as a defined structured
type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm_name, but
recommended programming access is through the itm_name of the structure. To access the structured type and its fields,
load the structured type itm_name during initialization, create a CRSP_ITM pointer matching the itm_name, attach it to
the data, and access the structured type and its fields through the pointer:

[0)

prt

[0
Il

crsp itm load(hndl,’ INDHDR’ ,match flag)
sts = crsp itm find(hndl,’ INDHDR’, 0, indhdr itm)

indno = indhdr itm->arr->indhdr val->indno

CRSP/COMPUSTAT MERGED DATABASE

To connect to the specific CRSP CCM database instance the path to its database root should be specified. When installed
on your system, CRSP CCM data set will be assigned an environment variable pointing to the CRSP CCM database root.

Additionally, an application ID should be specified on the call to crsp itm init to indicate the item-universe to be
loaded for the session and describes the available items and item groups, eg:

sts = crsp_itm init (hndl,’CRSP_CCM’,app_id,’ccml’)

User-programs should access the CRSP CCM data set with the app id as listed in the following table:

CCM ROQT/APP ID CTYPE DESCRIPTION
CRSP_CCM CCM/CRSP Compustat data set
CRSP_CCMITEMS_ID | integer Compustat Xpressfeed data items and groups

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 14

The details on included items and item groups can be found starting on page 16.

ACCESS KEYS

CRSP Compustat Xpressfeed includes various data on companies, securities, and indexes. Access key is composed of
access key items the values of which can be retrieved or set from the user-program to control the direct access to the CCM
data.

Default access key for CRSP CCM is loaded automatically on opening the access session to the CRSP CCM data set

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP
PERMNO, CUSIP and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set
on the selected access key. The function crsp_itm get key can also be used to retrieve the value of the access key items
for the currently read record.

To switch to access by an alternative key, a user calls crsp_itm load key to set the access key index, followed by calls to
crsp_itm set key to set the value of the key items used on subsequent reading of the database.

The defined CCM access keys and associated key items are listed in the following table:

CCM ACCESS KEY/KEY ITEMS ~ CTYPE DESCRIPTION NOTES

gvkey Compustat GVKEY and IID default

KYGVKEY integer Compustat company’s GVKEY primary key item
KYIID char(CRSP_CCM_IID_LEN) Compustat company security’s [ID secondary key item
gvkeyx Compustat permanent identifier for indexes

KYGVKEYX integer Compustat index’s GVKEYX primary key item
ccmid Compustat permanent identifier - either GVKEY or GVKEYX

KYCCMID integer CRSP CCMID (GVKEY or GVKEYX as reported in MASTER item) | primary key item
KYIID char(CRSP_CCM_IID_LEN) Compustat company security’s IID secondary key item
permco CRSP historical PERMCO Link

KYPERMCO | integer CRSP company’s PERMCO | primary key item
permno CRSP historical PERMNO Link

KYPERMNO | integer CRSP company issue’s PERMNO | primary key item
cusip Compustat CUSIP

KYCUSIP | char(CRSP_CCM_CUSIP_LEN) | Compustat issue’s CUSIP | primary key item
ticker Compustat reported Issue Trading Symbol selects GVKEY and security

KYTICKER | char(CRSP_CCM_TIC_LEN) Compustat issue’s ticker | primary key item
sic Compustat -reported SIC code. Security or Company

KYSIC integer Compustat security’s SIC primary key item
KYIID char(CRSP_CCM_IID_LEN) Compustat company security’s [ID secondary key item
apermno Link-Used PERMNO

KYPERMNO | integer CRSP company issue’s PERMNO | primary key item
apermco Link-Used PERMCO

KYPERMCO | integer CRSP company issue’s PERMCO | primary key item
ppermno CRSP PERMNO when security is marked as primary

KYPERMNO | integer CRSP company issue’s PERMNO | primary key item

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 15

DATA TYPES

Generally, individual Compustat Xpressfeed data items are of common simple C data types and stored data can be accessed
through itm%arr and corresponding scalar or array member.

Also additional character data types were introduced to store specific classes of Xpressfeed items, as listed in the following
table:

ITEM OBJECTTYPE CTYPE NAME INTERNAL STORAGE ACCESS VIA CRSP_ITM NOTES
time-series CRSP_TS Itm->0bj->ts
CRSP_CCM_FTNT char(CRSP_CCM_FTNT_LEN) itm->arr->ftnt_arr(i)->ftnt Used for CCM footnote items, mainly
time-series
CRSP_CCM_TEXTITEM char(CRSP_CCM_TEXTITEM_LEN) itm->arr->text_arr(i)->text Used for various CCM character string
items, mainly time-series
array CRSP_ARRAY itm->obj->arr
CRSP_CCM_FTNT char(CRSP_CCM_FTNT_LEN) itm->arr->ftnt_arr(i)->ftnt
CRSP_CCM_TEXTITEM char(CRSP_CCM_TEXTITEM_LEN) itm->arr->text_arr(i)->text
row CRSP_ROW itm->obj->row
CRSP_CCM_FTNT char(CRSP_CCM_FTNT_LEN) itm->arr->ftnt_val->ftnt
CRSP_CCM_TEXTITEM char(CRSP_CCM_TEXTITEM_LEN) itm->arr->text_val->text

Additionally, selected Compustat Xpressfeed primary data groups and CRSP supplemental data groups can be accessed

by the entire group as a defined structured type rather than as a stand-alone item. These data groups and their elements
can both be accessed by itm name, but recommended programming access is through the itm_name of the structure. To
access the structured type and its fields, load the structured type itm name during initialization, create a crsp_1TM pointer
matching the itm_name, attach it to the data, and access the structured type and its fields through the pointer:

sts = crsp_itm load(hndl,’MASTER’,match flag)

sts = crsp itm find(hndl,'MASTER’,0,mstr_itm)

ccmid = mstr_itm->arr->master val->ccmid

CRSP C API'ITEM HANDLING FUNCTIONS

This section contains an alphabetical list of the functions defined in the CRSP C API. Each definition presents the
following information about a function:

e |ts prototype

e Alist of arguments
e Alist of return values
¢ Side effects

e Preconditions

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 16

CRSP_ITM_CLOSE

crsp_itm close frees all item lists and item indexes, clears all calendar and key lists, closes the database, frees the
handle set, and re-initializes the item access handle itself.

PROTOTYPE int crsp_itm close (CRSP_ITM HNDL **hndl)

ARGUMENTS: CrsP_ITM HNDL *hndl: Access handle to close.

RETURN VALUES: CRSP_SUCCESS: If the database is successfully closed and all handle data are free
CRSP_FAIL: If there is an error in the parameters, inconsistent handle, error closing databases.

SIDE EFFECTS: If successful, the handle data are emptied:

The database will be closed and the structure cleared.
Allinternal storage allocated for this instance will be freed

PRECONDITIONS: The item handle must be previously opened with function crsp itm init.
Example:
if (crsp itm close(&hndl) == CRSP_FAIL)

{
fprintf (stderr, err msg);
exit (EXIT FAILURE);
}
CRSP_ITM_FIND

crsp_itm find attaches a pointer to a crsp_1TM item that was previously loaded. The crsp_1TM structure describes the
data item and contains the underlying time series, array, or row data.

PROTOTYPE int crsp itm find(CRSP_ITM HNDL *itmhndl,char *itm name, int keyset, CRSP_ITM **foundptr);

ARGUMENTS: CRSP_ITM_HNDL_T * hndl:Access handle containing the needed set structure information and the current item list.
char *itm name: String containing the itm name to find.

Int keyset :Keysetto find

CRSP_ITM *itm_ foundptr:User-declared pointer that will point to the data item found.

RETURN VALUES: CRSP_SUCCESS: If successfully found the requested item in the given keyset.

CRSP NOT FOUND: Ifthe itm name and keyset combination are not available
CRSP_FAIL: If error in parameters, handle not initialized, or error searching for the item.

SIDE EFFECTS: If successful, the i tm foundptr will point to a crsp_11m item with data and information for the desired item and keyset.
Otherwise the null() will be assigned to i tm_foundptr.
PRECONDITIONS: The item handle set must be initialized, loaded with a list of items, and opened.
Example:
if (crsp itm find (hndl, "HEADER”, 0, &stkhdr itm) == CRSP_FAIL || !stkhdr itm)

{
fprintf (stderr,”Error - invalid item/keyset specified (DSTK:1)\n”);
exit(EXIT_FAILURE);

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 17

CRSP_ITM_GET_KEY

crsp_itm get key retrieves key information for data loaded by a function crsp_itm read call. An output key item list is
prepared when the key is initialized, and loaded by function crsp_itm read. This function finds the key itm name in the
list and copies the value into the user-specified location.

PROTOTYPE: int crsp itm get key(CRSP_ITM HNDL *hndl, char *key itm, void *keyval);

ARGUMENTS: CRSP_ITM_HNDL_T *hndl:Access handle containing the needed set structure information and the current item list
Char *key itm name:String containingan itm name of a loaded key to be retrieved.
Void *keyval: Variable to accept the value of the key item. Data type must agree with the item’s type and size.

RETURN VALUES: CRSP_SUCCESS: If data loaded successfully
CRSP_FAIL: If error in parameters, handle not open, key item.

SIDE EFFECTS: If successful, the xeyva1 is loaded based on the item and key value type.

PRECONDITIONS: The item handle must be initialized and opened. The item key array must be initialized based on a keytype with the function crsp
itm_open Of function crsp itm init key functions.The xey itm name must be a valid item for that keytype, and the keyva1
data must agree with the type of that item.

Example:
if (crsp itm get key(hndl, “KYPERMNO”, keyval) == CRSP_FAIL)
{
crsp _errprintf (2, 50, CRSP_FATAL PRINT,
CRSP_ERROUT_STDERR,” hndl permno, crsp itm get key”);
exit (EXIT FAILURE) ;
1
CRSP_ITM_INIT

crsp_itm init prepares a handle for item access operation for one database and one application id. The handle will
be initialized and the database set type and set id identified, allowing loading of reference data and allocation of a set
structure.

PROTOTYPE: int crsp_itm_init (CRSP_ITM HNDL **hndl, char *dbpath, int app_id, char *hndl name);

ARGUMENTS: CRSP_ITM HNDL *hndl:Access handle that will be used to manage the database information and item lists.

Char *dbpath: Path to database containing the data to load and the applicable reference data.

Int app_id:ldentifier of a defined application organizing data items into groups for access. Available app_ids can be found in the
reference array, function crsp_itm_app.Common app_ids have defined constants:

e crsp_ccmiTeMS_ 1D — generic CCM usage application

e crsp DsTKITM 1D — generic Daily Stock usage application

e crsp MsTKITM 1D — generic Monthly Stock usage application

e crsp_pinpiTEMs_ 1D — generic Daily Ind Stock usage application

e crsp MINDITEMS_ 1D — generic Monthly Ind Stock usage application

® CRSP_SIZITM_ ID-generic SIZ 1925-E usage application
Char *hndl name:Name to assign to the handle.
RETURN VALUES: CRSP_SUCCESS: If initialized successfully

CRSP_FAIL: If there is an error in the parameter, database cannot be opened, reference data unavailable, incompatibility between
database and app_id.

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 18

SIDE EFFECTS: If successful, the handle data are loaded:
e The handle fields are initialized, including all lists and arrays.

e The ca_rert structure is loaded with the reference data in the database. If an old database with no reference data, it will
use a global reference file with a standard name based on the app_iainthe crse_r18 directory.

® 1tm grpanditm avail arraysin the handle are loaded with available tables and items

e set 1ist elementis allocated using the database path and set1ia. The database is opened with a 0 wanted, which loads
reference data but allocates no module space. The root information is loaded to the set’s crsp_root _1nFoO structure.

PRECONDITIONS: The item handle object must be declared and not attached to another access instance. The app_id must exist in the reference data
of the database opened.
Example:
if (crsp itm init (&hndl,dbpath,CRSP_SIZITM ID,”sizl”) == CRSP_FAIL)

{
fprintf (stderr,err msg);

exit (EXIT FAILURE);

CRSP_ITM_IS_MISS_ARRVAL

crsp_itm is miss_arrval checks if the requested element in a data object attached to the item contains a missing
value. is miss is set to TRUE when a missing value is detected. Only items of simple (non-structured) types are accepted,
while the item’s underlying data-object can be of structured data-type, in which case the structure offset is used to extract
the item value.

PROTOTYPE int crsp itm is miss_arrval (CRSP_ITM *itm,int ind, int *is miss);

ARGUMENTS: crsp_1TM *itm:Pointertothe data item
Int ind:Index of the data array element to check
Int *is_miss:Pointer to the resulting flag value

RETURN VALUES: CRSP_SUCCESS: If successful, the returned value is initialized and set.
CRSP_FAIL: If error in parameters, bad item or element index is out-of-range (ignored in case of crsp_row object)

SIDE EFFECTS: If the requested value contains a missing value, the is_miss is set to TRUE. Otherwise FALSE is assigned.

PRECONDITIONS: The item has to have a valid bound data-object. Structured items are not allowed. Field items of structures are allowed.

Example:

if (crsp itm is miss arrval(itm,ind, &is miss) != CRSP_FAIL && !is miss)
{

fprintf (ofp,”%18.4f",itm->arr.dbl arr[ind]);

fprintf (ofp,”%18s”,”N/A");

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 19

CRSP_ITM_LOAD

crsp_itm load prepares items described by a full list and loads them to an item table structure in an item handle. It
splits the full list into the global section and the list section and uses the function crsp itm expand elem on each list
element in the list section. This will recursively expand the list elements to fill the structure and apply global qualifiers
during the process.

PROTOTYPE: int crsp_itm_ load(CRSP_ITM HNDL *hndl, char *itm str, int match_flag);

ARGUMENTS: CRSP_ITM HNDL T * hndl: Access handle containing the needed set structure information and the current item list.
char *full 1ist:String describing all items to add, used on standard item notation.
Int match_flag:Flag setting the behavior when an item if found but not the keyset. Values are:
e crsp matcH rReQuIRED (=0): if any indicated item and keyset is not found no further items will be added, and CRSP_
NOT_FOUND returned.

e crsp MarcH_r1LL (=1): a dummy item will be created for any item if the item exists but the keyset does not exist for that
item in the current database.

® crsp MATCH 1GNORE (=2): items will not be added if the keyset is not found, but the return remains CRSP_SUCCESS.

RETURN VALUES: CRSP_SUCCESS: If successful, and all indicated items loaded according to match_flag
CRSP_FAIL: Error in parameters, bad list, handle not initialized, or reference data not available.

SIDE EFFECTS: If successful, the crse_1Tm cre is loaded with all indicated items. A crsp_rmis allocated for each item/keyset pair not already
loaded. Object pointers are not set by this function.
PRECONDITIONS: The item handle set must be loaded. The item table must be initialized with an available app_1d. The first set in the set list must

agree with the app_1a.

Example:
if ((status=crsp_itm load(hndl,”STKHDR ALL;DSTK TS”, CRSP_MATCH IGNORE)) == CRSP_FAIL

|| status == CRSP NOT FOUND)

fprintf (stderr,err msg);
exit (EXIT_FAILURE);
}
CRSP_ITM_LOAD_KEY

crsp_itm load_ key defines the keytype that will be used for subsequent reads.

PROTOTYPE int crsp_itm load key(CRSP_ITM HNDL *hndl, char *ketytype);

ARGUMENTS: CRSP_ITM HNDL *hndl: Access handle containing the needed set structure information and the current item list.
char *keytype:Name of the key to initialize. Values are:

® gvkey: Compustat company key (default)

® gvkeyx: Compustat index key

® ccmid: GVKEY or GVKEYX

® permno: CRSP PERMNO found in any links

® permco: CRSP PERMCO found in any links

® apermno: CRSP-centric composite records by PERMNO

® ppermco: CRSP-centric composite records by PERMNO, primary links only
e sic: Compustat company SIC code

e icker: Compustat security ticker symbol

® cusip: Security CUSIP

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 20

RETURN VALUES: CRSP_SUCCESS: If successful
CRSP_FAIL: Error in parameters, handle not initialized, or keytype not found.

SIDE EFFECTS: If successful, the handle is prepared to handle reads.
PRECONDITIONS: The item handle must be initialized. Keytype must be known for the app_ia.
Example:
if (crsp itm load key(hndl, ”PERMNO”) == CRSP_FAIL)

{
fprintf (stderr,err msg);
exit (EXIT FAILURE);
}
CRSP_ITM_OPEN

crsp_itm open registers selected items in a handle by expanding structures and keysets, preparing keys, determining
modules needed to access items, opens the needed modules, and binds data in the item lists to the data structure
locations. It also builds a master index of all items available in the handle.

PROTOTYPE int crsp_itm_open (CRSP_ITM HNDL *hndl);
ARGUMENTS: CRSP_ITM HNDL *hndl: Access handle containing the needed set structure information and the current item list.
RETURN VALUES: CRSP_SUCCESS: If opens successfully and binds the data
CRSP_FAIL: If error in parameters, inconsistent handle, error opening databases or hinding items.
SIDE EFFECTS: If successful, the handle is ready for access:

e Allitems in the loaded list will have object pointer set to the data location in the set data structure.

e [fthehandle grp fi11 cdis ‘Y, then the item lists are filled to ensure full tables. Filling creates items to ensure that every

itm_name and keyset present in a group each combination is present even if not specified. Filling also arranges the lists so
if multiple keysets, each is sorted in the same order as the first keyset seen.

PRECONDITIONS: The item handle must be previously initialized with function crsp itm init. It generally follows one or more instances of item load
function calls.

Example:

if (crsp itm open(hndl) == CRSP_FAIL)
{
fprintf (stderr,err msg);

exit (EXIT FAILURE);

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 21

CRSP_ITM_READ

crsp_itm read loads data from handle based on item keys specified in prior function crsp_itm key calls and the keyflag
argument. Depending on the level of the entity class, the operation may include reading data from the database into
structures and/or specifying data already loaded. This allows a direct or positional read based on keyflag.

If the value of the access handle property fiscal disp cd is “C”, any fiscal-based time series are shifted to a calendar
basis as part of the read operation.

PROTOTYPE: int crsp itm load(CRSP_ITM HNDL *hndl, char *itm str, int match_flag);

ARGUMENTS: CRSP_ITM HNDL * hndl: Access handle containing the needed set structure
information and the current item list.

Char *itm str: Code determining how the key is interpreted.
e CRSP_EXACT: look for a specific value,

e CRSP_BACK or CRSP_FORWARD: direct selection when partial matches are allowed, or a positional qualifier to base
selection on the position relative to the last key accessed.

e CRSP_NEXT: read next key in sequence

e CRSP_PREV: read previous key in sequence

e CRSP_SAME: read same key, possibly with different information

e CRSP_FIRST: read first key in the database

e CRSP_LAST: read last key in the database
Int match_flag: User provided variable to load with the level of the read. It will be loaded with a 0 if the load results in reading new
master data. It will be loaded with a number greater than 0 if the load impacts detail or global data, but no master data are affected.
RETURN VALUES: CRSP_SUCCESS: If data loaded successfully
CRSP_EOF: If positional read reaches the end of the file
CRSP_NOT_FOUND: If key not found on exact read. If a detail input key is not provided and no items of that entity class are selected,
the return is CRSP_SUCCESS as long as the primary key matches.
CRSP_FAIL: If error in parameters, handle not opened, error in read operations.

SIDE EFFECTS: If successful, the wanted data for the key are loaded into the handle set structure which allows item objects to point to the loaded
data. The key found for each level is loaded into the outkey item list. If the handle fisca1_disp_cais set to calendar-based and
items are fiscal-based, shifted calendars are created and time series are converted to calendar basis. The status argument is loaded
based on whether the primary key changed. Handle primkey field and readivi are set. readivi is set to the rank of the first entity
class changed. If the primary key changed, get1v1 is set to 0.

PRECONDITIONS: The item handle must be initialized and opened. The item key must be initialized based on the key type, key element, and the entity
class. If not a positional qualifier, the item key inpxey list must be loaded.

Example:

if ((ret = crsp itm read(hndl,CRSP EXACT, &status)) == CRSP FAIL)
{

fprintf (stderr,err msg);

got db error=1;

break;

CRSP_ITM_SET_KEY

crsp_itm set key loads key information that will be used to load data in a function crsp _itm read call. The key is
setup during the function crsp itm open based on the active keytype. The value passed to this function is entered into
the handle attached to the input key item.

PROTOTYPE int crsp_itm set key(CRSP_ITM HNDL *hndl, char *key itm, void *keyval);

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 22

ARGUMENTS: CrRSP_TTM_HNDL *hndl: Access handle containing the needed set structure information and the current item list.
Char *key itm:String containingan itm_name of an input key item to be loaded.

void *keyval:Datato be loaded into the key item. Data must agree with the key item’s type.

RETURN VALUES: CRSP_SUCCESS: If data loaded successfully

CRSP_FAIL: If error in parameters, handle not open, key item.

SIDE EFFECTS: If successful, the xeyval is copied into the data location for the input key item element in the handle.

PRECONDITIONS: The item handle must be initialized and opened. The item key array must be initialized based on a keytype with the function crsp
itm_open Of function crsp_itm init key functions.The xey itm name must be a valid item for that keytype, and the xeyva1
data must agree with the type of that item.

Example:
if (crsp itm set key(hndl, "KYPERMNO”, &permno) == CRSP_FAIL)
{
fprintf (stderr,err msg);
exit (EXIT_FAILURE) ;
}
CRSP_REF_ELEM_LOOKUP

crsp_ref elem lookup uses CA reference data that is available from within the item handle, to return a pointer to the
desired object within the CRSPAccess database.

PROTOTYPE: void *crsp ref elem lookup(CRSP CA REF *ref, char *elem name, int keyset);

ARGUMENTS: CRSP_Ca REF +ref: Pointertothe CA_REF data array bound within the item handle
char *elem name: String containing a name of valid group element to be loaded.
int keyset :Desired item keyset, default is 0

RETURN VALUES: NULL: Desired object could not be found.
Else: Pointer to the data object (cRsp_Ts, CRSP_ARR, CRSP_ROW).

PRECONDITIONS: Item handle must be initialized and open. Group element name and keyset must be valid, and the database must have been opened
with a wanted value that includes the module that contains the element.

Example:
CRSP_ROW *stkhdr row = 0;
stkhdr row = crsp ref elem lookup (stkhdr itm->hndl->ca ref, “HEADER”, 0);

CRSP_REF_ELEM_TYPE_LOOKUP

Using the CA reference data available from within the item handle, crsp ref elem type lookup gives the data type of
the specified element.

o int crsp ref elem type lookup(CRSP _CA REF *ref, char *elem name, int *type)
PROTOTYPE: _ref | _ _ _CA_ =

ARGUMENTS: CRSP CA REF *ref: Pointertothe ca REF data array bound within the item handle
char *elem name: String containing a name of a valid group element
int *type: Pointerto aninteger which will receive the data type

RETURN VALUES: CRSP_SUCCESS or CRSP_FAIL
SIDE EFFECTS: The type pointer will be modified regardless of success or failure

PRECONDITIONS: Item handle must be initialized and open. Element name must be valid.

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 23

Example:
stkhdr row = crsp ref elem lookup (stkhdr itm->hndl->ca ref, “HEADER”, O0);

CRSP_REF_GET_ELEM_VAL_CHAR

Using the CA reference data available from within the item handle, crsp_ref get elem val char returns the value of an
observation of a structure element that is a string type.

PROTOTYPE: char * crsp ref get elem val char (CRSP CA REF *ref, char *elem name, char *struct

name, void *data, int index);

ARGUMENTS: CRSP_CA REF *ref: Pointertothe CA_REF data array bound within the item handle
char *elem name: String containing a name of a valid group element

char *struct name: String containing the name of a valid data structure

void *data: Pointer to the valid data container holding the data structure

int index: The zero-based index of the element to retrieve

RETURN VALUES: Character pointer to the string value of the data

PRECONDITIONS: Item handle must be initialized and open. Element name and structure name must be valid. Data pointer and index must be valid.

Example:

/* Get Character values */
strcpy(siz cusip, crsp ref get elem val char(stkhdr itm->hndl->ca ref, “CUSIP”,
“HEADER”, stkhdr row, 0));

crsp util strtrim(siz cusip);

CRSP_REF_GET_ELEM_VAL_DOUBLE

Using the CA reference data available from within the item handle, crsp _ref get elem val double returns the value of
an observation of a structure element that is a double type.

0 double crsp ref get elem val double (CRSP CA REF *ref, char *elem name, char *struct
PROTOTYPE: _ref_get | _val_ _CA_ _ _

name, void *data, int index);

ARGUMENTS: CRSP_CA REF *ref: Pointertothe CA_REF data array bound within the item handle
char *elem name: String containing a name of a valid group element

char *struct_name: String containing the name of a valid data structure

void *data: Pointerto the valid data container holding the data structure

int index: The zero-based index of the element to retrieve

RETURN VALUES: The value of the requested data element.

PRECONDITIONS: Item handle must be initialized and open. Element name and structure name must be valid. Data pointer and index must be valid.

Example:

/* Get double values */

Siz delprc = crsp ref get elem val double(stkhdr itm->hndl->ca ref, “DLPRC”,
“DELIST”, stkhdr row, O0);

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 24

CRSP_REF_GET_ELEM_VAL_FLOAT

Using the CA reference data available from within the item handle, crsp_ref get elem wval float returns the value of an
observation of a structure element that is a float type.

PROTOTYPE: float crsp ref get elem val float (CRSP CA REF *ref, char *elem name, char *struct name,
void *data, int index);

ARGUMENTS: CRSP_CA REF *ref :Pointer tothe CA_REF data array bound within the item handle

char *elem name :String containing a name of a valid group element

char *struct name :String containing the name of a valid data structure

void *data:Pointerto the valid data container holding the data structure

int index: Thezero-based index of the element to retrieve

RETURN VALUES: The value of the requested data element.

PRECONDITIONS: Item handle must be initialized and open. Element name and structure name must be valid. Data pointer and index must be valid.

Example:

/* Get integer values */

siz _permno = crsp ref get elem val int(stkhdr itm->hndl->ca ref, "“PERMNO”, “HEADER”,
stkhdr row, 0);

CRSP_REF_GET_ELEM_VAL_INT

Using the CA reference data available from within the item handle, crsp ref get elem val int returns the value of an
observation of a structure element that is an integer type.

PROTOTYPE: int crsp ref get elem val int (CRSP _CA REF *ref, char *elem name, char *struct name,
void *data, int index);

ARGUMENTS: CRSP_CA REF +*ref :Pointer tothe CA_REF data array bound within the item handle

char *elem name:String containing a name of a valid group element

char *struct_name: String containing the name of a valid data structure

void *data: Pointer to the valid data container holding the data structure

int index: The zero-based index of the element to retrieve

RETURN VALUES: The value of the requested data element.

PRECONDITIONS: Item handle must be initialized and open. Element name and structure name must be valid. Data pointer and index must be valid.

Example:

/* Get integer values */

siz permno = crsp ref get elem val int(stkhdr itm->hndl->ca ref, “PERMNO”, “HEADER”,
stkhdr row, 0);

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 25

REFERENCE INFORMATION
CRSP C API DATA TYPES

All derived types used in the CRSP C API are defined in the module crsp_itm_types. They are included in user programs
automatically through the use of crsp_itm_lib module.

Note: This document lists only selected properties of the defined types that are relevant in the user-scope of item-based
access. The full individual definitions of the specific C derived types can be referenced from the respective include source
files. These files are already included in the crsp_itm_lib module and an explicit include statement is not necessary to use
the defined types in your programs. The supplied CRSP C API include files are listed in the following table:

PLATFORM/LOCATION FILE DESCRIPTION
Windows 32-hit crsp_itm_ccm_types.inc CRSP CCM/Compustat specific data types
Windows 64-bit crsp_itm_stk_types.inc CRSP Stock specific data types

%CRSP_INCLUDE? crsp_itm_ind_types.inc CRSP Index specific data types

crsp_itm_gen_types.inc CRSP generic data types used in all supported data sets

Sun0S sparc

crsp_itm_types.inc Data types used in context of item-access
Linux 32-bit crsp_itm_params.inc Declarations of constant parameters used.
Linux 64-bit

$CRSP_INCLUDE

To use the CRSP C API library in your program simply include a ‘use’ statement for the top-level module crsp_itm_lib. All
of the required underlying modules will be included automatically. The supplied CRSP C API module files are listed in the
following table:

PLATFORM/LOCATION FILE DESCRIPTION

Windows 32-bit crsp_itm_lib.mod CRSP C itm-API user-level module

Windows 64-bit crsp_itm_utils.mod Implementations of CRSP itm-AP! interfaces
%.CRSP_INCLUDEZ\mod crsp_itm_types.mod C derived types used in context of CRSP C itm-API
Sun0S sparc crsp_itm_xfer.mod Internal functions and types for CRSP C/C exchange layer
Sun0S i86pc

$CRSP_INCLUDE/mod

Linux 32-hit

Linux 64-hit
$CRSP_INCLUDE/mod
$CRSP_INCLUDE/mod_g95

CONTAINER OBJECTS

CRSP container objects are used to uniformly define the storage for various CRSP data types. Generally, the container’s
data is stored in the associated C array, except in the case of the CRSP_ROW container, where the storage is allocated for
an C scalar of the specified data type. The associated storage array is externally allocated with O-based array bounds.

The CRSP time-series object has an associated calendar of the CRSP_CAL object type which is aligned with the time-series
data array, attributing the date to the values stored in the time-series array.

CRSP calendar data is stored in the CRSP_CAL container object, which defines the loaded calendar and also stores the
actual calendar data of the defined type. In the context of the CRSP C API, the calendars associated to the time-series
items are of day date-type and are accessed with caldt array.

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 26

Each container (except CRSP_ROW) has a defined availability range, with missing values set beyond the defined range. The
missing value is specific to the data type of the stored data and is located at the pre-defined array index position.

Properties of the CRSP container object types are listed in the following tables:

CRSP_TS

CRSP time-series container object

NAME CTYPE DESCRIPTION

objtype int Object type id (CRSP_TS_QTID)

arrtype int Type id of the data stored in the container

subtype int Subtype id of the data stored in the container

maxarr int Maximum bound for the storage array (index is 0-based)

beg int Lower index of the available stored data

end int Upper index of the available stored data

caltype int Calendar type of the associated calendar object

cal CRSP_CAL Pointer to associated calendar object

miss_val_at=0 Array index of the missing value for the stored data type
CRSP_ARRAY

CRSP array container object

NAME CTYPE DESCRIPTION

objtype Object type id (CRSP_ARRAY_QTID)

arrtype int Type id of the data stored in the container

subtype int Subtype id of the data stored in the container

maxarr int Maximum bound for the storage array (index is 0-based)

num int Upper index of the available stored data (index is 0-based)

miss_val_at = maxarr - 1 Array index of the missing value for the stored data type
CRSP_ROW

CRSP row container object

NAME CTYPE DESCRIPTION

objtype int Object type id (CRSP_ROW_OTID)

arrtype int Type id of the data stored in the container

subtype int Subtype id of the data stored in the container
CRSP_CAL

CRSP calendar container object

NAME CTYPE DESCRIPTION
objtype int Object type id (CRSP_CAL_OTID)

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 27

NAME CTYPE DESCRIPTION
calid int Id code of the loaded calendar:
e CRSP_CALID_DAILY
e CRSP_CALID_MONTHLY
e CRSP_CALID_ANNUAL
e CRSP_CALID_QUARTERLY
e CRSP_CALID_SEMIANNUAL
e CRSP_CALID_WEEKLY
Loadflag int Binary Flag on loaded array parts
maxarr int Maximum bound of the date storage array
gmtoffset int Minutes offset from GMT
timezone int Code for time zone GMT
relflag int If beg and end absolute or relative
beg int Valid range subset begin
end int Valid range subset end
ndays int Number of periods in calendar
name character(LEN=CRSP_NAMESIZE) Calendar name
calcd char (LEN=CRSP_CALCD_LEN) Calender Code
freqed char (LEN=CRSP_CHSR_STRSIZE) Frequency Code
SUPPORTING TYPES

The CRSP C itm-API supporting types provide additional information about data items and other associated objects in the
context of item-based access. An item object is usually associated to a keyset and calendar (in case of time-series items).
The details of the keyset (when non-zero) and calendar are given in the CRsp_ITM KEYSET and CRSP_ITM CAL derived

types.

Additionally, the details of the current CRSP data set (such as set name, product name, version, etc.) are provided in the

CRSP_ITM SET and CRSP_ROOT INFO derived types.

The relevant fields of the supporting types are listed in the following tables:

CRSP_ITM_INFO

Item detail information

NAME CTYPE DESCRIPTION

itm_name char(LEN=CRSP_NAME_LEN) Item mnemonic name
dflt_keyset int Default keyset

full_name char(LEN=CRSP_NAMESIZE) Full non-mnenonic name
itm_type char(LEN=CRSP_TYPE_LEN) Type of data item

derv_flg char(LEN=CRSP_TYPE_LEN) Item is stored/derived
unit_type char(LEN=CRSP_CODE_LEN) Type of units (money, ratio)
unit_mult double precision Multiplier to get actual value
cat_type char(LEN=CRSP_CODE_LEN) Category (BS, IS, CF, MKT)
src_type char(LEN=CRSP_CODE_LEN) Source (filing, market)
freq_type char(LEN=CRSP_TYPE_LEN) Reporting frequency type
disp_fmt char(LEN=CRSP_ITEMNAME_LEN) Display format specifier
disp_len int Field width for formatted output

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C

PAGE 28

NAME CTYPE DESCRIPTION

disp_precn int Number of decimal places in output
ca_data_size int Internal length

ca_arrtype int Internal structure it belongs
ca_subtype int Internal data sub type

subno_type int Type of variant id

epsflag int Epsilon type/digits for diffs

cepsflag int Epsilon type for character(LEN=diffs)
epsilon double precision Absolute epsilon for diffs

desc char(LEN=CRSP_DESC_LEN) Default description for field

CRSP_ITM_KEYSET

Keyset descriptor

NAME CTYPE DESCRIPTION
keyset int Keyset number
is_loaded int True when items where requested with this keyset
keyset_info CRSP_KEYSET Information about the keyset
items_arr CRSP_ARRAY CRSP array container definition for keyset composing items
items CRSP_ITM Array of the items composing the keyset

CRSP_ITM_CAL

Calendar descriptor

NAME CTYPE DESCRIPTION

app_id int Application ID

cal_seq_num int Calendar sequence number
fiscal_disp_cd char(LEN=CRSP_TYPE_LEN) Fiscal Display code

freqed char(LEN=CRSP_CHAR_STRSIZE) Frequency code of the calendar
Itm_name char (LEN=CRSP_NAME_LEN) Item Name

cal_derv_flg char (LEN=CRSP_CODE_LEN) Calendar derived flag

desc char (LEN=CRSP_DESC_LEN Description of the Calendar

CRSP_KEYSET

Keyset information

NAME CTYPE DESCRIPTION
keyset int Keyset number
keyset_tag char(LEN=CRSP_NAME_LEN) Keyset tag name
desc char(LEN=CRSP_DESC_LEN) Keyset description
CRSP_ITM_SET
Data set descriptor
NAME CTYPE DESCRIPTION
set_name char(LEN=CRSP_NAME_LEN) Keyset number
path char(LEN=CRSP_PATHSIZE) Keyset tag name

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C

PAGE 29

NAME CTYPE DESCRIPTION
root_info CRSP_ROOT_INFO Database root information

CRSP_ROOT_INFO

Database root information

NAME CTYPE DESCRIPTION

product_name char(LEN=CRSP_PROD_NAMESIZE) Database name

product_code char(LEN=CRSP_CODE_NAMESIZE) Database code

version int Version number of db

crt_date char(LEN=CRSP_DATE_SIZE) Dates are Dow Mon DD HH:MM:SS YYYY
mod_date char(LEN=CRSP_DATE_SIZE) Last modification date of db

cut_date char(LEN=CRSP_DATE_SIZE) Cut date of db

binary_type char(LEN=CRSP_CHAR_STRSIZE) L (IEEE little-endian) or B (big)
code_version char(LEN=CRSP_0S_NAMESIZE) CA version

CRSP PROGRAMMER'S GUIDE | ITEM-BASED ACCESS IN C PAGE 30

CHAPTER 3: ITEM-BASED ACCESS IN FORTRAN

CRSP FORTRAN 95 API DATA OBJECTS

Access to CRSP databases is achieved through two principal objects: the access handle — of type CRSP_ITM_HNDL_T, and
the item — of type CRSP_ITM_T. These two important object types can be seen in steps 2 and 3 of the sample program
flow on page 69.

CRSP_ITM_HNDL_T

The item-access handle object type (CRSP_ITM HNDL T) encapsulates the information required to establish and maintain
a single item-access session to a given CRSP database. Additional access sessions (either to the same or to another CRSP
database), concurrent in the same program, require a separate access handle object. All of the item objects available in the

active session are grouped within the respective access handle.

The main properties of the access handle object are listed on the following table:

NAME
keytype

FORTRAN 95 TYPE
character(LEN=CRSP_NAME_LEN)

DESCRIPTION

Determines the keys used to select data in read functions. Supported keytypes for the application are included
in the reference data. A default will be set.

keyset_disp_cd

character(LEN=CRSP_TYPE_LEN)

Determines whether keyset items are labeled by the keyset number (NUM), the keyset tag (TAG), or the
expanded list of all items comprising the keyset (EXP). The default display is TAG.

fiscal_disp_cd | character(LEN=CRSP_TYPE_LEN) | Determines whether fiscal-based time series items are reported on a calendar basis (C) or a fiscal basis (F). The
default it C.

curr_disp_cd character(LEN=CRSP_TYPE_LEN) | Determines whether monetary values are reported in the currency reported by Compustat (REP) or in US
Dollars (USD). The default currency display code is REP.

grp_fill_cd character(LEN=CRSP_TYPE_LEN) | Determines whether group item lists are filled so that every selected item is included for every selected keyset
(Y or N). The default is Yes (Y).

dataset CRSP_ITM_SET T Pointer to descriptor of currently attached CRSP dataset; includes root info for the CRSP dataset.

In a user-program the access handle objects are normally declared and allocated directly then passed to Fortran 95 itm-API
functions as a parameter. The function crsp f itm init initializes the contents of the access handle and connects it to
the specified CRSP database.

CRSP_ITM_T

The item object type (CRSP_ITM T) represents a generic container for a single data item defined in a given CRSP
database. It unifies the data types defined for each of the supported CRSP databases and allows uniform access to the

associated CRSP data containers from your programs.

The main properties of the item object are listed in the following table:

NAME FORTRAN 95 TYPE DESCRIPTION

itm_name character(LEN=CRSP_NAME_LEN) | name of the item from a CRSP dataset.

keyset integer number of the keyset defined in a CRSP dataset.

itm_info CRSP_ITM_INFO_T item metadata; includes description, default keyset, and stored data type.

obj CRSP_ITM_OBJ_T describes the underlying CRSP data-object.

arr CRSP_ITM_OBJARR_T describes the Fortran 95 container associated with the defined CRSP data-object.

itmkeyset CRSP_ITM_KEYSET_T describes the details of the keyset (when non-zero and loaded), including its number, name, tag, and array of
composing items of same CRSP_ITM_T type.

PAGE 31

FORTRAN 95 TYPE DESCRIPTION

itmcal CRSP_ITM_CAL_T for calendar-bound items, describes the details of the attached calendar, including its id, keyset ,frequency, and
attached calendar object of CRSP_CAL_T type. When requested, the calendar may be ‘shifted’, based on the
currently loaded company’s FYE to attribute properly the item’s period data.

Item objects are normally declared as Fortran 95 pointers and then attached to the actual defined item objects by calling
the crsp_f itm find function for the given access handle and the specified item name and keyset.

CRSP_ITM_OBJ_T

Item data is accessed from the data-object itm%obj and associated to a Fortran 95 container itm%arr. The item data
container object type (CRSP ITM OBJ T) describes an instance of a CRSP data-object (time-series, array, row) that is
defined for the specific item. Only a single data-object can be defined for a given item, which is identified by the objtype
property.

Properties of the item data-object are listed in the following table:

NAME FORTRAN 95 TYPE DESCRIPTION

objtype integer type of the defined and allocated object:
e CRSP_TS_OTID: CRSP time-series

e CRSP_ARRAY_QTID: CRSP array
e CRSP_ROW_OTID: CRSP row

ts CRSP_TS_T pointer to allocated CRSP time-series data-object.

arr CRSP_ARRAY_T pointer to allocated CRSP array data-object.

row CRSP_ROW_T pointer to allocated CRSP row data-object.

is_empty logical indicates whether the allocated CRSP data-object contains no data.

The item data-object normally has an associated Fortran 95 container, which is either Fortran 95 array or scalar of the data
type corresponding to the actual stored data, as identified by arrtype property. Details of the CRSP container objects types
are listed in the reference section CRSP Container Objects.

CRSP_ITM_OBJARR_T

The item data array, type cRsp_1TM OBJARR T describes the associated Fortran 95 container object. The Fortran 95
container is allocated based on the object’s type (objtype) and contained data type (arrtype). The respective scalar
member has suffix _val to its name, and _arr for the array type. Time-series and array data are stored in array type, while
row data is kept in scalar type:

itm%arr%arrtype:

CRSP_TS OTID: itm%arr%<arrtype name> arr - time-series object data array

CRSP_ARARY OTID: itm%arr%<arrtype name> arr - array object data array

CRSP_ROW OTID: itm%arr<arrtype name> val - row object data scalar.

NOTE: Throughout the implementation of the CRSP Fortran 95 API, the Fortran 95 array indexing is 0-based, thus the first
element of an array is data arr (0).

Properties of the item data array for the item data types that are common to all of the supported CRSP datasets are listed
in the following table:

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 32

NAME FORTRAN 95 TYPE DESCRIPTION

arrtype integer data type of the defined and allocated Fortran 95 container. Common data types:
e CRSP_INTEGER_TID: integer

e CRSP_FLOAT_TID: real

e CRSP_DOUBLE_TID: double precision

e CRSP_CHAR_TID: character(1)

e CRSP_CHARACTER_TID: CRSP_VARSTRING_T type

int_val / arr integer / dimension (:) pointer to allocated scalar / array of integer type
flt_val / arr real / dimension (:) pointer to allocated scalar / array of real type
dbl_val/arr double precision / dimension (:) pointer to allocated scalar / array of double precision type

char_val/ arr character(LEN=1) / dimension (:) pointer to allocated scalar / array of single-character type

vstr_val / arr CRSP_VARSTRING_T/ dimension (:) | pointer to allocated scalar / array of variable-length string type

structured Refer to the description of data types for the specific CRSP dataset.
types specific to
CRSP datasets

In a user-program the item container data is usually accessed directly as defined by item’s data type, eg:
print *, sale itm%arr%dbl arr(i)
The item data container is normally accessed in association with its item data-object.

NOTE: If an incorrect data container is referenced, an access violation error should occur on the referenced null-pointer.
In such situations the recommended action is to verify that the appropriate containers are being accessed for the selected
items.

Data for items of CRSP array type is accessed in the valid [0..num-1] index range, as defined in the corresponding arr
data-object. For example:

itm%arr%dbl arr(i), i=0..itm%obj%arrsnum-1

Data for items of CRSP time-series type is accessed in the valid [beg, end] index range, as defined in the corresponding ts
data-object, e.g.:

itm%arrsdbl arr (i), i=itm%obj%ts%beg..itm%obj%ts%end

Data for items of CRSP row type is not indexed and is accessed directly from the value as defined by the corresponding
scalar/structured type, e.g.:

itm%arr%master val%ccmid

To verify if an element of an array item contains a missing value, call the function crsp £ itm is miss arrval.

SUPPORTING INFORMATION

Various supporting information about CRSP databases, items, keysets and other item-access objects is stored in the
following derived types:

FORTRAN95TYPE DESCRIPTION ACCESSVIATYPE USAGE

NAME NAME

CRSP_ITM_INFO_T [tem information; includes item’s full name, description, display format, data type and size CRSP_ITM_T itm%itm_info
information. Also includes the default keyset number associated with this item.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 33

FORTRAN95TYPE DESCRIPTION ACCESSVIATYPE USAGE

NAME NAME
CRSP_ITM_KEYSET_T | Keyset descriptor; includes keyset information and the array of items composing the keyset. CRSP_ITM_T itm%itmkeyset
CRSP_ITM_CAL_T Calendar descriptor; includes calendar’s id, associated keyset number, base calendar name, CRSP_ITM_T itm%itmcal

and calendar’s frequency, also the base calendar object. Additionally, for fiscal calendars
indicates whether the calendar has been shifted based on the currently loaded company’s FYE.

CRSP_KEYSET_T Keyset information; includes keyset's number, name, tag, and description. Indicates whether | CRSP_ITM_ itmkeyset%keyset_info
the keyset has been loaded and associated with any of the requested items. KEYSET_T

CRSP_ITM_SET_T CRSP data set descriptor; includes the set’s path, name, id, and database root information. CRSP_ITM_HNDL_T | hndl%dataset

CRSP_ROOT_INFO_T | CRSP data set root information; includes internal service information about the currently CRSP_ITM_SET_T | dataset%root_info

loaded database such as creation/modification date, product code and name, and descriptors
of available calendars. Mainly intended for internal use.

NOTE: While selected supported information is populated on initiating of the connection to a CRSP data set (on return
from call to crsp f itm init), the listed supported information becomes available only on opening of the CRSP data set
(on return from call to crsp £ itm open).

The relevant details of the derived types shown above are listed in the Supporting Types on page 69.

GENERIC DATA TYPES

All CRSP databases contain data items of both simple Fortran 95 data types and of database-specific structured data
types. Moreover, each composing field of the structured data type can instead be requested as an individual data item of
the simple Fortran 95 data type.

The vast majority of the data items defined in CRSP datasets are of CRSP time-series container object type, with the stored
values commonly of generic Fortran 95 data types. A limited set of items is stored in CRSP array and CRSP row container
objects; these items are mostly of structured data types and are listed in the following sections regarding particular CRSP
database products.

The following table lists the supported generic data types and ways to access data from the item-associated container:

ITEM OBJECT TYPE FORTRAN 95 TYPE NAME INTERNAL STORAGE ACCESS VIA CRSP_ITM_T

time-series CRSP_TS_T itm%obj%ts
integer int(4) Itm%arr%int_arr(i)
real float(4) Itm%arr¥%flt_arr(i)
double precision double(8) Itm%arr%dbl_arr(i)
character(LEN=1) char (1) [tm%arrdchar_arr(i)
CRSP_VARSTRING_T char(n) Itm%arr%vstr_arr(i)

array CRSP_ARRAY_T itm%obj%arr
integer int(4) [tm%arr%int_arr(i)
real float(4) [tm%arr7flt_arr(i)
double precision double(8) [tm%arr%dbl_arr(i)
character(LEN=1) char (1) [tm%arr7%char_arr(i)
CRSP_VARSTRING_T char(n) [tm%arr%vstr_arr(i)

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 34

ITEM OBJECT TYPE FORTRAN 95 TYPE NAME INTERNAL STORAGE ACCESS VIA CRSP_ITM_T

row CRSP_ROW_T itm%obj7%row
integer int(4) Itm%arr%int_val
real float(4) [tm%arr7%flt_val
double precision double(8) Itm%arr%dbl_val
character(LEN=1) char (1) [tm%arr%char_val
CRSP_VARSTRING_T char(n) Itm%arr%vstr_val

NOTE: The derived type cRsp_VARSTRING T accommodates varying-length character strings and is used in the context
of the CRSP Fortran 95 API to store data of individual character items that are composing fields of a structured data
item. For example, the CCM structured item COMPANY has a field for company name, which can be referenced indirectly
as company_itm%arr%company val%conm as a fixed-length character string. Alternatively, this field can be requested
individually as the CONM item and then referenced as conm_itm%arr$vstr val as varying-length string.

See the description of the CRSP_VARSTRING_T type on page 71 for usage information.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 35

ACCESSING CRSP DATABASES

The following sections describe the details of accessing CRSP databases supported by the API. Supported databases are
the CRSP US Stock Database, the CRSP US Index Database, and the CRSP/Compustat Merged Database. Each section
presents database connection information, available access keys, as well how to access a database’s data groups and items
from your programs.

CRSP US STOCK DATABASE

To connect to the specific CRSP Stock database instance the path to its database root should be specified. When installed
on your system, CRSP Stock data set will be assigned an environment variable pointing to the CRSP Stock database root.

Additionally, an application ID should be specified on the call to crsp £ itm init to indicate the item-universe to be
loaded for the session and describes the available items and item groups, eg:

sts = crsp f itm init (hndl,’CRSP_DSTK’,app id,’stkl’)

User-programs should access the CRSP Stock data set with the app id as listed in the following table:

STKROOT/APP ID FORTRAN 95 TYPE DESCRIPTION

CRSP_DSTK CRSP Daily Stock data set
CRSP_DSTKITM_ID | integer CRSP Daily Stock data items and groups
CRSP_MSTK CRSP Monthly Stock data set
CRSP_MSTKITM_ID | integer CRSP Monthly Stock data items and groups

The details on included items and item groups can be found starting on page 37.

ACCESS KEYS

CRSP Stock data set contains various data on companies and securities. Access key is composed of access key items the
values of which can be retrieved or set from the user-program to control the direct access to STK data.

Default access key is loaded automatically on opening the access session to the CRSP STK data set

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP
PERMNO, CUSIP, and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set
on the selected access key. The function crsp_f itm get key can also be used to retrieve the value of the access key
items for the currently read record.

To switch to access by an alternative key, a user calls crsp_f itm load key to set the access key index, followed by calls
to crsp_itm set key to set the value of the key items used on subsequent reading of the database.

The defined STK access keys and associated key items are listed in the following table:

CCM ACCESS KEY/KEY ITEMS FORTRAN 95 TYPE DESCRIPTION NOTES
PERMNO CRSP historical PERMNO default
KYPERMNO Integer CRSP company issue’s PERMNO primary key item
PERMCO CRSP historical PERMCO

KYPERMCO | Integer CRSP company’s PERMCO | primary key item
CusIp CRSP Stock CUSIP

KYCUSIP | char(CRSP_CUSIP_LEN) CRSP Stock issue’s CUSIP | primary key item

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 36

CCM ACCESS KEY/KEY ITEMS FORTRAN 95 TYPE DESCRIPTION NOTES

HCUSIP CRSP Stock Historical CUSIP

KYHCUSIP | char(CRSP_CUSIP_LEN) CRSP issue’s Historical CUSIP | primary key item

Ticker CRSP Stock ticker

KYTICKER | char(CRSP_STK_TIC_LEN) | CRSP issue’s ticker | primary key item

SICCD CRSP Stock SIC code

KYSIC | Integer CRSP Stock security’s SIC | primary key item
DATA TYPES

Generally, individual CRSP Stock database data items are of common simple Fortran 95 data types and stored data can be
accessed through itm%arr and corresponding scalar or array member.

Additionally, selected CRSP supplemental STK data groups can be accessed by the entire group as a defined structured
type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm name, but
recommended programming access is through the itm name of the structure. To access the structured type and its fields,
load the structured type itm name during initialization, create a crsp_1TM T pointer matching the itm name, attach it to
the data, and access the structured type and its fields through the pointer:

sts crsp_f itm load(hndl,’HEADER’ ,match flag)

sts crsp_f itm find (hndl, "HEADER’, 0, header itm)

permno = header itm%arr%header val%permno

STRUCTURED TYPES FOR CRSP US STOCK DATABASE ACCESS

The tables below show the data groups available as STK structured types and their usage through the CRSP_ITM_T type.

STK MNEMONIC DESCRIPTION FORTRAN95TYPE ~ OBJECT OBJECT ACCESS VIA
NAME TYPE CRSP_ITM_T

DAILY MONTHLY

HEADER MHEADER Issue header information CRSP_STK_HEADER_T | row header_itm%obj%row

NAMES MNAMES Name information snapshot CRSP_STK_NAME_T array names_itm¥%obj%arr

DISTS MDISTS Information for a distribution event CRSP_STK_DIST_T array dists_itm%obj%arr

SHARES MSHARES Shares outstanding snapshot CRSP_STK_SHARE_T | array shares_itm%obj%arr

DELIST MDELIST Delisting information CRSP_STK_DELIST_T | array delist_itm%obj%arr

NASDIN MNASDIN Snapshot of Nasdaq information CRSP_STK_NASDIN_T | array nasdin_itm?%obj%arr

PORTF MPORTF Portfolio statistic and assignment snapshot CRSP_STK_PORT_T array portf_itm%%obj%arr

GROUP MGROUP Group statistic and assignment snapshot CRSP_STK_GROUP_T | array group_itm%objZ%arr

(M)HEADER
STK MNEMONIC FIELD NAME INTERNAL STORAGE DISPLAY FIELD USAGE
FORMAT

DAILY MONTHLY

HEADER MHEADER Issue header information CRSP_STK_HEADER_T header_itm%arr7header_val

PERMNO MPERMNO PERMNO int(4) 16 header_val%permno

PERMCO MPERMCO PERMCO int(4) 16 header_val%permco

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 37

STK MNEMONIC FIELD NAME INTERNAL STORAGE DISPLAY FIELD USAGE
FORMAT
DAILY MONTHLY
COMPNO MCOMPNO NASDAQ Company Number int(4) 18 header_val%compno
ISSUNO MISSUNO NASDAQ Issue Number int(4) 18 header_val%issuno
HEXCD MHEXCD Exchange Code - Header int(4) 12 header_val%hexcd
HSHRCD MHSHRCD Share Code - Header int(4) 13 header_val%hshrcd
HNAMECD MHNAMECD Name Code -Header int(4) 14 header_val%hnamecd
HSICCD MHSICCD Standard Industrial Classification (SIC) Code - Header | int(4) 12 header_val%hsiccd
BEGDT MBEGDT Begin of Stock Data int(4) 18 header_val%begdt
ENDDT MENDDT End of Stock Data int(4) 18 header_val%enddt
HDLSTCD MHDLSTCD Delisting Code -Header int(4) 13 header_val7%dlstcd
CusIP MCUSIP CUSIP - Header char(16) A8 header_val%hcusip
HTICK MHTICK Ticker Symbol - Header char(16) A6 header_val7%htick
HNAICS MHNAICS North American Industry Classification System char(8) A7 header_val%hnaics
(NAICS) - Header
HCOMNAM MHCOMNAM Company Name - Header char(36) A36 header_val7%hcomnam
HTSYMBOL MHTSYMBOL Trading Ticker Symbol - Header char(12) A12 header_val%htsymbol
HCNTRYCD MHCNTRYCD Country Code - Header char(4) A3 header_val%hcntrycd
HPRIMEXCH MHPRIMEXCH | Primary Exchange - Header char(1) Al header_val%hprimexch
HSUBEXCH MHSUBEXCH Sub-Exchange - Header char(1) Al header_val%hsubexch
HTRDSTAT MHTRDSTAT Trading Status - Header char(1) Al header_val%htrdstat
HSECSTAT MHSECSTAT Security Status - Header char(1) Al header_val7%hsecstat
HSHRTYPE MHSHRTYPE Share Type - Header char(1) Al header_val%hshrtype
HISSUERCD MHISSUERCD | Issuer Code -Header char(1) Al header_val%hissuercd
HINCCD MHINCCD Incorporation Code -Header char(1) Al header_val%hinccd
HITS MHITS Intermarket Trading System Indicator - Header char(1) Al header_val7%hits
HDENOM MHDENOM Trading denomination char(1) Al header_arr(i)%hdenom
HELIGCD MHELIGCD Eligibility code char(1) Al header_arr(i)%heligcd
HCONVCD MHCONVCD Convertible code char(1) Al header_arr(i)%hconved
HNAMEFLAG MHNAMEFLAG | Name flag char(1) Al header_arr(i)%hnameflag
HNAMEDESC MHNAMEDESC | Name description char(24) Al5 header_arr(i)%hnamedesc
HRATING MHRATING Rating (if applicable) or strike price float(4) Fo.4 header_arr(i)%hrating
HEXPDT MHEXPDT Expiration date int(4) 18 header_arr(i)%hexpdt
(M)NAMES

STK MNEMONIC

DAILY

MONTHLY

FIELD NAME

INTERNAL STORAGE

DISPLAY FIELD USAGE
FORMAT

NAMES MNAMES Name information snapshot CRSP_STK_NAME_T names_itm%arr’%names_arr
uot MUOT Unit of Trade, End of Period - actual int(4) 16 names_arr(i)%uot

NAMEDT MNAMEDT Names Information Begin Date int(4) 18 names_arr(i)%namedt
NAMEENDDT MNAMEENDDT | Names Information End Date int(4) 18 names_arr(i)%nameenddt
SHRCD MSHRCD Share Code int(4) 12 names_arr(i)%shrcd

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 38

STK MNEMONIC

DAILY

MONTHLY

FIELD NAME

INTERNAL STORAGE

DISPLAY
FORMAT

FIELD USAGE

NAMECD MNAMECD Name Code, End of Period - actual int(4) 13 names_arr(i)%namecd
EXCHCD MEXCHCD Exchange Code int(4) 12 names_arr(i)%exched
SICCD MSICCD Standard Industrial Classification (SIC) Code int(4) 14 names_arr(i)%siccd
NCUSIP MNCUSIP CusiP char(16) A8 names_arr(i)%ncusip
TICKER MTICKER Ticker Symbol char(8) A5 names_arr(i)%ticker
SNAICS MSNAICS North American Industry Classification System (NAICS) | char(8) A7 names_arr(i)%snaics
COMNAM MCOMNAM Company Name char(36) A32 names_arr(i)%comnam
TSYMBOL MTSYMBOL Trading Ticker Symbol char(12) A10 names_arr(i)%tsymbol
CNTRYCD MCNTRYCD Country Code, End of Period - actual char(4) A3 names_arr(i)%cntrycd
PRIMEXCH MPRIMEXCH Primary Exchange char(1) Al names_arr(i)%primexch
SUBEXCH MSUBEXCH Sub-Exchange char(1) Al names_arr(i)%subexch
TRDSTAT MTRDSTAT Trading Status char(1) Al names_arr(i)%trdstat
SECSTAT MSECSTAT Security Status char(1) Al names_arr(i)%secstat
SHRTYPE MSHRTYPE Share Type, End of Period - actual char(1) Al names_arr(i)%shrtype
ISSUERCD MISSUERCD Issuer Code, End of Period - actual char(1) Al names_arr(i)%issuercd
INCCD MINCCD Incorporation Code, End of Period - actual char(1) Al names_arr(i)%inccd
ITS MITS Intermarket Trading System, End of Period - actual char(1) Al names_arr(i)%its
DENOM MDENOM Trading Denomination, End of Period - actual char(1) Al names_arr(i)%denom
ELIGCD MELIGCD Eligibility Code, End of Period - actual char(1) Al names_arr(i)%eliged
CONVCD MCONVCD Convertible Code, End of Period - actual char(1) Al names_arr(i)%convcd
NAMEFLAG MNAMEFLAG Name Flag, End of Period - actual char(1) Al names_arr(i)%nameflag
SHRCLS MSHRCLS Share Class char(4) Al names_arr(i)%shrcls
NAMEDESC MNAMEDESC Name Description, End of Period - actual char(24) Al5 names_arr(i)%namedesc
RATING MRATING Interest Rate, End of Period - actual float(4) F9.4 names_arr(i)%rating
EXPDT MEXPDT Expiration Date, End of Period - actual int(4) 18 names_arr(i)%expdt
(M)DISTS

STK MNEMONIC

DAILY

MONTHLY

FIELD NAME

INTERNAL STORAGE

DISPLAY
FORMAT

FIELD USAGE

DISTS MDISTS Information for a distribution event CRSP_STK_DIST_T dists_itm%arr%dists_arr
DISTCD MDISTCD Distribution Code int(4) 14 dists_arr(i)%distcd
DIVAMT MDIVAMT Dividend Amount float(4) F9.5 dists_arr(i)%divamt
FACPR MFACPR Factor to Adjust Price in Period float(4) F8.4 dists_arr(i)%facpr
FACSHR MFACSHR Factor to Adjust Shares Outstanding float(4) F8.4 dists_arr(i)%facshr
DCLRDT MDCLRDT Distribution Declaration Date int(4) 18 dists_arr(i)%dclrdt
EXDT MEXDT Ex-Distribution Date int(4) 18 dists_arr(i)%exdt
RCRDDT MRCRDDT Record Date int(4) 18 dists_arr(i)%rcrddt
PAYDT MPAYDT Payment Date int(4) 18 dists_arr(i)7%paydt
ACPERM MACPERM Acquiring PERMNO int(4) 15 dists_arr(i)%acperm
ACCOMmP MACCOMP Acquiring PERMCO int(4) 15 dists_arr(i)%accomp

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 39

(M)SHARES
STK MNEMONIC

DAILY

MONTHLY

FIELD NAME

INTERNAL STORAGE

DISPLAY
FORMAT

FIELD USAGE

SHARES MSHARES Shares outstanding snapshot CRSP_STK_SHARE_T shares_itm%arr7%shares_arr

SHROUT MSHROUT Shares Qutstanding int(4) 110 shares_arr(i)%shrout

SHRSDT MSHRSDT Shares Outstanding Observation Date int(4) 18 shares_arr(i)%shrsdt

SHRSENDDT MSHRSENDDT | Shares Outstanding Observation End Date int(4) 18 shares_arr(i)%shrsenddt

SHRFLG MSHRFLG Shares Outstanding Observation Flag int(4) 14 shares_arr(i)%shrflg
(M)DELIST

STK MNEMONIC

DAILY

MONTHLY

FIELD NAME

INTERNAL STORAGE

DISPLAY
FORMAT

FIELD USAGE

DELIST MDELIST Delisting information CRSP_STK_DELIST_T delist_itm%arri%delist_arr
DLSTDT MDLSTDT Delisting Date int(4) 18 delist_arr(i)%dIstdt
DLSTCD MDLSTCD Delisting Code int(4) 13 delist_arr(i)%dIstcd
NWPERM MNWPERM Linked PERMNO After Delisting int(4) 18 delist_arr(i)%nwperm
NWCOMP MNWCOMP Linked PERMCO After Delisting int(4) 18 delist_arr(i)%nwcomp
NEXTDT MNEXTDT Date of Next Available Information int(4) 18 delist_arr(i)%nextdt
DLAMT MDLAMT Total Amount Used in Delisting Return float(4) F13.5 delist_arr(i)%dlamt
DLRETX MDLRETX Delisting Return without Dividends float(4) F11.6 delist_arr(i)%dIretx
DLPRC MDLPRC Delisting Price float(4) F13.5 delist_arr(i)%dlprc
DLPDT MDLPDT Delisting Payment Date int(4) 18 delist_arr(i)%dIpdt
DLRET MDLRET Delisting Return float(4) F11.6 delist_arr(i)%dlret
(M)NASDIN
STK MNEMONIC FIELD NAME INTERNAL STORAGE DISPLAY FIELD USAGE
FORMAT
DAILY MONTHLY
NASDIN MNASDIN Snapshot of Nasdaq information CRSP_STK_NASDIN_T nasdin_itm%arr%nasdin_arr
TRTSCD MTRTSCD NASDAQ Status Code, End of Period int(4) 12 nasdin_arr(i)%trtscd
TRTSDT MTRTSDT Beginning Effective Date of Traits int(4) 18 nasdin_arr(i)%trtsdt
TRTSENDDT MTRTSENDDT | Last Effective Date of Traits int(4) 18 nasdin_arr(i)%trtsenddt
NMSIND MNMSIND NASDAQ National Market Indicator int(4) 12 nasdin_arr(i)%nmsind
MMCNT MMMCNT NASDAQ Market Makers Count int(4) 14 nasdin_arr(i)%mmcnt
NSDINX MNSDINX NASDAQ Index Code int(4) 12 nasdin_arr(i)7%nsdinx
(M)PORTF

STK MNEMONIC

DAILY

MONTHLY

FIELD NAME

INTERNAL STORAGE

DISPLAY

FORMAT

FIELD USAGE

PORTF MPORTF Portfolio statistic and assignment snapshot CRSP_STK_PORT_T port_itm%arr%port_arr
PORT MPORT Portfolio Assignment int(4) 14 portf_arr(i)%port
STAT MSTAT Portfolio Statistic Value double(8) F16.5 portf_arr(i)%stat

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 40

(M)GROUP

STK MNEMONIC FIELD NAME INTERNAL STORAGE DISPLAY FIELD USAGE

FORMAT
DAILY MONTHLY
GROUP MGROUP Group statistic and assignment snapshot CRSP_STK_GROUP_T group_itm%arr%group_arr
GRPDT MGRPDT Group Beginning Date int(4) 18 group_arr(i)%grpdt
GRPENDDT MGRPENDDT Group Ending Date int(4) 18 group_arr(i)7%grpenddt
GRPFLAG MGRPFLAG Group Flag int(4) 14 group_arr(i)%grpflag
GRPSUBFLAG | MGRPSUBFLAG | Group Subflag int(4) 14 group_arr(i)7grpsubflag

CRSP US INDEX DATABASE

To connect to the specific CRSP Index database instance the path to its database root should be specified. When installed
on your system, CRSP Index data sets will be assigned an environment variable pointing to the CRSP Index database root.

Additionally, an application ID should be specified on the call to crsp f itm init to indicate the item-universe to be
loaded for the session and describes the available items and item groups, eg:

sts = crsp f itm init (hndl,’CRSP_DSTK’,app id,’indl’)

User-programs should access the CRSP Index data sets with the app id as listed in the following table:

STKROOT/APP ID FORTRAN 95 TYPE DESCRIPTION
CRSP_DSTK CRSP Daily Stock and Index data sets
CRSP_DINDITEMS_ID integer CRSP Daily Index series data items and groups
CRSP_DINDGITEMS_ID integer CRSP Daily Index group data items and groups
CRSP_MSTK CRSP Monthly Stock and Index data sets
CRSP_MINDITEMS_ID integer CRSP Monthly Index series data items and groups
CRSP_MINDGITEMS_ID integer CRSP Monthly Index group data items and groups
ACCESS KEYS

CRSP Index data sets includes various data on market indexes. Access key is composed of access key items the values of
which can be retrieved or set from the user-program to control the direct access to IND data.

Default access key is loaded automatically on opening the access session to the CRSP IND data set.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set
on the selected access key. The function crsp f itm get key can also be used to retrieve the value of the access key
items for the currently read record.

The defined IND access keys and associated key items are listed in the following table:

CCM ACCESS KEY/KEY ITEMS FORTRAN 95 TYPE DESCRIPTION NOTES

indno CRSP Index’s INDNO default

KYINDNO | integer CRSP index’s INDNO primary key item
DATA TYPES

Generally, individual CRSP Index database data items are of common simple Fortran 95 data types and stored data can be
accessed through itm%arr and corresponding scalar or array member.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 41

Additionally, selected CRSP supplemental IND data groups can be accessed by the entire group as a defined structured
type rather than as a stand-alone item. These data groups and their elements can both be accessed by itm_name, but
recommended programming access is through the itm_name of the structure. To access the structured type and its fields,
load the structured type itm_name during initialization, create a CRSP_ITM_T pointer matching the itm_name, attach it to
the data, and access the structured type and its fields through the pointer:

sts = crsp f itm load(hndl,’ INDHDR’ ,match flag)

sts

crsp_f itm find (hndl,’ INDHDR’, 0, indhdr itm)

indno = indhdr itm%arr%indhdr val%indno

STRUCTURED TYPES FOR CRSP US INDEX DATABASE ACCESS

The tables below show the data groups available as structured types and their usage through the crsp_1TM T type.

IND MNEMONIC DESCRIPTION FORTRAN95TYPE OBJECT OBJECT ACCESS VIA
NAME TYPE CRSP_ITM_T
DAILY MONTHLY
INDHDR MINDHDR Index header information CRSP_IND_HEADER_T | row indhdr_itm%obj%row
REBAL MREBAL Index rebalancing period summary CRSP_IND_REBAL_T array rebal_itm%objZarr
LIST MLIST Issue list information CRSP_IND_LIST_T array list_itm%obj%arr
(M)INDHDR

IND MNEMONIC

DAILY MONTHLY

FIELD NAME

INTERNAL DISPLAY
STORAGE FORMAT

FIELD USAGE

INDHDR MINDHDR Index header information CRSP_IND_HEADER_T indhdr_itm%arr%indhdr_val
INDNO MINDNO specific index series int(4) 17 indhdr_val%indno

INDCO MINDCO major index series group int(4) 17 indhdr_val%indco

PRIMFLAG MPRIMFLAG 0 if master or permno of master int(4) 16 indhdr_val%primflag
PORTNUM MPORTNUM portfolio number in master if subset int(4) 16 indhdr_val%portnum
INDNAME MINDNAME index name char(80) A79 indhdr_val%indname
GROUPNAME MGROUPNAME | index group name char(80) A79 indhdr_val%groupname
METHCODE MMETHCODE code of possible methodology types int(4) 16 indhdr_val%method%methcode
PRIMTYPE MPRIMTYPE fractile, selected, rulebased, market int(4) 16 indhdr_val%method%primtype
SUBTYPE MSUBTYPE index type subcode int(4) 16 indhdr_val%method%subtype
WGTTYPE MWGTTYPE reweighting type flag int(4) 16 indhdr_val%method%wgttype
WGTFLAG MWGTFLAG reweighting timing flag int(4) 16 indhdr_val%method%wgtflag
FLAGCODE MFLAGCODE code of possible exception types int(4) 16 indhdr_val%flags%flagcode
ADDFLAG MADDFLAG handling new issues int(4) 16 indhdr_val%flags %addflag
DELFLAG MDELFLAG handling issues becoming ineligible int(4) 16 indhdr_val%flags%delflag
DELRETFLAG MDELRETFLAG | measuring return of delisted issues int(4) 16 indhdr_val%flags%delretflag
MISSFLAG MMISSFLAG handling missing prices int(4) 16 indhdr_val%flags%missflag
UUNIVCODE MUUNIVCODE | code of possible universe/subset types (index universe) | int(4) 16 indhdr_val%indunivZ%univcode
UBEGDT MUBEGDT beginning date of valid data (index universe) int(4) 18 indhdr_val%induniv%begdt
UENDDT MUENDDT beginning date of valid data (index universe) int(4) 18 indhdr_val%indunivi%enddt

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 42

IND MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT

DAILY MONTHLY
UWANTEXCH MUWANTEXCH | valid exchange code (index universe) int(4) 16 indhdr_val%induniv%wantexch
UWANTNMS MUWANTNMS | Nasdaq National Market classification (index universe) | int(4) 16 indhdr_val%indunivi%wantnms
UWANTWI MUWANTWI when-issued code (index universe) int(4) 16 indhdr_val%indunivswantwi
UWANTINC MUWANTINC valid incorporation (index universe) int(4) 16 indhdr_val%indunivZ%wantinc
USCCODE MUSCCODE code of possible restriction types (index universe) int(4) 16 indhdr_val%indunivi%sccode
UFSTDIG MUFSTDIG bitmap of first share code digit (index universe) int(4) 16 indhdr_val%indunivifstdig
USECDIG MUSECDIG hitmap of second share code digit (index universe) int(4) 16 indhdr_val%induniv%secdig
PUNIVCODE MPUNIVCODE | code of possible universe/subset types (partition universe) | int(4) 16 indhdr_val%partunivZunivcode
PBEGDT MPBEGDT beginning date of valid data (partition universe) int(4) 18 indhdr_val%partunivibegdt
PENDDT MPENDDT beginning date of valid data (partition universe) int(4) 18 indhdr_val%partunivienddt
PWANTEXCH MPWANTEXCH | valid exchange code (partition universe) int(4) 16 indhdr_val%partunivi%wantexch
PWANTNMS MPWANTNMS | Nasdaq National Market classification (partition universe) | int(4) 16 indhdr_val%partuniv%wantnms
PWANTWI MPWANTWI when-issued code (partition universe) int(4) 16 indhdr_val%partuniviwantwi
PWANTINC MPWANTINC valid incorporation (partition universe) int(4) 16 indhdr_val%partuniviwantinc
PSCCODE MPSCCODE code of possible restriction types (partition universe) | int(4) 16 indhdr_val%partunivZsccode
PFSTDIG MPFSTDIG hitmap of first share code digit (partition universe) int(4) 16 indhdr_val%partuniv%fstdig
PSECDIG MPSECDIG bitmap of second share code digit (partition universe) | int(4) 16 indhdr_val%partunivisecdig
RULECODE MRULECODE code of possible assignment rule types int(4) 16 indhdr_val%rules%rulecode
BUYFNCT MBUYFNCT function code for buy rules int(4) 16 indhdr_val%rules%buyfnct
SELLFNCT MSELLFNCT function code for sell rules int(4) 16 indhdr_val%rulesl%sellfnct
STATENCT MSTATENCT function code for calculating statistic int(4) 16 indhdr_val%rules%statfnct
GROUPFLAG MGROUPFLAG | how stats are grouped before applying rules int(4) 16 indhdr_val%rules%groupflag
ASSIGNCODE MASSIGNCODE | code of possible assignment types int(4) 16 indhdr_val%assign?assigncode
ASPERM MASPERM permno of associated index for breakpoints int(4) 16 indhdr_val%assign%asperm
ASPORT MASPORT portfolio number in associated index int(4) 16 indhdr_val%assignasport
REBALCAL MREBALCAL calid of rebalancing calendar int(4) 16 indhdr_val%assign?rebalcal
ASSIGNCAL MASSIGNCAL calid of assignment calendar int(4) 16 indhdr_val%assignassigncal
CALCCAL MCALCCAL calid of calculation range calendar int(4) 16 indhdr_val%assign?calccal
(M)REBAL
IND MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
DAILY MONTHLY
REBAL MREBAL Index rebalancing period summary CRSP_IND_REBAL_T rebal_itm%arrrebal_arr
RBBEGDT MRBBEGDT rebalancing beginning date int(4) 18 rebal_arr(i)%rbbegdt
RBENDDT MRBENDDT rebalancing ending date int(4) 18 rebal_arr(i)%rbenddt
RUSDCNT MRUSDCNT count used as of rebalancing int(4) 18 rebal_arr(i)%rusdcnt
MAXCNT MMAXCNT maximum count during period int(4) 18 rebal_arr(i)7%maxcnt
RTOTCNT MRTOTCNT available count as of rebalancing int(4) 18 rebal_arr(i)%rtotcnt
ENDCNT MENDCNT count at end of period int(4) 18 rebal_arr(i)%endcnt
MINID MMINID identifier at minimum value int(4) 18 rebal_arr(i)%minid
MAXID MMAXID identifier at maximum value int(4) 18 rebal_arr(i)7%maxid

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 43

IND MNEMONIC

DAILY

MONTHLY

FIELD NAME

INTERNAL
STORAGE

DISPLAY
FORMAT

FIELD USAGE

MINSTAT MMINSTAT smallest statistic in period double(8) F14.3 rebal_arr(i)%minstat
MAXSTAT MMAXSTAT largest statistic in period double(8) F14.3 rebal_arr(i)%maxstat
MEDSTAT MMEDSTAT median statistic in period double(8) F14.3 rebal_arr(i)7%medstat
AVGSTAT MAVGSTAT average statistic in period double(8) F14.3 rebal_arr(i)%avgstat
(M)LIST
IND MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
DAILY MONTHLY
LIST MLIST Issue list information CRSP_IND_LIST_T list_itm%arr%list_arr
TPERMNO MTPERMNO issue identifier int(4) 18 list_arr(i)%tpermno
LBEGDT MLBEGDT first date included int(4) 18 list_arr(i)%Ibegdt
LENDDT MLENDDT last date included int(4) 18 list_arr(i)7%lenddt
SUBIND MSUBIND code for subcategory of list int(4) 16 list_arr(i)%subind
LWEIGHT MLWEIGHT weight during range double(8) F16.5 list_arr(i)%Iweight
TPERMNO MTPERMNO issue identifier int(4) 18 list_arr(i)%tpermno
LBEGDT MLBEGDT first date included int(4) 18 list_arr(i)%Ibegdt
LENDDT MLENDDT last date included int(4) 18 list_arr(i)%lenddt
SUBIND MSUBIND code for subcategory of list int(4) 16 list_arr(i)%subind
LWEIGHT MLWEIGHT weight during range double(8) F16.5 list_arr(i)%lweight

CRSP/COMPUSTAT MERGED DATABASE

To connect to the specific CRSP CCM database instance the path to its database root should be specified. When installed
on your system, CRSP CCM data set will be assigned an environment variable pointing to the CRSP CCM database root.

Additionally, an application ID should be specified on the call to crsp_f_itm_init to indicate the item-universe to be loaded
for the session and describes the available items and item groups, eg:

sts = crsp f itm init (hndl,’CRSP_CCM’,app id,’ccml’)

User-programs should access the CRSP CCM data set with the app id as listed in the following table:

CCM ROQT/APP ID FORTRAN 95 TYPE DESCRIPTION
CRSP_CCM CCM/CRSP Compustat data set
CRSP_CCMITEMS_ID | integer Compustat Xpressfeed data items and groups

The details on included items and item groups can be found starting on page 47.

ACCESS KEYS

CRSP Compustat Xpressfeed includes various data on companies, securities, and indexes. Access key is composed of
access key items the values of which can be retrieved or set from the user-program to control the direct access to the CCM
data.

Default access key for CRSP CCM is loaded automatically on opening the access session to the CRSP CCM data set.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 44

Additionally, a set of alternative access keys (and associated key items) is defined to facilitate access to the data by CRSP
PERMNO, CUSIP and other keys.

The current key universe can be retrieved by requesting header information and sequentially traversing the whole data set
on the selected access key. The function crsp £ itm get key can also be used to retrieve the value of the access key
items for the currently read record.

To switch to access by an alternative key, a user calls crsp £ itm load key to set the access key index, followed by calls
to crsp_itm set key to set the value of the key items used on subsequent reading of the database.

The defined CCM access keys and associated key items are listed in the following table:

CCM ACCESS KEY/KEY ITEMS FORTRAN 95 TYPE DESCRIPTION NOTES

gvkey Compustat GVKEY and IID default

KYGVKEY integer Compustat company’s GVKEY primary key item

KYIID char(CRSP_CCM_IID_LEN) Compustat company security’s IID secondary key item

gvkeyx Compustat permanent identifier for indexes

KYGVKEYX integer Compustat index’s GVKEYX primary key item

ccmid Compustat permanent identifier - either GVKEY or GVKEYX

KYCCMID integer CRSP CCMID (GVKEY or GVKEYX as reported in MASTER item) | primary key item

KYIID char(CRSP_CCM_IID_LEN) Compustat company security’s IID secondary key item

permco CRSP historical PERMCO Link

KYPERMCO | integer CRSP company's PERMCO | primary key item

permno CRSP historical PERMNO Link

KYPERMNO | integer CRSP company issue’s PERMNO | primary key item

cusip Compustat CUSIP

KYCUSIP | char(CRSP_CCM_CUSIP_LEN) | Compustat issue’s CUSIP | primary key item

ticker Compustat reported Issue Trading Symbol selects GVKEY and security

KYTICKER | char(CRSP_CCM_TIC_LEN) Compustat issue’s ticker | primary key item

sic Compustat -reported SIC code. Security or Company

KYSIC integer Compustat security’s SIC primary key item

KYIID char(CRSP_CCM_IID_LEN) Compustat company security’s 1D secondary key item

apermno Link-Used PERMNO

KYPERMNO | integer CRSP company issue’s PERMNO | primary key item

apermco Link-Used PERMCO

KYPERMCO | integer CRSP company issue’s PERMCO | primary key item

ppermno CRSP PERMNO when security is marked as primary

KYPERMNO | integer CRSP company issue’s PERMNO | primary key item
DATA TYPES

Generally, individual Compustat Xpressfeed data items are of common simple Fortran 95 data types and stored data can be
accessed through itm%arr and corresponding scalar or array member.

Also additional character data types were introduced to store specific classes of Xpressfeed items, as listed in the following
table:

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 45

ITEM OBJECT TYPE FORTRAN 95 TYPE NAME INTERNAL STORAGE ACCESS VIA CRSP_ NOTES
ITM_T
time-series CRSP_TS_T itm%obj7ts
CRSP_CCM_FTNT_T char(CRSP_CCM_FTNT_LEN) itm%arr%ftnt_arr(i)%ftnt Used for CCM footnote items,
mainly time-series
CRSP_CCM_TEXTITEM_T char(CRSP_CCM_TEXTITEM_LEN) | itm%arr7text_arr(i)%text Used for various CCM character
string items, mainly time-series
array CRSP_ARRAY_T itm%obj%arr
CRSP_CCM_FTNT_T char(CRSP_CCM_FTNT_LEN) itm%arr%ftnt_arr(i)%ftnt
CRSP_CCM_TEXTITEM_T char(CRSP_CCM_TEXTITEM_LEN) | itm%arr%text_arr(i)%text
row CRSP_ROW_T itm%obj7row
CRSP_CCM_FTNT_T char(CRSP_CCM_FTNT_LEN) itm%arr%ftnt_valZftnt
CRSP_CCM_TEXTITEM_T char(CRSP_CCM_TEXTITEM_LEN) | itm%arri%text_val%text

Additionally, selected Compustat Xpressfeed primary data groups and CRSP supplemental data groups can be accessed by
the entire group as a defined structured type rather than as a stand-alone item. These data groups and their elements can
both be accessed by itm name, but recommended programming access is through the itm_name of the structure. To access
the structured type and its fields, load the structured type itm name during initialization, create a cRsp_1TM T pointer

matching the itm name, attach it to the data, and access the structured type and its fields through the pointer:

sts crsp_f itm load(hndl,’MASTER’ ,match flag)

sts crsp_f itm find(hndl,"MASTER’, O, mstr_ itm)

ccmid = mstr itm%arr$master val%ccmid

STRUCTURED TYPES FOR CRSP/COMPUSTAT MERGED DATABASE ACCESS

The tables below show the data groups available as CCM structured types and their usage through the crsp_1TM T type.

CCM MNEMONIC DESCRIPTION

FORTRAN 95 TYPENAME OBJECT

TYPE

OBJECT ACCESS VIA CRSP_
[TM_T

MASTER CCM company id and range data CRSP_CCM_MASTER_T row master_itm%obj%row
COMPANY CCM company header information CRSP_CCM_COMPANY_T row company_itm%obj%row
IDX_INDEX CCM idx_index header information CRSP_CCM_IDX_INDEX_T row idx_index_itm%obj%row
SPIND S&P index header (pre-GICS) CRSP_CCM_SPIND_T row spind_itm?%obj7%row
COMPHIST CCM company header history CRSP_CCM_COMPHIST_T array comphist_itm%obj%arr
CSTHIST CST header history CRSP_CST_NAME_T array csthist_itm7%objZ%arr
LINK CRSP CCM link history CRSP_CCM_LINK_T array link_itm%obj%arr
LINKUSED CCM company CRSP link used data CRSP_CCM_LINKUSED_T array linkused_itm%obj7%arr
LINKRNG CCM company CRSP link range data CRSP_CCM_LINKRNG_T array linkused_itm%obj7%arr
ADJFACT CCM company adjustment factor history CRSP_CCM_ADJFACT_T array adjfact_itm%obj%arr
HGIC CCM company GICS code history CRSP_CCM_HGIC_T array hgic_itm%obj%arr
OFFTITL CCM company officer title data CRSP_CCM_OFFTITL_T array offtitl_itm%obj%arr
CCM_FILEDATE CCM company filing date data CRSP_CCM_FILEDATE_T array ccm_filedate_itm%obj%arr
CCM_IPCD CCM industry presentation code data CRSP_CCM_IPCD_T array cem_iped_itm%objarr
SECURITY CCM security header information CRSP_CCM_SECURITY_T row security_itm%obj%row
SECHIST CCM security header history CRSP_CCM_SECHIST_T array sechist_itm%obj%arr

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 46

CCM MNEMONIC DESCRIPTION FORTRAN 95 TYPE NAME OBJECT OBJECT ACCESS VIA CRSP_
TYPE TM_T
SEC_MTHSPT CCM security monthly split events CRSP_CCM_SEC_MTHSPT_T | row sec_mthspt_itm%obj7%row
SEC_MSPT_FN CCM security monthly split event footnotes CRSP_CCM_SEC_MTH_FN_T | row sec_mspt_fn_itm%obj%row
SEC_MDIV_FN CCM security monthly dividend event footnotes CRSP_CCM_SEC_MTH_FN_T | row sec_mdiv_fn_itm%obj7%row
SEC_SPIND CCM security S&P information events CRSP_CCM_SEC_SPIND_T row sec_spind_itm%obj%row
IDXCST_HIS CCM security historical index constituents CRSP_CCM_IDXCST_HIS_T | array idxcst_his_itm%obj%arr
SPIDX_CST CCM security S&P index constituent events CRSP_CCM_SPIDX_CST_T array spidx_cst_itm%obj%arr
CCM_SEGCUR CCM opseg currency rate data CRSP_CST_SEGCUR_T array ccm_segeur_itmobj%arr
CCM_SEGSRC CCM opseg source data CRSP_CST_SEGSRC_T array ccm_segsrc_itm%obj%arr
CCM_SEGPROD CCM opseg product data CRSP_CST_SEGPROD_T array ccm_segprod_itm¥%obj%arr
CCM_SEGCUST CCM opseg customer data CRSP_CST_SEGCUST_T array ccm_segcust_itm%obj%arr
CCM_SEGDTL CCM opseg detail data CRSP_CST_SEGDTL_T array ccm_segdtl_itm%obj%arr
CCM_SEGITM CCM opseg item data CRSP_CST_SEGITM_T array ccm_seg_itm%obj%arr
CCM_SEGNAICS CCM opseg NAICS data CRSP_CST_SEGNAICS_T array ccm_segnaics_itm%obj%arr
CCM_SEGGEO CCM opseg geographic data CRSP_CST_SEGGEQ_T array ccm_seggeo_itm%%objZarr
MASTER
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
MASTER master_itm%arrZmaster_val
BEGQTR Quarterly date of earliest data (yyyy.q) int(4) 16 master_val7%begqtr
BEGYR Annual date of earliest data (yyyymmdd) int(4) 14 master_val%begyr
CBEGDT First date of Compustat data int(4) 18 master_val%chegdt
CCMID Permanent record identifier for Compustat company or index int(4) 16 master_val%ccmid
data, represents GVKEY for company, GVKEYX for index
CCMIDTYPE Type of key for Compustat data. 1 = company data, 2 =index data | int(4) 12 master_val%ccmidtype
CENDT Last date of Compustat data int(4) 18 master_val%cendt
ENDQTR Quarterly date of last data (yyyy.q) int(4) 16 master_val%endgtr
ENDYR Annual date of last data (yyyymmdd) int(4) 14 master_val%endyr
COMPANY
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
COMPANY company_itm%arr%company_val
ADD1-4 Address lines 1-4 char(68) A65 company_val%add#
ADDZIP Postal code char(24) A24 company_val%addzip
BUSDESC Business description char(2000) A2000 company_val%busdesc
CIK CIK number char(12) A10 company_val7cik
CITY City char(104) Al104 company_val%city
CONM Company name char(256) A255 company_val%conm
CONML Company legal name char(104) A100 company_val%conml
COSTAT Postal code char(24) Al company_val%addzip
COUNTY County code char(104) A100 company_val%county
DLDTE Research company deletion date int(4) 18 company_val%dldte

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 47

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
DLRSN Research company reason for deletion char(12) A8 company_val%dIrsn
EIN Employer identification number char(12) Al0 company_val%ein
FAX Fax number char(24) Al18 company_val%fax
FIC 1SO Country code of incorporation char(16) A3 company_val%fic
FYRC Fiscal year end (current) int(4) 12 company_val%fyrc
GGROUP GICS groups char(12) A4 company_val7%ggroup
GIND GICS industries char(12) A6 company_val7%gind
GSECTOR GICS sectors char(12) A2 company_val%%gsector
GSUBIND GICS sub-industries char(12) A8 company_val%gsubind
IDBFLAG International/Domestic/Both indicator char(12) Al company_val%idbflag
INCORP State/Province of incorporation code char(12) A8 company_val%incorp
IPODATE Company initial public offering date int(4) 18 company_val%ipodate
LOC ISOCountry code/ headquarters char(4) A3 company_val%loc
NAICS North American Industry Classification Code char(8) A6 company_val7%naics
PHONE Phone number char(24) Al18 company_val%phone
PRICAN Primary Issue Tag - Canada char(12) A8 company_val%%prican
PRIROW Primary Issue Tag — rest of world char(12) A8 company_val7%prirow
PRIUSA Primary Issue Tag - USA char(12) A8 company_val7%priusa
SIC SIC code int(4) 14 company_val%sic
SPCINDCD S&P industry sector code - reference int(4) 14 company_val%spcindcd
SPCSECCD S&P economic sector code - reference int(4) 14 company_val%spcseccd
STATE State/Province char(12) A8 company_val%state
STKO Stock ownership code int(4) 11 company_val%stko
WEBURL Website address char(68) A60 company_val%weburl
IDX_INDEX
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
IDX_INDEX idx_index_itm%arr%idx_index_val
IDX13KEY 13 character key char(16) A13 idx_index_val%idx13key
IDXCSTFLG Index constituent flag char(4) A2 idx_index_val%idxcstflg
IDXSTAT Index Status char(2) Al ldx_index_val%idxstat
INDEXCAT Index category code char(12) Al0 idx_index_val%indexcat
INDEXGEOQ Index geographical area char(12) A10 idx_index_val%indexgeo
INDEXTYPE Index type char(12) Al0 idx_index_val%indextype
INDEXVAL Index value char(12) A10 idx_index_val%indexval
SPIl S&P industry index code int(4) 14 idx_index_val%spii
SPMI S&P major index code int(4) 14 idx_index_val%spmi
TICI Issue trading ticker char(12) A8 idx_index_val%tici
XCONM Company Name (Index) char(256) A255 idx_index_val%xconm
XINDEXID Index ID char(12) Al2 idx_index_val%xindexid
XTIC Ticker/trading symbol (index) char(10) A10 idx_index_val%xtic

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 48

SPIND

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
SPIND spind_itm%arr%spind_val
SPIID S&P Industry ID int(4) 14 spind_val%spiid
SPIMID S&P Major Index ID int(4) 14 spind_val%spimid
SPITIC S&P Index ticker char(12) Al2 spind_val%spitic
SPIDESC S&P Index industry description /reference char(256) A256 spind_val%spidesc

COMPHIST

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
COMPHIST comphist_itm%arr%comphist_arr(i)
HCHGENDDT Comphist description last effective date int(4) 18 comphist_arr(i)%hchgenddt
HDLDTE Historical research company — deletion date int(4) 18 comphist_arr(i)%hdldte
HFYRC Historical fiscal year end month / current int(4) 110 comphist_arr(i)%hfyrc
HIPODATE Historical company official public offering date int(4) 110 comphist_arr(i)%hipodate
HSIC Historical SIC Code int(4) 110 comphist_arr(i)%hsic
HSPCINDCD Historical S&P Industry code int(4) 110 comphist_arr(i)%hspcindcd
HSPCSECCD Historical S&P Economic sector code int(4) 110 comphist_arr(i)%hspcseccd
HSTKO Historical stock ownership code int(4) 110 comphist_arr(i)%hstko
HADD1...4 Historical address lines 1-4 char(68) A68 comphist_arr(i)%haddl#
HADDZIP Historical postal code char(68) A24 comphist_arr(i)%haddzip
HBUSDESC Historical business description char(2000) A2000 comphist_arr(i)%hbusdesc
HCIK Historical CIK number char(12) Al2 comphist_arr(i)%hcik
HCITY Historical city char(104) A104 comphist_arr(i)%hcity
HCONM Historical company name char(256) A256 comphist_arr(i)%hconm
HCONML Historical legal company name char(104) A104 comphist_arr(i)%hconml
HCOSTAT Historical active/inactive status marker char(4) Ad comphist_arr(i)%hcostat
HCOUNTY Historical county code char(104) A1044 comphist_arr(i)%hcounty
HDLRSN Historical research company reason for deletion char(12) Al2 comphist_arr(i)%hdirsn
HEIN Historical employer identification number char(12) A12 comphist_arr(i)%hein
HFAX Historical fax number char(16) Al6 comphist_arr(i)%hfax
HFIC Historical ISO country code / incorporation char(16) Al6 compbhist_arr(i)%hfic
HGGROUP Historical GICS group char(12) A12 comphist_arr(i)%hggroup
HGIND Historical GICS industries char(12) A12 compbhist_arr(i)%hgind
HGSECTOR Historical GICS sector char(12) A12 comphist_arr(i)%hgsector
HGSUBIND Historical GICS sub-industries char(12) A12 compbhist_arr(i)%hgsubind
HIDBFLAG Historical international, domestic, both indicator char(12) A12 comphist_arr(i)%hidbflag
HINCORP Historical state/province of incorporation code char(12) A12 compbhist_arr(i)%hincorp
HLOC Historic ISO country code/ headquarters char(4) A4 comphist_arr(i)%hloc
HNAICS Historical NAICS codes char(8) A8 comphist_arr(i)%hnaics
HPHONE Historical phone number char(16) Al6 comphist_arr(i)%hphone
HPRICAN Historical primary issue tag - Cananda char(12) A12 comphist_arr(i)%hprican
HPRIROW Historical primary issue tag — rest of world char(12) Al2 comphist_arr(i)%hprirow

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 49

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
HPRIUSA Historical primary issue tag - US char(12) A12 comphist_arr(i)%hpriusa
HSTATE Historical state/province char(12) A12 comphist_arr(i)%hstate
HWEBURL Historical website url char(68) A68 comphist_arr(i)%hweburl
CSTHIST
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
CSTHIST csthist_itm%arr7csthist_arr(i)
CST_CHGDT CST History effective date int(4) 18 csthist_arr(i)7%cst_chgdt
CST_CHGENDDT CST History last effective date int(4) 18 csthist_arr(i)%cst_chgenddt
CST_DNUM CST History industry code int(4) 14 csthist_arr(i)7%cst_dnum
CST_FILE CST History file identification code int(4) 14 csthist_arr(i)%cst_file
CST_ZLIST CST History exchange listing and S&P Index code int(4) 14 csthist_arr(i)%cst_zlist
CST_STATE CST History state identification code int(4) 14 csthist_arr(i)%cst_state
CST_COUNTY CST History county identification code int(4) 14 csthist_arr(i)%cst_county
CST_STINC CST History state incorporation code int(4) 14 csthist_arr(i)%cst_stinc
CST_FINC CST History foreign incorporation code int(4) 14 csthist_arr(i)%cst_finc
CST_XREL CST History industry index relative code int(4) 14 csthist_arr(i)%cst_xrel
CST_STK CST History stock ownership code int(4) 14 csthist_arr(i)%cst_stk
CST_DUP CST History duplicate file code int(4) 14 csthist_arr(i)%cst_dup
CST_CCNDX CST History current Canadian index code int(4) 14 csthist_arr(i)7%cst_ccndx
CST_GICS CST History Global Industry Classification Standard Code int(4) 14 csthist_arr(i)%cst_gics
CST_IPODT CST History IPO date int(4) 14 csthist_arr(i)%cst_ipodt
CST_FUNDF1 CST History fundamental file identification code 1 int(4) 14 csthist_arr(i)%cst_fund1
CST_FUNDF2 CST History fundamental file identification code 2 int(4) 14 csthist_arr(i)%cst_fundf2
CST_FUNDF3 CST History fundamental file identification code 3 int(4) 14 csthist_arr(i)%cst_fundf3
CST_NAICS CST History North American Industry Classification char(8) A8 csthist_arr(i)7%cst_naics
CST_CPSPIN CST History primary S&P Index marker char(4) A csthist_arr(i)%cst_cpspin
CST_CSSPIN CST History subset S&P Index marker char(4) A4 csthist_arr(i)%cst_csspin
CST_CSSPII CST History secondary S&P Index marker char(4) A csthist_arr(i)%cst_csspii
CST_SUBDBT CST History current S&P subordinated debt rating char(8) A8 csthist_arr(i)%cst_subdbt
CST_CPAPER CST History current S&P commercial paper rating char(4) A csthist_arr(i)%cst_cpaper
CST_SDBT CST History current S&P senior debt rating char(4) A4 csthist_arr(i)7%cst_sdbt
CST_SDBTIM CST History current S&P senior debt rating - footnote char(4) A csthist_arr(i)%cst_sdbtim
CST_CNUM CST History CUSIP issuer code char(16) Al6 csthist_arr(i)%cst_cnum
CST_CIC CST History issuer number char(4) Ad csthist_arr(i)%cst_cic
CST_CONAME CST History company name char(64) A64 csthist_arr(i)%cst_coname
CST_INAME CST History industry name char(4) Ad csthist_arr(i)%cst_iname
CST_SMBL CST History stock ticker symbol char(16) Al6 csthist_arr(i)7%cst_smbl
CST_EIN CST History employer identification number char(16) Al6 csthist_arr(i)%cst_ein
CST_INCORP CST History incorporation ISO country code char(4) Ad csthist_arr(i)7%cst_incorp

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 50

LINK

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
LINK link_itm%arr%link_arr(i)
LINKDT Effective date of the link record int(4) 18 link_arr(i)%linkdt
LINKENDDT Last effective date of the link record int(4) 18 link_arr(i)%linkenddt
LPERMNO CRSP PERMNO link during link period int(4) 16 link_arr(i)%Ipermno
LPERMCO CRSP PERMCO link during link period int(4) 110 link_arr(i)%Ipermco
LIID Security identifier char(4) A3 link_arr(i)%liid
LNKTYPE Link type code char(4) A4 link_arr(i)%Inktype
LINKPRIM Primary security link marker char(4) Al link_arr(i)%linkprim

LINKUSED

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
LINKUSED linkused_itm%arr%linkused_arr(i)
ULINKDT Effective date of the link int(4) 18 linkused_arr(i)%ulinkdt
ULINKENDDT Last effective date of the link int(4) 18 linkused_arr(i)%ulinkenddt
ULINKID Linkused row identifier int(4) | linkused_arr(i)%ulinkid
UGVKEY GVKEY used in the link int(4) 16 linkused_arr(i)%ugvkey
UPERMNO CRSP PERMNO link during link period int(4) 16 linkused_arr(i)%upermno
UPERMCO CRSP PERMCO link during link period int(4) 16 linkused_arr(i)%upermco
ulib Used Security ID char(4) A3 linkused_arr(i)%uiid
USEDFLAG Flag marking whether link is used in building composite record | int(4) | linkused_arr(i)%usedflag
ULINKPRIM Used link primary marker char(4) Al linkused_arr(i)%ulinkprim
ULINKTYPE Used link type char(4) A4 linkused_arr(i)%ulinktype

LINKRNG

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
LINKRNG linkrng_itm%arr%linkrng_arr(i)
RKEYSET Keyset applicable to range int(4) 18 linkrng_arr(i)%rkeyset
RCALID Calendar applicable to range int(4) 18 linkrng_arr(i)%rcalid
RBEGIND Beginning time series range of link int(4) 18 linkrng_arr(i)%rbegind
RENDIND Ending time series range of link int(4) 18 linkrng_arr(i)%rendind
RPREVIND Time series range immediately preceding the link int(4) 18 linkrng_arr(i)%rprevind
RBEGDT Beginning calendar range of link int(4) 18 linkrng_arr(i)7%rbegdt
RENDDT Ending calendar range of link int(4) 18 linkrng_arr(i)%renddt
RPREVDT Ending calendar range preceding the link int(4) 18 linkrng_arr(i)%rprevdt
RFISCAL_DATA_FLG | Type of time series, C-calendar or F-fiscal. char(8) A8 linkrng_arr(i)%rfiscal_data_flg
EFFDATE Effective date- company cumulative factor int(4) 110 linkrng_arr(i)%effdate
THRUDATE Thu date — company cumulative factor int(4) 110 linkrng_arr(i)%thrudate

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 51

ADJFACT

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
ADJFACT adjfact_itm%arr%adjfact_arr(i)
ADJEX Cumulative adjustment factor by Ex-date double(8) F18.4 adjfact_arr(i)%adjex
ADJPAY Cumulative adjustment factor by Pay-date double(8) F18.4 adjfact_arr(i)%adjpay
HGIC

CCM MNEMONIC

FIELD NAME

INTERNAL

STORAGE

DISPLAY
FORMAT

FIELD USAGE

HGIC hgic_itm%arr%hgic_arr(i)

INDFROM Effective from (start) date int(4) 18 hgic_arr(i)%indfrom

INDTHRU Effective through (last) date int(4) 18 hgic_arr(i)%indthru

GGROUPH Industry group name char(12) A12 hgic_arr(i)%ggrouph

GINDH Group industry char(12) A12 hgic_arr(i)%gindh

GSECTORH Group industry sector char(12) A12 hgic_arr(i)%gsectorh

GSUBINDH Group sub-industries char(12) Al2 hgic_arr(i)%gsubindh
OFFTITL

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT

OFFTITL offtitl_itm%arr%offtitl_arr(i)

OFID Officer ID int(4) 19 offtitl_arr(i)%ofid

OFCD Officer title char(16) A8 offtitl_arr(i)%ofcd

OFNM Officer Name(s) char(40) A39 offtitl_arr(i)%ofnm
CCM_FILEDATE

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
CCM_FILEDATE ccm_filedate_itm%arr7%ccm_filedate_
arr(i)

FDATADATE Company filing data date int(4) 18 ccm_filedate_arr(i)%fdatadate

FCONSOL Company consolidation level filedate char(2) A2 ccm_filedate_arr(i)%fconsol

FPOPSRC Population source filedate char(2) A2 ccm_filedate_arr(i)%fpopsrc

SRCTYPE Document source type filedate char(12) A12 ccm_filedate_arr(i)%srctype

FILEDATE Company filing date int(4) 18 ccm_filedate_arr(i)%filedate
CCM_IPCD

CCM MNEMONIC

FIELD NAME

INTERNAL

STORAGE

DISPLAY
FORMAT

FIELD USAGE

CCM_IPCD ccm_iped_itm%arr7ccm_iped_arr(i)
IPDATADATE Industry presentation code data date int(4) 18 ccm_iped_arr(i)%ipdatadate
IPCONSOL Level of consolidation (Industry presentation code) char(2) Al ccm_iped_arr(i)%ipconsol
IPPOPSRC Population source (Industry presentation code) char(2) Al cem_iped_arr(i)%ippopsrc

IPCD Industry presentation code char(2) Al ccm_iped_arr(i)%iped

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 52

SECURITY

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
SECURITY security_itm%arr%security_val
EXCHG Stock exchange int(4) 14 security_val%exchg
DLDTEI Security inactivation date int(4) 18 security_val%dltei
IID_SEQ_NUM 11D sequence number int(4) 18 security_val%iid_seq_num
SBEGDT First date of Compustat data for issue int(4) 18 security_val%sbegdt
SENDDT Last date of Compustat data for issue int(4) 18 security_val%senddt
IID Issue ID char(4) A3 security_val%iid
SCUSIP Cusip char(12) Al2 security_val%cusip
DLRSNI Security inactivation code char(12) A8 security_val%dlrsni
DSCI Security description char(32) A28 security_val%dsci
EPF Earnings participation flag char(4) Al security_val%epf
EXCNTRY Stock exchange country code char(4) A3 security_val%excntry
ISIN International security identification number char(16) A12 security_val%isin
SSECSTAT Security status marker char(4) Ad security_val%ssecstat
SEDOL SEDOL char(8) A7 security_val%sedol
TIC Ticker/trading symbol char(12) A8 security_val%tic
TPCI Issue type char(12) A8 security_val%tpci

SECHIST

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
SECHIST sechist_itm%arr%sechist_arr(i)
HSCHGDT Historical security change date int(4) 18 sechist_arr(i)%hschgdt
HSCHGENDDT Historical security change end date int(4) 18 sechist_arr(i)7%hschgenddt
HEXCHG Historical stock exchange int(4) 110 sechist_arr(i)%hexchg
HDLDTEI Historical security inactivation date int(4) 18 sechist_arr(i)%hdldtei
HIID_SEQ_NUM Historical issue ID sequence number int(4) 110 sechist_arr(i)%hiid_seq_num
HIID Historical issue ID char(4) A3 sechist_arr(i)7%hiid
HSCUSIP Historical CUSIP char(12) A12 sechist_arr(i)%hscusip
HDLRSNI Historical security inactivation code char(12) Al2 sechist_arr(i)%hdhdrsni
HDSCI Historical security description char(32) A32 sechist_arr(i)%hdsci
HEPF Historical earnings participation flag char(4) Ad sechist_arr(i)%hepf
HEXCNTRY Historical stock exchange country code char(4) A4 sechist_arr(i)%hexcntry
HISIN Historical international security identification number char(16) Al6 sechist_arr(i)%hisin
HSSECSTAT Historical security status marker char(4) Ad sechist_arr(i)%hssecstat
HSEDOL Historical SEDOL char(8) A8 sechist(i)%hsedol
HTIC Historical ticker/trading symbol char(12) A12 sechist_arr(i)%htic
HTPCI Historical issue type char(12) A12 sechist_arr(i)%htpci

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 53

SEC_MTHSPT

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
SEC_MTHSPT sec_mthspt_itm%arr%sec_mthspt_arr(i)
DATADATEM Monthly adjustment factor data date int(4) 110 sec_mthspt_arr(i)%datadatem
RAWPM Raw adjustment factor — pay date - monthly double(8) F18.4 sec_mthspt_arr(i)%rawpm
RAWXM Raw adjustment factor — ex date - monthly double(8) F18.4 sec_mthspt_arr(i)%rawxm

SEC_MSPT_FN

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
SEC_MSPT_FN sec_mspt_fn_itm%arr%sec_mspt_fn_

arr(i)

DATAITEMMF Monthly split footnote dataitem char(8) A8 sec_mspt_fn_arr(i)%dataitemmf
RAWPM_FN1..FN5 | Raw adjustment factor — pay date — monthly — footnotes 1-5 char(4) A4 sec_mspt_fn_arr(i)%rawpm_fnl..fn5
RAWXM_FN1..FN5 | Raw adjustment factor — ex date — monthly — footnotes 1-5 char(4) Ad sec_mspt_fn_arr(i)%rawxm_fn1..fn5

SEC_MDIV_FN
CCM MNEMONIC

FIELD NAME

INTERNAL

STORAGE

DISPLAY
FORMAT

FIELD USAGE

SEC_MDIV_FN sec_mdiv_fn_itm%arr7sec_mdiv_fn_
arr(i)
DIVDATADATEMF Monthly dividend footnote data date int(4) 110 sec_mdiv_fn_arr(i)%divdatadatemf
DIVDATAITEMMF Monthly dividend footnote data item char(8) A8 sec_mdiv_fn_arr(i)%divdataitemmf
DVPSPM_FN1..FN5 | Dividend per share — pay date — monthly — footnotes 1-5 char(4) Ad sec_mdiv_fn_arr(i)%dvpspm_fnl..fn5
DVPSXM_FN1..FN5 | Dividend per share — ex date — monthly — footnotes 1-5 char(4) A4 sec_mdiv_fn_arr(i)%dvpsxm_fn1l..fn5
SEC_SPIND
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
SEC_SPIND sec_spind_itm%arr%sec_spind_arr(i)
SPBEGDATE S&P Index event beginning date int(4) 110 sec_spind_arr(i)%spbegdate
SPENDDATE S&P Index event ending date int(4) 110 sec_spind_arr(i)%spenddate
SPHIID S&P holdings industry index ID int(4) 14 sec_spind_arr(i)%sphiid
SPHMID S&P holdings major index ID int(4) 14 sec_spind_arr(i)%sphmid
SPHSEC S&P holdings sector code int(4) 14 sec_spind_arr(i)%sphsec
SPH100 S&P holdings S&P 100 marker int(4) 14 sec_spind_arr(i)%sph100
SPHCUSIP S&P holdings CUSIP char(12) A9 sec_spind_arr(i)%sphcusip
SPHNAME S&P holdings name char(36) A3l sec_spind_arr(i)%sphname
SPHTIC S&P holdings ticker char(12) A8 sec_spind_arr(i)%sphtic
SPHVG S&P holdings value/growth indicator char(4) Al sec_spind_arr(i)%sphvg
IDXCST_HIS

CCM MNEMONIC

FIELD NAME

INTERNAL

DISPLAY FIELD USAGE

IDXCST_HIS

STORAGE

FORMAT

idxcst_his_itm%arridxcst_his_arr(i)

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 54

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
XFROM S&P constituent from event date int(4) 110 idxcst_his_arr(i)%xfrom
IDX13KEY S&P 13 character key char(16) Al3 idxcst_his_arr(i)%idx13key
XGVKETX S&P constituent event index GVKEY int(4) 110 idxcst_his_arr(i)%xgvkeyx
SPIDX_CST
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
SPIDX_CST spidx_cst_itm%arr%spidx_cst_arr(i)
SXBEGDATE S&P constituent event beginning date int(4) 110 spidx_cst_arr(i)%sxbegdate
SXENDDATE S&P constituent event ending date int(4) 110 spidx_cst_arr(i)%sxenddate
SPFLOAT S&P float shares int(4) 14 spidx_cst_arr(i)%spfloat
INDEXID S&P major index ID char(12) A10 spidx_cst_arr(i)%indexid
EXCHGX S&P constituent exchange char(8) Ad spidx_cst_arr(i)%exchgx
TICX S&P holdings ticker char(12) Al10 spidx_cst_arr(i)%ticx
CUSIPX S&P constituent CUSIP char(12) A9 spidx_cst_arr(i)%cusipx
CONMX S&P constituent name char(44) A40 spidx_cst_arr(i)%conmx
CONTYPE S&P constituent type char(12) Al10 spidx_cst_arr(i)%contype
CONVAL S&P constituent value char(12) Al10 spidx_cst_arr(i)%conval
CCM_SEGCUR
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
CCM_SEGCUR ccm_segeur_itm¥arr%segeur_arr(i)
SC_DATAYR Data year int(4) 14 segcur_arr(i)%sc_datayr
SC_DATAFYR Data fiscal year end month int(4) 12 segeur_arr(i)%sc_datafyr
SC_CALYR Data calendar year int(4) 14 segcur_arr(i)%sc_calyr
SC_SRCYFYR Source fiscal year end month int(4) 12 segeur_arr(i)%sc_srcfyr
SC_XRATE Period end exchange rate double(8) F16.8 segeur_arr(i)7%sc_xrate
SC_XRATE12 12-month moving exchange rate double(8) F16.8 segeur_arr(i)%sc_xrate12
SC_SRCCUR Source currency code char(4) A3 segeur_arr(i)7%sc_srccur
SC_CURCD 1SO currency code (USD) char(4) A3 segeur_arr(i)%sc_curcd
CCM_SEGSRC
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
CCM_SEGSRC ccm_segsrc_itm%arrJsegsrc_arr(i)
SS_SRCYR Source year int(4) 14 segsrc_arr(i)%ss_srcyr
SS_SRCFYR Source fiscal year end month int(4) 12 segsrc_arr(i)%ss_srcfyr
SS_CALYR Data calendar year int(4) 14 segsrc_arr(i)%ss_calyr
SS_RCST1 Reserved 1 int(4) 14 segsrc_arr(i)7%ss_rcstl
SS_SSRCE Source document code char(4) A2 segsrc_arr(i)%ss_ssrce
SS_SUCODE Source update code char(4) A2 segsrc_arr(i)7%ss_sucode
SS_CURCD IS0 currency code char(4) A3 segsrc_arr(i)%ss_curcd

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 55

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
SS_SRCCUR Source IS0 currency code char(4) A3 segsrc_arr(i)7%ss_srccur
SS_HNAICS Segment primary historical NAICS char(8) A6 segsrc_arr(i)7%ss_hnaics
CCM_SEGPROD
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
CCM_SEGPROD ccm_segprod_itm%arr%segprod_arr(i)
SP_SRCYR Source year int(4) 14 segprod_arr(i)7%sp_srcyr
SP_SRCFYR Source fiscal year end month int(4) 12 segprod_arr(i)%sp_srcfyr
SP_PDID Product identifier int(4) 14 segprod_arr(i)%sp_pdid
SP_PSID Segment link — segment identifier int(4) 14 segprod_arr(i)%sp_psid
SP_PSALE External revenues float(4) F10.4 segprod_arr(i)%sp_psale
SP_RCST1 Reserved 1 float(4) F10.4 segprod_arr(i)%sp_rcstl
SP_PNAICS Product NAICS code char(8) A6 segprod_arr(i)%sp_pnaics
SP_PSTYPE Segment link- segment type char(16) A83 segprod_arr(i)%sp_pstype
SP_PNAME Product name char(64) A64 segprod_arr(i)%sp_pname
CCM_SEGCUST
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
CCM_SEGCUST ccm_segcust_itm%arr%segcust_arr(i)
SC_SRCYR Source year int(4) 14 segcust_arr(i)7%sc_srcyr
SC_SRCFYR Source fiscal year end month int(4) 12 segeust_arr(i)%sc_srcfyr
SC_CDID customer identifier int(4) 14 segcust_arr(i)%sc_cdid
SC_CSID Segment link — segment identifier int(4) 14 segcust_arr(i)%sc_csid
SC_CSALE customer revenues float(4) F10.4 segcust_arr(i)7%sc_csale
SC_RCST1 Reserved 1 int(4) 14 segeust_arr(i)%sc_rcstl
SC_CTYPE Customer type char(16) A8 segcust_arr(i)7%sc_ctype
SC_CGEOCD Geographic area code char(16) A8 segcust_arr(i)%sc_cgeocd
SC_CGEOAR Geographic area type char(16) A8 segcust_arr(i)%sc_cgeoar
SC_CSTYPE Segment link — segment type char(16) A8 segcust_arr(i)%sc_cstype
SC_CNAME Customer name data char(64) A64 segcust_arr(i)7%sc_cname
CCM_SEGDTL
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
CCM_SEGDTL ccm_segdtl_itm%arr%segdtl_arr(i)
SD_SRCYR Source year int(4) 14 segdtl_arr(i)7%sd_srcyr
SD_SRCFYR Source fiscal year end month int(4) 12 segdtl_arr(i)%sd_srcfyr
SD_SID Segment identifier int(4) 14 segdtl_arr(i)%sd_sid
SD_RCST1 Reserved 1 int(4) 14 segdtl_arr(i)%sd_rcstl
SD_STYPE Segment type char(16) A8 segdtl_arr(i)%sd_stype
SD_SOPTP1 Operating segment type 1 char(16) A8 segdtl_arr(i)%sd_ctype

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 56

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
SD_SOPTP2 Operating segment type char(16) A8 segdtl_arr(i)%sd_cgeocd
SD_SGEOTP Geographic segment type char(16) A8 segdtl_arr(i)%sd_cgeoar
SD_SNAME Segment name char(256) A64 segdtl_arr(i)%sd_cname
CCM_SEGITM
CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE
STORAGE FORMAT
CCM_SEGITM ccm_segitm_itm%arr%segitm_arr(i)
SI_DATYR Data year int(4) 14 segitm_arr(i)%si_datyr
SI_FISCYR Data fiscal year end month int(4) 14 segitm_arr(i)%si_fiscyr
SI_SRCYR Source year int(4) 14 segitm_arr(i)%si_srcyr
SI_SRCFYR Source fiscal year end month int(4) 12 segitm_arr(i)%si_crsfyr
SI_CALYR Data calendar year int(4) 14 segitm_arr(i)%si_calyr
SI_SID Segment identifier int(4) 14 segitm_arr(i)%si_sid
SI_EMP Employees int(4) 19 segitm_arr(i)%si_emp
SI_SALE Net sales float(4) F10.4 segitm_arr(i)%si_sale
SI_0IBD Operating income before depreciations float(4) F10.4 segitm_arr(i)%si_oibd
SI_DP Depreciation & amortization float(4) F10.4 segitm_arr(i)%si_dp
SI_OIAD Operating income after depreciation float(4) F10.4 segitm_arr(i)%si_oiad
SI_CAPX Capital expenditures float(4) F10.4 segitm_arr(i)%si_capx
SI_IAT Identifiable assets float(4) F10.4 segitm_arr(i)%si_iat
SI_EQEARN Equity in earnings float(4) F10.4 segitm_arr(i)%si_egearn
SI_INVEQ Investments at equity float(4) F10.4 segitm_arr(i)%si_inveq
SI_RD Research & development float(4) F10.4 segitm_arr(i)%si_rd
SI_OBKLG Order backlog float(4) F10.4 segitm_arr(i)%si_obklg
SI_EXPORTS Export sales float(4) F10.4 segitm_arr(i)%si_exports
SI_INTSEG Inter-segment eliminations int(4) 14 segitm_arr(i)%si_intseg
SI_OPINC Operating profit float(4) F10.4 segitm_arr(i)%si_opinc
SI_PI Pretax income float(4) F10.4 segitm_arr(i)%si_pi
SI_IB Income before extraordinary earnings float(4) F10.4 segitm_arr(i)%si_ib
SI_NI Net income (loss) float(4) F10.4 segitm_arr(i)%si_ni
SI_RCST1 Reserved 1 float(4) F10.4 segitm_arr(i)%si_rcst1
SI_RCST2 Reserved 2 float(4) F10.4 segitm_arr(i)%si_rcst2
SI_RCST3 Reserved 3 float(4) F10.4 segitm_arr(i)%si_rcst3
SI_SALEF Footnote 1 - sales char(16) A8 segitm_arr(i)%si_salef
SI_OPINCF Footnote 2 — operating profit char(16) A8 segitm_arr(i)%si_opincf
SI_CAPXF Footnote 3 — capital expenditures char(16) A8 segitm_arr(i)%si_capxf
SI_EQEARNF Footnote 4 — equity in earnings char(16) A8 segitm_arr(i)%si_eqearnf
SI_EMPF Footnote 5 - employees char(16) A8 segitm_arr(i)%si_empf
SI_RDF Footnote 6 — research & development char(16) A8 segitm_arr(i)%si_rdf
SI_STYPE Segment type char(16) A8 segitm_arr(i)%si_stype

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 57

CCM_SEGNAICS

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
CCM_SEGNAICS ccm_segnaics_itm%arr7segnaics_arr(i)
SN_SRCYR Source year int(4) 14 segnaics_arr(i)%sn_srcyr
SN_SRCFYR Source fiscal year end month int(4) 12 segnaics_arr(i)%sn_srcfyr
SN_SID Segment identifier int(4) 14 segnaics_arr(i)%sn_sid
SN_RCST1 Reserved 1 int(4) 14 segnaics_arr(i)%sn_rcstl
SN_STYPE Segment type char(16) A8 segnaics_arr(i)%sn_stype
SN_SNAICS NAICS code char(8) A6 segnaics_arr(i)%sn_snaics
SN_RANK Ranking int(4) 14 segnaics_arr(i)%sn_rank
SN_SIC Segment SIC code int(4) 14 segnaics_arr(i)%sn_sic

CCM_SEGGEO

CCM MNEMONIC FIELD NAME INTERNAL DISPLAY FIELD USAGE

STORAGE FORMAT
CCM_SEGGEO ccm_seggeo_itm%arr%seggeo_arr(i)
SG_SRCYR Source year int(4) 14 seggeo_arr(i)%sg_srcyr
SG_SRCFYR Source fiscal year end month int(4) 12 seggeo_arr(i)%sg_srcfyr
SG_SID Segment identifier int(4) 14 seggeo_arr(i)%sg_sid
SG_RCST1 Reserved 1 int(4) 14 seggeo_arr(i)%sg_rcstl
SG_STYPE Segment type char(16) A8 seggeo_arr(i)%sg_stype
SG_SGEOCD Geographic area code char(16) A8 seggeo_arr(i)%sg_sgeocd
SG_SGEOTP Geographic area type char(16) A8 seggeo_arr(i)7%sg_sgeotp

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 58

CRSP FORTRAN 95 API FUNCTIONS

This section contains an alphabetical list of the functions defined in the CRSP Fortran 95 API. Each definition presents
the following information about a function:

e |ts prototype

e Alist of arguments
e Alist of return values
e Side effects

¢ Preconditions

CRSP_F_ITM_CLOSE

crsp_f itm close frees all item lists and item indexes, clears all calendar and key lists, closes the database, frees the
handle set, and re-initializes the item access handle itself.

PROTOTYPE: integer function crsp_f_itm_close (hndl)

ARGUMENTS: type(CRSP_ITM_HNDL_T) :: hndl -

Access handle to close.

RETURN VALUES: CRSP_SUCCESS: If the database is successfully closed and all handle data are free
CRSP_FAIL: Ifthere is an error in the parameters, inconsistent handle, error closing databases.

SIDE EFFECTS: If successful, the handle data are emptied:
¢ The database will be closed and the structure cleared.

¢ Allinternal storage allocated for this instance will be freed

PRECONDITIONS: The item handle must be previously opened with function crsp_f_itm_init.
Example:
if (crsp f itm close(hndl) == CRSP_FAIL) then
!'l-—error
print *, ‘Error-- failed to close db:’,TRIM(dbpath)
stop
endif

CRSP_F_ITM_FIND

crsp_f itm find attaches a pointer to a crRsp_1TM T item that was previously loaded. The crsp_1TM T structure describes
the data item and contains the underlying time series, array, or row data.

PROTOTYPE: integer function crsp_f_itm_find (hnd|, itm_name, keyset,itm_foundptr)

ARGUMENTS: type(CRSP_ITM_HNDL_T):: hndl -
Access handle containing the needed set structure information and the current item list.

character(*):: itm_name —
String containing the itm_name to find.

integer :: keyset —
Keyset to find

type(CRSP_ITM_T), pointer :: itm_foundptr —
User-declared pointer that will point to the data item found.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 59

RETURN VALUES: CRSP_SUCCESS: If successfully found the requested item in the given keyset.
CRSP NOT FOUND: If the itm_name and keyset combination are not available
CRSP_FAIL: If error in parameters, handle not initialized, or error searching for the item.

SIDE EFFECTS: If successful, the itm_foundptr will point to a CRSP_ITM_T item with data and information for the desired item and keyset. Otherwise
the null() will be assigned to itm_foundptr.
PRECONDITIONS: The item handle set must be initialized, loaded with a list of items, and opened.
Example:
if (crsp f itm find(hndl,’HEADER’,0,stkhdr itm) == CRSP_FAIL &
.or. crsp_f itm find(hndl,’PRC’,0,prc_itm) == CRSP FAIL &
.or. crsp_f itm find(hndl,’ADJPRC’,0,adjprc_itm) == CRSP_FAIL &
.or. crsp f itm find(hndl,’ADJSHR’,0,adjshr itm) == CRSP_FAIL &
.or. crsp f itm find(hndl,’ADJVOL’,0,adjvol itm) == CRSP_FAIL &
.0r. .not. associated(stkhdr itm) &
.or. .not. associated(prc_itm) &
.or. .not. associated(adjprc_itm) &
.0r. .not. associated(adjshr_ itm) &
.or. .not. associated(adjvol itm)) then
print *,’Error - invalid item/keyset specified’
stop
endif

CRSP_F_ITM_FIND_ITMCAL

crsp f itm find itmcal attaches a pointer to a cksp_ITM caL T item calendar that was previously loaded. The crsp
ITM CAL T structure describes a global calendar or a calendar associated with an item and contains the underlying crsp
CAL_T data.

PROTOTYPE: integer function crsp_f_itm_find_itmcal (hndl, calid, keyset,itmcal_foundptr)

ARGUMENTS: type(CRSP_ITM_HNDL_T) :: hndl — Access handle containing the needed set structure information and the current item list.

Integer :: calid —
Calendar id of the calendar to find:
e CRSP_CALID_DAILY - daily calendar

e CRSP_CALID_MONTHLY — monthly calendar
e CRSP_CALID_ANNUAL - annual calendar
e CRSP_CALID_QUARTERLY - quarterly calendar
e CRSP_CALID_SEMIANNUAL — semi-annual calendar
e CRSP_CALID_WEEKLY — weekly calendar
integer:: keyset —
Keyset of the calendar to find.

e keyset >=0 —when item-access configured with fiscal_disp_cd="C’, the calendars associated with fiscal
items will be “shifted”, based on the loaded company’s FYE.

e keyset=-1 —will request the global “non-shifted” calendar with the specified calid.

type(CRSP_ITM_CAL_T), pointer :: itmcal_foundptr —
User-declared pointer that will point to the calendar found.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 60

RETURN VALUES: CRSP_SUCCESS: If successfully found the requested item calendar in the given keyset.
CRSP NOT FOUND: If the calid and keyset combination are not available
CRSP_FAIL: If error in parameters, handle not initialized, or error searching for the item calendar.

SIDE EFFECTS: If successful, the itmcal_foundptr will point to a CRSP_ITM_CAL_T item calendar with data and information for the desired calendar
and keyset. Otherwise the null() will be assigned to itmcal_foundptr.
PRECONDITIONS: The item handle set must be initialized, loaded with a list of items, and itmed.

CRSP_F_ITM_FIND_ITMCAL_DT

crsp_f itm find itmcal dt finds the array index of a date entry in crksp_1TM CAL T item calendar.

PROTOTYPE: integer function crsp_f_itm_find_itmcal_dt (itmcal,dt,match_mode,ifound)
ARGUMENTS: type(CRSP_ITM_CAL_T), pointer:: itmcal —

Pointer to the item calendar.

integer:: dt —

Requested date to be found. Format: yyymmdd.
integer:: match_mode —
Matching mode:
e CRSP_EXACT — exact match requested
e CRSP_NEXT —if exact is not found — return next valid
e CRSP_PREV - if exact is not found — return previous valid
integer ::ifound —
Array index of the date found. When date is not found, ifound = -1

RETURN VALUES: CRSP_SUCCESS: If successfully found the requested date.
CRSP NOT FOUND: If the date is not found with the given matching mode.
CRSP_FAIL: If error in parameters, item calendar is not set or loaded.

SIDE EFFECTS: If successful, the ifound will be set to a valid array index for the caldt array attached to calendar object. The index can be used to
directly access the corresponding time-series item data values associated with this calendar.
PRECONDITIONS: The item calendar set must be initialized and loaded.

CRSP_F_ITM_GET_KEY

crsp_f itm get key retrieves key information for data loaded by a function crsp £ itm read call. An output key item
list is prepared when the key is initialized, and loaded by function crsp f itm read. This function finds the key itm
name in the list and copies ithe value into the user-specified location.

PROTOTYPE: integer function crsp_f_itm_get_key (hndl, key_itm_name,keyval)

ARGUMENTS: type(CRSP_ITM_HNDL_T):: hndl -

Access handle containing the needed set structure information and the current item list.
character(*) :: key_itm_name —

String containing an itm_name of a loaded key to be retrieved.

{integer OR type(CRSP_VARSTRING_T)}:: keyval —

Variable to accept the value of the key item. Data type must agree with the item’s type and size.

RETURN VALUES: CRSP_SUCCESS: If data loaded successfully
CRSP_FAIL: If error in parameters, handle not open, key item.

SIDE EFFECTS: If successful, the keyval is loaded based on the item and key value type.

PRECONDITIONS: The item handle must be initialized and opened. The item key array must be initialized based on a keytype with the function crsp_f_
itm_open or function crsp_f_itm_init_key functions. The key_itm_name must be a valid item for that keytype, and the keyval data
must agree with the type of that item.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 61

CRSP_F_ITM_INIT

crsp_f itm init prepares a handle for item access operation for one database and one application id. The handle will
be initialized and the database set type and set id identified, allowing loading of reference data and allocation of a set
structure.

PROTOTYPE: integer function crsp_f_itm_init(hndl, dbpath,app id, hndl_name)

ARGUMENTS: type(CRSP_ITM_HNDL_T) :: hndl -

Access handle that will be used to manage the database information and item lists.

character(*):: dbpath —

Path to database containing the data to load and the applicable reference data.

integer:: app_id -

Identifier of a defined application organizing data items into groups for access. Available app_ids can be found in the reference array,
function crsp_f_itm_ app. Common app_ids have defined constants:

e CRSP_CCMITEMS_ID — generic CCM usage application

e CRSP_DSTKITM_ID — generic Daily Stock usage application

e CRSP_MSTKITM_ID — generic Monthly Stock usage application

e CRSP_DINDITEMS_ID — generic Daily Ind Stock usage application

e CRSP_MINDITEMS_ID — generic Monthly Ind Stock usage application

character(*) :: hndl name —
Name to assign to the handle

RETURN VALUES: CRSP_SUCCESS: If initialized successfully
CRSP_FAIL: Ifthere is an error in the parameter, database cannot be opened, reference data unavailable, incompatibility between
database and app_1id.

SIDE EFFECTS: If successful, the handle data are loaded:
¢ The handle fields are initialized, including all lists and arrays.

e The ca_ref structure is loaded with the reference data in the database. If an old database with no reference
data, it will use a global reference file with a standard name based on the app_id in the CRSP_LIB directory.

e |tm_grp and itm_avail arrays in the handle are loaded with available tables and items

o Set_list element is allocated using the database path and setid. The database is opened with a 0 wanted,
which loads reference data but allocates no module space. The root information is loaded to the set’s CRSP_
ROOT_INFO_T structure.

PRECONDITIONS: The item handle object must be declared and not attached to another access instance. The app_id must exist in the reference data of
the database opened.

Example:
if (crsp f itm init (hndl,dbpath, stkappid,’stkl’) == CRSP_FAIL) then
!'l-—error
print *,’Error - failed to connect to db:’,TRIM(dbpath)
stop

endif

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 62

CRSP_F_ITM_IS_MISS_ARRVAL

crsp_f itm is miss_arrval checks if the requested element in a data object attached to the item contains a missing
value. is miss is set to . TRUE. when a missing value is detected. Only items of simple (non-structured) types are
accepted, while the item’s underlying data-object can be of structured data-type, in which case the structure offset is used
to extract the item value.

PROTOTYPE: integer function crsp_f_itm_is_miss_arrval (itm, ind, is_miss)

ARGUMENTS: type(CRSP_ITM_T),pointer :: itm —
Pointer to the data item

integer:: ind —

Index of the data array element to check
logical :: is_miss —

Pointer to the resulting flag value

RETURN VALUES: CRSP_SUCCESS: If successful, the returned value is initialized and set.
CRSP_FAIL: If error in parameters, bad item or element index is out-of-range (ignored in case of CRSP_ROW_T object)

SIDE EFFECTS: If the requested value contains a missing value, the is_miss is set to .TRUE. Otherwise .FALSE. is assigned.

PRECONDITIONS: The item has to have a valid bound data-object. Structured items are not allowed. Field items of structures are allowed.

CRSP_F_ITM_LOAD

crsp_f itm load prepares items described by a full list and loads them to an item table structure in an item handle. It
splits the full list into the global section and the list section and uses the function crsp f itm expand elem on each list
element in the list section. This will recursively expand the list elements to fill the structure and apply global qualifiers
during the process.

PROTOTYPE: integer function crsp_f_itm_load(hndl, full _list,match_flag)

ARGUMENTS: type(CRSP_ITM_HNDL_T):: hndl -

Access handle containing the needed set structure information and the current item list.
character(*):: full _list —

String describing all items to add, used on standard item notation

integer :: match_flag —
Flag setting the behavior when an item if found but not the keyset. Values are:
e CRSP_MATCH_REQUIRED (=0) — if any indicated item and keyset is not found no further items will be added,
and CRSP_NOT_FOUND returned.

e CRSP_MATCH_FILL (=1)— a dummy item will be created for any item if the item exists but the keyset does not
exist for that item in the current database.

e CRSP_MATCH_IGNORE (=2) — items will not be added if the keyset is not found, but the return remains
CRSP_SUCCESS.

RETURN VALUES: CRSP_SUCCESS: If successful, and all indicated items loaded according to match_flag
CRSP_FAIL: Error in parameters, bad list, handle not initialized, or reference data not available.

SIDE EFFECTS: If successful, the CRSP_ITM_GRPis loaded with all indicated items. A CRSP_ITM is allocated for each item/keyset pair not already
loaded. Object pointers are not set by this function.

PRECONDITIONS: The item handle set must be loaded. The item table must be initialized with an available app 1 d. The first set in the set list must
agree with the app_id.

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 63

CRSP_F_ITM_LOAD_KEY

crsp_f itm load_key defines the keytype that will be used for subsequent reads.

PROTOTYPE: integer function crsp_f_itm_load_key(hndl, keytype)

ARGUMENTS: type(CRSP_ITM_HNDL_T):: hndl -
Access handle containing the needed set structure information and the current item list.
character(*):: keytype —
Name of the key to initialize. Values are:
e gvkey — Compustat company key (default)

e gvkeyx — Compustat index key

e ccmid — gvkey or gvkeyx

e permno — CRSP permno found in any links

e permco — CRSP permco found in any links

e apermno — CRSP-centric composite records by permno

e ppermco — CRSP-centric composite records by permno — primary links only
e sic — Compustat company SIC code

e ticker — Compustat security ticker symbol

e cusip — security CUSIP

RETURN VALUES: CRSP_SUCCESS: If successful

CRSP_FAIL: Error in parameters, handle not initialized, or keytype not found.
SIDE EFFECTS: If successful, the handle is prepared to handle reads.

PRECONDITIONS: The item handle must be initialized. Keytype must be known for the app_id.

CRSP_F_ITM_OPEN

crsp_f itm open registers selected items in a handle by expanding structures and keysets, preparing keys, determining
modules needed to access items, opens the needed modules, and binds data in the item lists to the data structure
locations. It also builds a master index of all items available in the handle.

PROTOTYPE: integer function crsp_f_itm_open (hndl)

ARGUMENTS: type(CRSP_ITM_HNDL_T):: hndl -
Access handle containing the needed set structure information and the current item list.

RETURN VALUES: CRSP_SUCCESS: If opens successfully and binds the data

CRSP_FAIL: If error in parameters, inconsistent handle, error opening databases or binding items.

SIDE EFFECTS: If successful, the handle is ready for access:

e Allitems in the loaded list will have object pointer set to the data location in the set data structure.

e [fthe handle grp_fill_cd is ‘Y’, then the item lists are filled to ensure full tables. Filling creates items to ensure
that every itm_name and keyset present in a group each combination is present even if not specified. Filling
also arranges the lists so if multiple keysets, each is sorted in the same order as the first keyset seen.

PRECONDITIONS: The item handle must be previously initialized with function crsp_f_itm_init. It generally follows one or more instances of item load
function calls

Example:
if (crsp_f itm open(hndl) == CRSP_FAIL) then
!'l--error
print *,’Error - failed to open db for access’
stop
endif

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 64

CRSP_F_ITM_READ

crsp_f itm read Loads data from handle based on item keys specified in prior function crsp £ itm key calls and the
keyflag argument. Depending on the level of the entity class, the operation may include reading data from the database
into structures and/or specifying data already loaded. This allows a direct or positional read based on keyflag.

If the value of the access handle property fiscal disp cd is “C”, any fiscal-based time series are shifted to a calendar
basis as part of the read operation.

PROTOTYPE: integer function crsp_f_itm_read (hndl, keyflag, key_status)

ARGUMENTS: type(CRSP_ITM_HNDL_T):: hndl -
Access handle containing the needed set structure information and the current item list.
integer :: keyflag —
Code determining how the key is interpreted.
e CRSP_EXACT - look for a specific value,

e CRSP_BACK or CRSP_FORWARD - direct selection when partial matches are allowed, or a positional qualifier
to base selection on the position relative to the last key accessed.

e CRSP_NEXT (=-99) — read next key in sequence
e CRSP_PREV (=-96) — read previous key in sequence
e CRSP_SAME (=-98) — read same key, possibly with different information
® CRSP_FIRST (=-95) - read first key in the database
e CRSP_LAST (=-97) — read last key in the database
integer :: key_status —
User provided variable to load with the level of the read. It will be loaded with a 0 if the load results in reading new master data. It will
be loaded with a number greater than 0 if the load impacts detail or global data, but no master data are affected.
RETURN VALUES: CRSP_SUCCESS: If data loaded successfully
CRSP_EOF: If positional read reaches the end of the file
CRSP_NOT_FOUND: If key not found on exact read. If a detail input key is not provided and no items of that entity class are selected,

the return is CRSP_SUCCESS as long as the primary key matches.
CRSP_FAIL: If error in parameters, handle not opened, error in read operations.

SIDE EFFECTS: If successful, the wanted data for the key are loaded into the handle set structure which allows item objects to point to the loaded
data. The key found for each level is loaded into the outkey item list. If the handle fiscal_disp_cd is set to calendar-based and items
are fiscal-based, shifted calendars are created and time series are converted to calendar basis. The status argument is loaded

bhased on whether the primary key changed. Handle primkey field and readIvl are set. readlvl is set to the rank of the first entity class
changed. If the primary key changed, getlvl is set to 0.

PRECONDITIONS: The item handle must be initialized and opened. The item key must be initialized based on the key type, key element, and the entity
class. If not a positional qualifier, the item key inpkey list must be loaded.

Example:

sts = crsp f itm read(hndl,CRSP EXACT, key sts)

if (sts == CRSP_FAIL) then
got_db_error = .true.
print *,’Error - failed to read db for key:’,key
exit

endif

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 65

CRSP_F_ITM_SET_KEY

crsp_f itm set key loads key information that will be used to load data in a function crsp £ itm read call. The key is
setup during the function crsp £ itm open based on the active keytype. The value passed to this function is entered into
the handle attached to the input key item.

PROTOTYPE: integer function crsp_f_itm_set_key (hndl, key_itm_name, keyval)

ARGUMENTS: type(CRSP_ITM_HNDL_T):: hndl -

Access handle containing the needed set structure information and the current item list.
character(*):: key_itm_name —

String containing an itm_name of an input key item to be loaded.

{integer OR type(CRSP_VARSTRING_T)}:: keyval —

Data to be loaded into the key item. Data must agree with the key item’s type.

RETURN VALUES: CRSP_SUCCESS: If data loaded successfully

CRSP_FAIL: If error in parameters, handle not open, key item.

SIDE EFFECTS: If successful, the keyval is copied into the data location for the input key item element in the handle.

PRECONDITIONS: The item handle must be initialized and opened. The item key array must be initialized based on a keytype with the function crsp_f_

itm_open or function crsp_f_itm_init_key functions. The key_itm_name must be a valid item for that keytype, and the keyval data
must agree with the type of that item.

Example:

if (crsp f itm set key(hndl,’KYPERMNO’, key) == CRSP FAIL) then
'l-- error
print *,’Error - failed to set key:’, key
stop

endif

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 66

REFERENCE INFORMATION
CRSP FORTRAN 95 API DATA TYPES

All derived types used in the CRSP Fortran 95 API are defined in the module crsp_f_itm_types. They are included in user
programs automatically through the use of crsp_f_itm_lib module.

Note: This document lists only selected properties of the defined types that are relevant in the user-scope of item-based
access. The full individual definitions of the specific Fortran 95 derived types can be referenced from the respective
include source files. These files are already included in the crsp_f_itm_lib module and an explicit include statement is
not necessary to use the defined types in your programs. The supplied CRSP Fortran 95 API include files are listed in the

following table:

DESCRIPTION
CRSP CCM/Compustat specific data types

PLATFORM/LOCATION FILE
Windows 32-bit crsp_itm_ccm_types.inc
Windows 64-bit crsp_itm_stk_types.inc

CRSP Stock specific data types

%CRSP_INCLUDE% o .
crsp_itm_ind_types.inc

CRSP Index specific data types

crsp_itm_gen_types.inc

CRSP generic data types used in all supported data sets

Data types used in context of item-access

SunOS sparc

Sun0S i86pc crsp_itm_types.inc
Linux 32-bit crsp_itm_params.inc
Linux 64-hit

$CRSP_INCLUDE

Declarations of constant parameters used.

To use the CRSP Fortran 95 API library in your program simply include a ‘use’ statement for the top-level module crsp_f_
itm_lib. All of the required underlying modules will be included automatically. The supplied CRSP Fortran 95 APl module

files are listed in the following table:

DESCRIPTION
CRSP Fortran 95 itm-API user-level module

PLATFORM/LOCATION FILE
Windows 32-bit crsp_f_itm_lib.mod
Windows 64-bit crsp_f_varstring.mod

%CRSP_INCLUDE%\mod

CRSP implementation of varying-length string (CRSP_VARSTRING_T Fortran 95 derived
type)

crsp_f_itm_utils.mod

Implementations of CRSP itm-APl interfaces

Fortran 95 derived types used in context of CRSP Fortran 95 itm-API

SunOS sparc

Sun0S i86pc crsp_f_itm_types.mod
$CRSP_INCLUDE/mod crsp_f_itm_xfer.mod
Linux 32-hit

Linux 64-bit

$CRSP_INCLUDE/mod
$CRSP_INCLUDE/mod_g95

Internal functions and types for CRSP Fortran 95/C exchange layer

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 67

CONTAINER OBJECTS

CRSP container objects are used to uniformly define the storage for various CRSP data types. Generally, the container’s
data is stored in the associated Fortran 95 array, except in the case of the CRSP_ROW_T container, where the storage
is allocated for an Fortran 95 scalar of the specified data type. The associated storage array is externally allocated with
0-based array bounds.

The CRSP time-series object has an associated calendar of the CRSP_CAL_T object type which is aligned with the time-
series data array, attributing the date to the values stored in the time-series array.

CRSP calendar data is stored in the CRSP_CAL_T container object, which defines the loaded calendar and also stores the
actual calendar data of the defined type. In the context of the CRSP Fortran 95 API, the calendars associated to the time-
series items are of day date-type and are accessed with caldt array.

Each container (except CRSP_ROW_T) has a defined availability range, with missing values set beyond the defined range.
The missing value is specific to the data type of the stored data and is located at the pre-defined array index position.

Properties of the CRSP container object types are listed in the following tables:

CRSP_TS_T

CRSP time-series container object

NAME FORTRAN 95 TYPE DESCRIPTION

objtype integer Object type id (CRSP_TS_QTID)

arrtype integer Type id of the data stored in the container

subtype integer Subtype id of the data stored in the container

maxarr integer Maximum bound for the storage array (index is 0-based)
beg integer Lower index of the available stored data

end integer Upper index of the available stored data

caltype integer Calendar type of the associated calendar object

cal CRSP_CAL_T Pointer to associated calendar object

miss_val_at=10 Array index of the missing value for the stored data type

CRSP_ARRAY_T

CRSP array container object

NAME FORTRAN 95 TYPE DESCRIPTION

objtype integer Object type id (CRSP_ARRAY_0TID)

arrtype integer Type id of the data stored in the container

subtype integer Subtype id of the data stored in the container

maxarr integer Maximum bound for the storage array (index is 0-based)
num integer Upper index of the available stored data (index is 0-based)
miss_val_at = maxarr - 1 Array index of the missing value for the stored data type

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 68

CRSP_ROW_T

CRSP row container object

NAME FORTRAN 95 TYPE DESCRIPTION

objtype integer Object type id (CRSP_ROW_QTID)

arrtype integer Type id of the data stored in the container

subtype integer Subtype id of the data stored in the container
CRSP_CAL_T

CRSP calendar container object

NAME FORTRAN 95 TYPE DESCRIPTION
objtype integer Object type id (CRSP_CAL_QTID)
calid integer Id code of the loaded calendar:
e CRSP_CALID_DAILY
e CRSP_CALID_MONTHLY
e CRSP_CALID_ANNUAL
e CRSP_CALID_QUARTERLY
e CRSP_CALID_SEMIANNUAL
e CRSP_CALID_WEEKLY
maxarr integer Maximum bound of the date storage array
gmtoffset integer Minutes offset from GMT
timezone integer Code for time zone GMT
relflag integer If beg and end absolute or relative
beg integer Valid range subset begin
end integer Valid range subset end
ndays integer Number of periods in calendar
name character(LEN=CRSP_NAMESIZE) Calendar name
caldt integer,dimension(:) Array of the available day dates (yyyymmdd) in the calendar

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 69

SUPPORTING TYPES

The CRSP Fortran 95 itm-API supporting types provide additional information about data items and other associated
objects in the context of item-based access. An item object is usually associated to a keyset and calendar (in case of time-
series items). The details of the keyset (when non-zero) and calendar are given in the CRsp_ITM KEYSET T and CRSP_ITM

caL T derived types.

Additionally, the details of the current CRSP data set (such as set name, product name, version, etc.) are provided in the

CRSP_ITM SET T and CRSP_ROOT INFO T derived types.

The relevant fields of the supporting types are listed in the

CRSP_ITM_INFO_T

Item detail information

following tables:

NAME FORTRAN 95 TYPE DESCRIPTION

itm_name character(LEN=CRSP_NAME_LEN) Item mnemonic name
dflt_keyset integer Default keyset

full_name character(LEN=CRSP_NAMESIZE) Full non-mnenonic name
itm_type character(LEN=CRSP_TYPE_LEN) Type of data item

derv_flg character(LEN=CRSP_TYPE_LEN) Item is stored/derived

unit_type character(LEN=CRSP_CODE_LEN) Type of units (money, ratio)
unit_mult double precision Multiplier to get actual value
cat_type character(LEN=CRSP_CODE_LEN) Category (BS, IS, CF, MKT)
src_type character(LEN=CRSP_CODE_LEN) Source (filing, market)
freq_type character(LEN=CRSP_TYPE_LEN) Reporting frequency type
disp_fmt character(LEN=CRSP_ITEMNAME_LEN) | Display format specifier
disp_len integer Field width for formatted output
disp_precn integer Number of decimal places in output
ca_data_size integer Internal length

ca_arrtype integer Internal structure it belongs
ca_subtype integer Internal data sub type
subno_type integer Type of variant id

epsflag integer Epsilon type/digits for diffs
cepsflag integer Epsilon type for character(LEN=diffs)
epsilon double precision Absolute epsilon for diffs

desc character(LEN=CRSP_DESC_LEN) Default description for field

CRSP_ITM_KEYSET_T

Keyset descriptor

NAME FORTRAN 95 TYPE DESCRIPTION

keyset integer Keyset number

is_loaded logical True when items where requested with this keyset
keyset_info CRSP_KEYSET_T Information about the keyset

items_arr CRSP_ARRAY_T CRSP array container definition for keyset composing items
items CRSP_ITM_T,dimension(:) Array of the items composing the keyset

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 70

CRSP_ITM_CAL_T

Calendar descriptor

NAME FORTRAN 95 TYPE DESCRIPTION
calid integer Calendar ID
keyset integer Keyset number
keyset = -1 for global base calendars (non-shifted)
is_shifted loigcal True if the calendar day dates were shifted based on company’s FYE
calcd character(LEN=CRSP_CALCD_LEN) Base calendar name
freqed character(LEN=CRSP_CHAR_STRSIZE) | Frequency code of the calendar
cal CRSP_CAL_T, pointer Pointer to CRSP calendar container object
CRSP_KEYSET_T
Keyset information
NAME FORTRAN 95 TYPE DESCRIPTION
keyset integer Keyset number
keyset_tag character(LEN=CRSP_NAME_LEN) Keyset tag name
desc character(LEN=CRSP_DESC_LEN) Keyset description
CRSP_ITM_SET_T
Data set descriptor
NAME FORTRAN 95 TYPE DESCRIPTION
set_name character(LEN=CRSP_NAME_LEN) Keyset number
path character(LEN=CRSP_PATHSIZE) Keyset tag name
root_info CRSP_ROOT_INFO_T Database root information

CRSP_ROOT_INFO_T

Database root information

NAME FORTRAN 95 TYPE DESCRIPTION
product_name character(LEN=CRSP_PROD_NAMESIZE) | Database name
product_code character(LEN=CRSP_CODE_NAMESIZE) | Database code

version integer Version number of db

crt_date character(LEN=CRSP_DATE_SIZE) Dates are Dow Mon DD HH:MM:SS YYYY
mod_date character(LEN=CRSP_DATE_SIZE) Last modification date of db

cut_date character(LEN=CRSP_DATE_SIZE) Cut date of db

binary_type character(LEN=CRSP_CHAR_STRSIZE) | L (IEEE little-endian) or B (big)
code_version character(LEN=CRSP_OS_NAMESIZE) CA97 version

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN

PAGE 71

CRSP_VARSTRING_T TYPE

The varying-length string Fortran 95 derived type cRsp_vARSTRING T allows for flexible use of expandable character strings
and complements the standard fixed-length Fortran 95 character type. The VARSTRING T string can be constructed from
and converted into a regular fixed-length string. The internals of the derived type handle the necessary storage allocation
and provide public functions for basic string-related operations.

The crsp_VARSTRING T derived type is implemented in a separate module, crsp_f varstring. This module is
automatically included in the crsp £ itm types module and is available to programs using the CRSP Fortran 95 API.

FORTRAN 95 MODULE DESCRIPTION
crsp_f_varstring CRSP_VARSTRING_T varying-length character string

ASSIGNMENT (=)

This interface extends the built-in assignment operator. It allows for construction, assignment, and conversion of a varying-
length string, which are handled by internal elemental functions.

INTERFACE: assignment(=)

left = right

ARGUMENTSI: type(CRSP_VARSTRING_T):: left
type(CRSP_VARSTRING_T):: right
ARGUMENTS2: type(CRSP_VARSTRING_T):: left
character(*) :: right

ARGUMENTS3: character(*):: left
type(CRSP_VARSTRING_T) :: right

RETURN VALUES: None

SIDE EFFECTS: Left variable gets assigned the value of the right variable.

The left CRSP_VARSTRING_T variable will be re-initialized to accommodate the string value on the right.
PRECONDITIONS: Available heap memory necessary for dynamic allocation of the internal string storage.

EXAMPLE: type(CRSP_VARSTRING_T) ::vstr1, vstr2

character(LEN=10):: fixstr = 1235’

vstrl = ‘TEST’

vstr 2 = fixstr
vstrl = vstr2

LEN

len extends the intrinsic LEN () function to operate on CRsp_VARSTRING T strings. It returns the current allocated length
of the stored string.

INTERFACE: LEN(vstr)
ARGUMENTS: type(CRSP_VARSTRING_T) :: vstr

RETURN VALUES: integer :: len —
Length of the stored string. If string is not allocated, returned len=0.

SIDE EFFECTS: None
PRECONDITIONS: None

EXAMPLE: type(CRSP_VARSTRING_T) ::vstr
integer:: len

vstr = ‘TEST’

len = LEN(vstr)

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 72

TRIM

trim extends the intrinsic TRIM () function to operate on CRSP_VARSTRING T strings. It returns a [right] blank-trimmed
stored string as a fixed-length string.

INTERFACE: TRIM(vstr)
ARGUMENTS: type(CRSP_VARSTRING_T):: vstr
RETURN VALUES: character(*):: fixstr -
Fixed-length string resulting from the stored string with blanks trimmed from the right side.
SIDE EFFECTS: None
PRECONDITIONS: None
EXAMPLE: type(CRSP_VARSTRING_T) ::vstr

character(LEN=10) :: fixstr

fixstr="TEST’ !'is blank-padded to allocated length
vstr = fixstr

print *,"trimmed_str:[’, TRIM(vstr),’T

CHAR

Explicitly converts the stored string into fixed-length string. char is often used on string arguments to output statements
(such as PRINT and WRITE).

INTERFACE: CHAR(vstr)
ARGUMENTS: type(CRSP_VARSTRING_T) :: vstr
RETURN VALUES: character(*) :: fixstr —

Fixed-length string from the stored string
SIDE EFFECTS: None
PRECONDITIONS: None
EXAMPLE: type(CRSP_VARSTRING_T) ::vstr

vstr = ‘TEST'

print *,'vstr:[",CHAR(vstr),'T’

CRSP_F_VSTR_FREE

crsp_f vstr_ free frees the internally allocated heap storage. It is expected to be called by the user when the crsp
VARSTRING T variable goes out of its scope of use, so that the allocated memory is released back to the process heap.

PROTOTYPE: pure subroutine crsp_f_vstr_free (str,stat)
ARGUMENTS: type(CRSP_VARSTRING_T):: vstr
integer, optional :: stat —

Error code to indicate status of the operation:
e stat=0- SUCCESS

e stat =non-zero — FAILED

RETURN VALUES: None

SIDE EFFECTS:

PRECONDITIONS: None

EXAMPLE: type(CRSP_VARSTRING_T) ::vstr
integer:: errcd
vstr = ‘TEST’

call crsp_fvstr_free(vstr,stat=errcd)
if (errcd /= 0) stop

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 73

CRSP_F_VSTR_INIT

crsp_f vstr_init reserves internal storage to hold a string of the specified length and initializes the reserved string with
blanks. Normally an explicit call to this function is not required from user programs, as it is called internally by the defined
assignment operators.

PROTOTYPE: pure subroutine crsp_f_vstr_init (str,len, stat)

ARGUMENTS: type(CRSP_VARSTRING_T):: vstr—
resulting varying-length string

integer,intent(in) :: len —
Reserved length of the string

integer, optional :: stat —
Error code to indicate status of the operation:
e stat=0- SUCCESS

e stat = non-zero — FAILED

RETURN VALUES: None
SIDE EFFECTS: The error code is set to the stat variable when passed as argument.

PRECONDITIONS: Available heap memory necessary for dynamic allocation of the internal string storage.

EXAMPLE: type(CRSP_VARSTRING_T) ::vstr
integer :: errcd

call crsp_fvstr_init(vstr, 10, stat=errcd)
if (errcd /= 0) stop

CRSP PROGRAMMER'S GUIDE | ITEM ACCESS IN FORTRAN PAGE 74

CHAPTER 4: ITEM-BASED SAMPLES

BUILDING AND EXECUTING PROGRAMS

The CRSP APl includes a variety of sample programs illustrating item-based access to CRSP databases from Fortran 95
programs. This section describes the sample programs and shows you how to build and execute them on the Windows XP,

Sun Solaris, and Linux platforms.

Before creating your own programs, it is a good idea to first build and execute one or more of these sample programs.
Besides illustrating CRSP APl programming techniques, the sample programs have been tested and debugged by CRSP. If
you can successfully run them, then you know your programming environment is correctly configured.

The following table lists the supplied sample programs, organized by database.

FORTRAN ITEM-BASED SAMPLE PROGRAMS

CRSP DATABASE SAMPLE PROGRAMS MAKE FILE/ PLATFORM .EXT
CRSP/Compustat Merged | ccmitm_fsamp1.f90 —Sequential item-access to CRSP Compustat dataset Windows / SunOS /Linux Lahey Fortran 95/
Database ccmitm_fsamp2.f90 —Direct item-access to CRSP Compustat dataset by GVKEY list Linux G95\
ccmitm_fsamp3.f90 —Direct item-access to CRSP Compustat securities data by GVKEY.IID | £95 samp ccm.mak / .mk/ .mk5
ccmitm_fsamp4.f90 —Use of CRSP Link for Compustat, item-access by CRSP permno. / .mkgh
CRSP US Stock Database | stkitm_fsamp1.f90 —sequential item-access to CRSP Stock dataset. Windows / SunOS /Linux Lahey Fortran 95/
stkitm_fsamp2.f90 —direct item-access to CRSP Stock dataset by CRSP permno. Linux G95
stkitm_fsamp4.f90 —use of regular and derived data-items for CRSP Stock dataset. f95 samp stkitm.mak / .mk/
.mk5 / .mkgh
CRSP US Index Database | inditm_fsamp1.f90 —sequential item-access to CRSP Stock & Index Database. Windows / SunOS /Linux Lahey Fortran 95/
inditm_fsamp2.f90 —direct item-access to CRSP Stock Ind dataset by CRSP indno. Linux G95
£95 samp_ inditm.mak / .mk/
.mk5 / .mkgb

C ITEM-BASED SAMPLE PROGRAMS

Reads CRSP SIZ database
sequentially by PERMNO

SKTITM_SAMP1.C

Stkitm_samp1.c by default reads all securities in a CRSP Stock database sequentially and creates
an output file with one header line per security.

LR A Reads CRSP Stock database directly
using an input file of PERMNOs or

file of CUSIPs, as indicated.

stkitm_samp2.c reads an input file of PERMNOSs or file of CUSIPs and loads data from a CRSP Stock
database for each input key. It creates an output file with one header line per record. If an input key is not
found in the CRSP Stock database, a message is printed to the screen and no processing is done.

This program loads data for selected records. Other sample programs are available that can process a
CRSP Stock database sequentially.

STKITM_SAMP4.C

Reads CRSP Stock database directly
using an input file of PERMNOs or
file of CUSIPs, as indicated. Shows
access to derived items.

stkitm_samp4.c reads an input file of PERMNOs or file of CUSIPs and loads data from a CRSP Stock
database for each input key. It creates an output file with one header line per record. If an input key is not
found in the CRSP Stock database, a message is printed to the screen and no processing is done.

This program loads data for selected records. Other sample programs are available that can process a
CRSP Stock database sequentially.

PAGE 75

API ENVIRONMENT

Environment Variables

The CUPL installation process sets a number of environment variables pointing to the locations of modules, include and
library files, as well as sample programs. The values of these environment variables are given in the following table, broken

down by platform.

FORTRAN
PLATFORM F95 MODULES (*.MQOD) F95 INCLUDES (*.INC) F95 LIBRARY F95 SAMPLES
(*F90)
Windows 32- and 64-bit %CRSP_INCLUDE?%\mod %CRSP_INCLUDE% %CRSP_LIB% %CRSP_SAMPLE%
Sun Solaris - Ultra Sparc - 64-bit | $CRSP_INCLUDE/mod $CRSP_INCLUDE $CRSP_LIB $CRSP_SAMPLE
Red Hat Linux 32- and 64-hit (95 0.91 complier: $CRSP_INCLUDE $CRSP_LIB $CRSP_SAMPLE
$CRSP_INCLUDE/mod_g95

c
PLATFORM C MODULES (*.MOD) C INCLUDES (*INC) C LIBRARY C SAMPLES
Windows 32- and 64-bit %CRSP_INCLUDE%\mod %CRSP_INCLUDEZ% %CRSP_LIB% %CRSP_SAMPLE?%
Sun Solaris - Ultra Sparc - 64-bit | $CRSP_INCLUDE/mod $CRSP_INCLUDE $CRSP_LIB $CRSP_SAMPLE
Red Hat Linux 32- and 64-bit G95 0.91 complier: $CRSP_INCLUDE $CRSP_LIB $CRSP_SAMPLE
$CRSP_INCLUDE/mod_g95

Compiler Options

Platform-specific Fortran 95 compiler options used with Fortran 95 CRSP API are listed in the table below. Refer to the
CRSPAccess Release Notes for specific versions of the supported Fortran 95 compilers.

FORTRAN
PLATFORM FORTRAN 95 COMPILER OPTIONS

Windows 32- and 64-bit Intel VisualFortran 2011/ParallelStudio XE
ifort /Qvec- /I %CRSP_INCLUDE% /I %CRSP_INCLUDE?%\mod

Sun Solaris - Ultra Sparc - 64-bit | Sun Fortran-95 8.2:
195 -w -xtarget=generic64 -ext_names=plain -I§CRSP_INCLUDE -M$CRSP_INCLUDE/mod -KPIC

Red Hat Linux 32- and 64-bit G950.91
295 -w -I$CRSP_INCLUDE -I$CRSP_INCLUDE/mod_g95

PLATFORM C COMPILER OPTIONS

Windows 32- and 64-bit MS Visual Studio C++ 2008 & 2010
Sun Solaris - Ultra Sparc - 64-hit | Sun C 5.8, part of SunStudio 11
Red Hat Linux 32- and 64-bit Gee4d.1.2

|

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 76

LIBRARIES

Platform-specific libraries and options for linking with CRSP API are listed in the table below:

FORTRAN
PLATFORM FORTRAN 95 COMPILER OPTIONS
Windows 32- and 64-bit Intel VisualFortran 2011/ParallelStudio XE

%CRSP_LIB%\crsp_lib_f95.lib %CRSP_LIB%\crsp_lib.lib

Sun Solaris - Ultra Sparc - 64-bit | Sun Fortran-95 8.2:
$CRSP_LIB/crsplib_f95.a $CRSP_LIB/crsplib.a -Im —Insl

Red Hat Linux 32- and 64-bit G950.91
$CRSP_LIB/crsplib_g95.a $CRSP_LIB/crsplib.a -Im

c
PLATFORM FORTRAN 95 COMPILER OPTIONS

Windows 32- and 64-bit Intel VisualFortran 2011/ParallelStudio XE
%CRSP_LIB%\crsp_lib_c.lib %CRSP_LIB%\crsp_lib.lib

Sun Solaris - Ultra Sparc - 64-bit | Sun Fortran-95 8.2:
$CRSP_LIB/crsplib_c.a $CRSP_LIB/crsplib.a -Im —Ins|

Red Hat Linux 32- and 64-bit G950.91
$CRSP_LIB/crsplib_g95.a $CRSP_LIB/crsplib.a -Im

SUN SOLARIS

CRSP currently supports Sun Sparc Solaris 2.9/5.9 with the Forte Developer 7.0, Fortran 95 7.0, and Sun x86 Solaris
2.9/5.9.

Fortran was compiled and tested using the above compiler. Fortran library functions interface with C functions in the CRSP
object library. Ordinary sample Fortran usage links to the object library, but does not require compiling C programs.

CRSP access depends on environment variables set during installation. Environment variables can be used on Unix with the
name preceded by the $ symbol. All file names and environment variable names are case sensitive on Unix systems. The
env command can be used in a terminal window to find available environment variables.

Important CRSP files or directories can be found with the following names:

$CRSP_BIN Directory containing executable programs and shell scripts files. This directory is in the PATH so programs can be run from any
directory. Executable versions of the sample programs can be found in this directory.

$CRSP_LIB Directory containing CRSP object library and internal files.

$CRSP_LIB/crsplib.a CRSP C object library.

SCRSP_LIB/crsplib £95.a CRSP F95 object library.

$CRSP_INCLUDE Directory containing CRSP FORTRAN header files referred to by INCLUDE statements.

$CRSP_SAMPLE Directory containing CRSP sample programs.

$CRSP_MSTK Directory containing monthly CRSP stock and index databases.

$CRSP_DSTK Directory containing daily CRSP stock and index databases.

$CRSP_CST Directory containing CRSP Link and COMPUSTAT database.

$CRSP_WORK Directory created to hold user-generated files

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 77

SUN FORTRAN 95 8.2
Command line

> cp $CRSP_SAMPLE/stkitm fsampl.f90 .
> chmod 660 stkitm fsampl.f90

In Sun Sparc Solaris 2.9/5.9:

> £95 -w —-xarch=v9 -ext names=plain -ISCRSP_INCLUDE -KPIC -o stkitm fsampl stkitm fsampl.f90 SCRSP_
LIB/crsplib f95.a $CRSP_LIB/crsplib.a

In Sun x86 Solaris 2.9/5.9:

> f95 -w -xtarget=generic64 -ext names=plain -I$CRSP INCLUDE -KPIC -o stkitm fsampl stkitm fsampl.
£90 $CRSP_LIB/crsplib £95.a $CRSP LIB/crsplib.a

To run the program:

> ./stkitm fsampl

Sample programs can also be compiled and linked using the make utility. The sample program directory SCRSP SAMPLE
contains sample make description files for Sun Solaris in £95 samp.mak. To use make, copy the relevant description file to
your program directory, edit it to support the program(s) of interest and create local executables.

using a Make file:
To compile a specific sample program:

> make —-f f95 samp.mk stkitm fsampl

To compile all sample programs:

> make —-f f95 samp.mk

To run the program:

> ./stkitm fsampl

LINUX

CRSP currently supports Linux, Red Hat 7.2 (32-bit) and RHEL5 (64-bit) on Intel x86. FORTRAN was compiled and tested
using the Lahey Fortran 95 Version 6.2 (32-bit) and the g95 Version 0.091 32- and 64-bit compilers. Fortran library
functions interface with C functions in the CRSP object library. Ordinary sample Fortran usage links to the object library,
but does not require compiling C programs.

CRSP access depends on environment variables set during installation. Environment variables can be used on Linux with
the name preceded by the $ symbol. All file names and environment variable names are case sensitive on Linux systems.
The env command can be used in a terminal window to find available environment variables.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 78

Important CRSP files or directories can be found with the following names:

$CRSP_BIN Directory containing executable programs and shell scripts files. This directory is in the PATH so programs can be run from any
directory. Executable versions of the sample programs can be found in this directory.
$CRSP_LIB Directory containing CRSP object library and internal files.

SCRSP_LIB/crsplib.a

CRSP object library.

$CRSP_LIB/crsplib £95.a

CRSP F95 object library.

$CRSP_INCLUDE

Directory containing CRSP Fortran header files referred to by INCLUDE statements.

$CRSP_SAMPLE

Directory containing CRSP sample programs.

$CRSP_MSTK Directory containing monthly CRSP stock and index databases.
$CRSP_DSTK Directory containing daily CRSP stock and index databases.
$CRSP_CST Directory containing CRSP Link and COMPUSTAT database.
$CRSP_WORK Directory created to hold user-generated files

Following is an example of modifying and running a sample FORTRAN program:

G95 Ver. 0.91 32- and 64-bit

Command line:

> cp $CRSP_SAMPLE/stkitm fsampl.f90

> chmod 660 stkitm fsampl.f90

> g95 -o stkitm fsampl -w stkitm fsampl.f90 -ISCRSP_INCLUDE SCRSP_LIB/crsplib.a $CRSP_LIB/crsplib

f95.a “find /usr/local -name 1ibf95.a 2>&1 | grep libf95\.a -1m

To run the program:

> ./stkitm fsampl

Using a Make File:

The sample program directory $CRsp_SAMPLE contains sample make description files for Linux in £95 samp.mkg5 for the
g95 compiler. To use the make file, copy the relevant description file to your program directory, and edit it to support the
program(s) of interest and create local executables.

To compile specific sample program:

> make —-f £95 samp.mkg5 stkitm fsampl

To compile all sample programs:

> make —-f £95 samp.mkg5

To run the program:

> ./stkitm fsampl

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 79

USING THE CRSP FORTRAN 95 API

When you have ascertained that you can successfully compile and execute the provided sample programs, you are ready to
begin creating your own programs. This section illustrates the general flow of CRSP API programs and discusses the data
objects you will use when accessing CRSP Databases from Fortran 95.

SAMPLE APl PROGRAM FLOW

CRSP Fortran 95 API client applications are structured according to the following steps. The code snippets shown below
are excerpted from the stkitm fsamp4.£90 sample program included with the API.

1.

Include a ‘use’ statement for the crsp £ itm 1ib module. This step makes APl functions and constants available
from within your program.

use crsp f itm 1lib

Declare the item-access handle:

type (CRSP_ITM HNDL T) :: hndl

Declare pointers to item objects to be used in your program:

type (CRSP_ITM T),pointer :: stkhdr itm => null(), &
prc_itm => null(), &
adjprc_itm => null(), &
adjshr itm => null(), &

adjvol itm => null ()

Connect to a CRSP database for item-access. Specify database root and the available item-set app_id. :

if (crsp f itm init (hndl,dbpath, stkappid,’stkl’) == CRSP_FAIL) then

!'l——error
print *,’Error - failed to connect to db:’,TRIM(dbpath)
stop

endif

Select the wanted items to be loaded into active item set. Multiple calls to crsp_f_itm_load are allowed and have
expanding effect on the item selection, while without the selected item duplication.

sts=crsp f itm load(hndl,’STKHDR ALL’,CRSP MATCH IGNORE)
if (sts == CRSP_FAIL .or. sts == CRSP NOT FOUND) then

!'l-—error
print *,’Error - failed to load the requested data items (DSTK:1)’
stop

endif

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 80

sts=crsp f itm load(hndl,’DSTK TS;ADJPRC;ADJSHR;ADJVOL’,CRSP MATCH IGNORE)
if (sts == CRSP_FAIL .or. sts == CRSP_NOT FOUND) then

!'l——error
print *,’Error - failed to load the requested data items (DSTK:2)’
stop

endif

6. Configure the item-access if needed by setting any of the access configuration codes in the access handle, eg:

hndl%fiscal disp cd = ‘F’

See CRSP Fortran 95 API Data Objects on “CRSP Fortran 95 API Data Objects” on page 31 for the details of access
handle properties.

7. Open the item-access to the selected CRSP dataset:

if (crsp f itm open(hndl) == CRSP_FAIL) then
!'l--error
print *,’Error - failed to open db for access’
stop

endif

8. Attach the user-declared item pointers to the loaded items. Specify the item name and keyset:

if (crsp f itm find(hndl,’HEADER’,0,stkhdr itm) == CRSP FAIL &
.or. crsp_f itm find(hndl,’PRC’,0,prc_itm) == CRSP_FAIL &
.or. crsp f itm find(hndl,’ADJPRC’,0,adjprc_itm) == CRSP_FAIL &
.or. crsp_ f itm find(hndl,’ADJSHR’,0,adjshr itm) == CRSP_FAIL &
.or. crsp f itm find(hndl,’ADJVOL’,0,adjvol itm) == CRSP_FAIL &
.or. .not. associated(stkhdr itm) &
.0Tr. .not. associated(prc_itm) &
.or. .not. associated(adjprc_itm) &
.0r. .not. associated(adjshr itm) &
.or. .not. associated(adjvol itm)) then
!'l-—error
print *,’Error - invalid item/keyset specified’
stop

endif

Note: Only previously loaded items can be found. If an item is not being found, first make sure the requested item has
been loaded in the requested keyset explicitly or implicitly through a collective item group.

9. Load the primary access key if different from a defined default.

if (crsp f itm load key(hndl,’permno’) == CRSP FAIL) then
!'l--error
print *,’Error - failed to load index for key:’,’permno’

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 81

stop

endif

10. In case of direct access, set the corresponding key item to the target value.
if (crsp f itm set key(hndl,’KYPERMNO’, key) == CRSP _FAIL) then
!'1-— error
print *,’Error - failed to set key:’, key

stop
endif

11. Read the database. Specify the key matching mode when exact key value is not found. In case of sequential access set

key flag to CRSP_NEXT. For composite primary key the non-zero key_status signals access on detail key:

sts = crsp f itm read(hndl,CRSP_EXACT, key sts)
if (sts == CRSP_FAIL) then

got db error = .true.
print *,’Error - failed to read db for key:’,key
exit

endif

12. On successful read-status the data is loaded and item data containers are ready for access. The item data can be
accessed through the attached item pointers. This step is where your application-specific logic comes into play.

do i=prc_ itm%obj%ts%beg, prc itm%objsts%end
write (ofunit, 601) &

stkhdr itm%arr$header val%permno, &

stkhdr itm%arr%header val%hcomnam, &

prc_itm%obj%ts%cal%caldt (i), &
prc_itm%arrsflt arr (i), &
adjprc_itm%arr%flt arr (i), &
adjshr itm%arr%int arr(i), &

adjvol itm%arr%dbl arr (i)

601 format (I6,1X,A32,1X,18,1X,F12.5,1X,F12.5,1X,19,1X,F13.1)

enddo

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 82

13. Close the item-access and disconnect from the selected CRSP dataset. This also releases the internally allocated
storage for this item-handle instance and invalidates any user-declared item pointers attached to the handle.

if (crsp f itm close(hndl) == CRSP FAIL) then

!'l—-—error
print *, ‘Error-- failed to close db:’,TRIM (dbpath)
stop

endif

For more detailed examples of item-access to supported CRSP database products, you are encouraged to refer to the
supplied set of sample programs.

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 83

MICROSOFT WINDOWS
VISUAL STUDIO 2010 - C COMPILER INSTRUCTIONS

CRSP supports compiling C programs in Windows 32-bit and 64-bit environments. The following example compiles a
sample C program provided with the CUPL tools using Microsoft Visual Studio 2010. Use 64-bit options in Visual Studio

with a 64-bit install of CUPL, 32-bit options with a 32-bit install.

STEP 1: To begin, open Visual Studio 2010. Click on New Project.

file Edt Yiew Qebug Tean Dgta Jook Tegt Wimdow
v e L e A S e R e e S L] ~ i

F

2

4

1 w'\hsual Studior 2010 Professional

S

A

o s Get Started Guidance and Resources Latest News

: L Connect To Tesm Foundation Server

H — Welcome Windows ‘Web Cloud Office SharePoint Data
!.—-'--.,..,p. et = i
() Opetn Projec o) What's New m Visual Studse 2010

Learn about the new features included in this release.
Wisual Studic 2010 Choanview

What's Mew i NET Framework §

Customize the Visual Studio Start Page

Recent Projects

& .
j stiotm_sarmpl

,.:;1 eupltestd
3; cupltest?
B CUPLsamp i 7 Creating Applications with Visual Studio
5 stidrm_tampl ind
|]
; = Extending Visual Studic

Community and Learning Resources

STEP 2: Select Visual C++ and highlight Win32 Console Application. Give the project a name, specify a location, and

provide a solution name. Click OK.

| e tenpiie [P e I 11 N)

Installed Templates ~
: W v
i i m Win32 Consale Application Visual Cos Tymee ¥imal
Visual Basic A project for covating » Wind2 console
Vigual C2 X apphoation
4 Visud Co 4 ﬂ-_ﬂ MFC Application Visual Cos
ATL
LR 3 Win3Z Project Vigual C=+
Genersl
MFC ‘.'; Empty Praject VisualCe+ |2
Test
—
Wind2 (]| ATL Propect Visual Ca
Visisal F=
Other Project Types g MEC DL Visual Cee
Duatabase
—
Tet Progecte ELH Windows Forms Application Visual Cow
| Online Termplates
:‘ CLR Censole Application Visual Cs+
w—
f-d CLR Empty Preject Virual C==
|
I"'Ij Class Library Vigyal Cae
=
Hame: stkitm_sampl
Location: cherspifiwerk x Browse...
Solution: l& sclution -
Solution name: stkitrn_sampld o | Create girectory for solution
| Add to soyrce control
. T

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES

PAGE 84

STEP 3: On the Application Settings screen, click on Console application, and check Empty project, then click on Finish.

Application Settings

Overview Add common header files for:

Application Settings

STEP 4: You are ready to add information to the project that you are building. To do so, right click on the project, in this
example, stkitm sampl (in bold). On the pop-up screen, select Add > Existing Item.

FADxRIEO

Scution Explores =0 x
| A

- Selutson "skitrn_sempl’ (1 proped
-
*4 Build - kL
— fernal Dependendies
Retuild eader Files
Clean ssurie Files
Progect Only » pusce Files

Prcdile Guided Cptamication "

Build Customizations._.

2o MNew em. Ctrl+Shift=8 Add b
= Eusting Rem... Shift+Akts & References
g Mew Filter Class Wizard... Ctrl= Shift=x

Wiewr Class Diagram

Set as StartUp Project

Debug

(2§ Add Sobution to Source Control...

& Cm i+

Class..

Resource...

X Remove Ded
Rename
Uriload Progect

Rescan Solution

J Open Folder in Windowes Explorer
Properties AR~Enter

{Mame]
Project Deper

stigtm_sampl

Reot Mamesp sthitm_sampl

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 85

STEP 5: Browse for the program that you would like to add. In the CUPL Version 3.86 — 64-bit tools, sample programs are
located in the Sample64 folder. Highlight stkitm sampl.c program and Add.

’4:.‘*' | | » Computer » Local Disk (C) » crap86 » sampletd =62 N Seich sompiesd

(Crganuze ~ New folder

Welcome MHame

SR —

M Computer =y

= permno_date.dat

&, Local Disk (C)
L. creplh
. acchinbd
. acclibbd
L ineludetd
jre
log
sarmpleid
. Uninstall
L util

2] perminos.dat

2 retinp.dat

] otk _samnple

| sth_sampl.c

ﬂ stk_sampd.c

L sthewr_share.f30

|, stkindsampl.fo0

. stkindsamp f90

L stkindsamp3.f30
stkitrm_fzampl £90

L stkiten_frampl. 0

| sthitm_frampd. 50

E] stkitrn_sampl.c

i

work
. stiatm_sampl
\. stiitrm_sarmpl

I, tryagain

R

File pame: stkitm_sampl.c - M Files {*.")

STEP 6: The program will display in the Source folder of the project. Right click on the stkitm sampl project again, and
at the very bottom of the window, select Properties.

Solution Explorer « 0
wd | P [£3
3 Solution ‘stkitm_sampl® (1 projed
[T cébibem sampl
Build grnal Dependencies
Rebuild pder Files
beurce Files
rce Files

Clesn

Project Only

Profile Guided Optimization
Build Customizations...
Add

References...

Class Wizard...

stkebmi_sampl.c

View Class Diagram

Set a3 StartUp Project
Debug
Add Solution to Source Control...

Cut

y Pagte
Remove
Rename
Unload Project

Rescan Sclution
1 Open Felder in Windews Explorer

i Properties

(Mame) sthatm_sampl
Praject Deper

Propect File e crspBE wark! stk

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 86

STEP 7: At this point, there are several actions to take and there is no specific order necessary. First, in the Configuration

options in the upper left corner of the screen, click on the dropdown and select Release.

Configuration: | Release » Platform: lﬂcﬁu{ﬂ'ﬂﬂi] "] Configuration Manager..]

Cemmen Praperties A Optiors)
4 Configuraticn Properties AOUT-"e:\ersn 8B \meek atiim_samp 1\ Redsase’stickm_samp 1 eses” INCREMENTAL NO /NOLOGO Themal32ib” “usser32i”
gdi32ib" "winspool ib™ "comdigIZib" "advapi32ib” “shel12lb” Tole32ib" "cleaut 121b" "uuid Ib™ "odbe 312l
General “odbocp32 ib” /MANIFEST /Mandest e "Releasa'stkitm_samp 1 sxs irdermadiabe mardiest ™ JALLOWISOLATION
Debugging /MANIFESTUAC: Tevel="aslinvoker’ uAccess«Talse™ /DEBUG /PDB: "c.\crepBE avaric athitm_samp 1'\Release
VC++ Directoties ‘ethctm_samp] pdb” /SUBSYSTEM CONSOLE JOPT-REF AOPTICF /PGD. "¢ \orap B wadc\sthitm_samp 1\Ralasss
T “sthitm_samp 1 pgd” JLTCG /TLBID: 1 /DYNAMICBASE /NXCOMPAT /MACHINEXB6 /ERRORREPORT-QUEUE
Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
+ Manifest Tool
» XML Document Generator
« Browse Information
Build Events

+ Custom Build Step Inhert from parent or project defoults [

STEP 8: On the top right corner of the same screen (see above), click on the Configuration Manager. From the Active
solution platform dropdown, select x64 and click OK. If x64 doesn't exist as an option, from this same dropdown click on

New and add x64 as an option, click OK, and then Close.

Canﬁ.gurnﬁon Manager T -
|| Active selution gonfiguration: Active solution platform:
| |Debug v| |Win32 -

Project contexts (check the project configurations to build or deploy):

Praject Coenfiguration Platform
stkitm_sampl Debug - |'Wm32 .

New Project Plaﬂom_l-_ (-8 3|

MNew platform:

[Win32

Create new selutien platforms

0]4 | ’ Cancel

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES

PAGE 87

STEP 9: Back to the Property Pages, under Configuration Properties, click on Debugging. In the Command Arguments line,

define the database that you will use, and enter a name for the output file. In this example, $crsp dstk% is using

environment variables that are pointing to the CRSP daily stock database. “10” is the daily stock setid. stksampl.

the file that will be generated once the project is built and run.

Configuration: [Rd’eut ! Platform: :hnhﬁnﬁ'l}

Common Properties Debugger to launch:
4 Coenfiguration Properties

[Local Windows Debugger

General

Debugging Command ${TargetPath)

WC++ Director

Yo irectories Corniand Aguments Shcrsp_dstk 10 stksampl.out
' Warking Directary ${ProjectDir)

Attach Mo

Linker
General
Input
Manifest File Environment
Debugging Merge Environmeent Vs
System SQL Debugging Mo
Optimization
Embedded IDL
Advanced
Command Line

Manifest Tool

+ XML Document Generator

Browse Information

Build Events

Customn Build Step

Debugger Type Auto

Command Arguments.

The cemmand line arguments to pass to the application.

out is

STEP 10: Still under the Configuration Properties, click on VC++ Directories. Highlight the Include Directories row and click
on the dropdown. Click on Edit and add the location of the Include folder in the CUPL tools. In this example, c:\crsp8é\
include64. Click OK.

3 22-\.--:- s, samal (1 pooged
& T8 vikdim sl

o Entea Deparsdesn

- Hagder Fim

I Pt Pt

2 Sourcn Fimi

Conlepamitrs Radowia = Pl Adteenisdd}

[——

4 Configuwton Propetsn Tt atidd Dasiertcsis Y E b A sl b
Cotrvaral Irurtach Do Akt)

0 Entmnoy Dercton il sth)
Wi s s Daractcaumn Library Drrertoran L errFathy
G- Souce Drwctorn Hiourcabutt
ke L Vrchatebos

Tabvetial

Yysbam
Dptererasn

rrtedded T3
Rdopngad | |
{immand e | |

At waempl Frogect Propartan -

Bt |

lasfack Tea |
T, Ditrmarn G II!MM\M F

Ereait foemmon | BT e bt - | arror =i, samgl
Bskd Ty | EorClesnalu el (il Pecgect Dnpar

ot i Y 1 Fi

Ld ST oot Menog ma=_sempl

lrslumde Dlrec Bty
iy it s g 54
OLUGE

o bk Ao purenk o1 prepct Seleady

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES

PAGE 88

STEP 11: Next, expand the C/C++ directory select the General tab. Highlight the Additional Include Directories and click
on the dropdown and Edit. Enter the path for the CRSP include files. In the example, the path is c:\crsp86\includeé64.
Click OK to close the window.

Configuration: [ﬂdust = Platform: [A:IHIW} "] | Canfiguration Manager...
[& comman Properties | Additional Inchede Directories eerspBitincludetd; %S (AdditionallnchsdeDirectories)
4 Configuration Properties Resobve Susing Referances

General Debarg Information Format Program Database (/Zi)

Debugging Cammon Language RunTime Suppeort

ViC++ Directaries Suppress Startup Banner Yes (fnologe)

a|C/Ces Waming Level Lewedd /W3)
'5""'_""" Treat Wamings As Errors Na [W0=)
Ei':'r'::;:: Multi-processer Compilation
Cocds Geeration Use Unicode For Assembler Listing
Language |
P‘mc:mnpll:d Heade
Dutput Files
Browse Information
Advanced
Command Line
4 Linker
General
Input
Ianifest File
Debugging
System
Optimization
EmbecdectaN. Additional Include Directories
fh‘”“d - Sﬁ%ﬂil;mwmdndmtu add to the include path; separate with semi-colons if more than one.
. wonannndLin: path

ok J[comce |[appy |

STEP 12: Still in the the C/C++ folder, select Preprocessor. Highlight Preprocessor Definitions, click on the dropdown and
Edit. Enter wInNT and click OK to close the window.

Configuration: | Release ~| Platform: | Activeissd) * | | Canfiguration Manager... |

Common Properties] Preprocessor Definitions MHEMDEBUG:_{DHSOIE;MHHTMrwmmﬂ

4 Configuration Properties Undefine Prepracessar Definitions
General Undefine AN Preprocessor Definitions
Debugging Ignere Standard Include Paths
WC++ Directories Preprocess to a File

4 G/ Preprocess Suppress Line Mumbers

Genend Keep Comments
Optimization

Preprocessor

Code Generation
Language E|
P‘mcqmpll:d Heade
Qutput Files

Browse Informaticn
Advanced
Command Line

4 Linker
General
Input
Manifest File
Debugging
Systemn
Optimization
Embedded 1L Preprocessor Definitions
Arheniyes ~ | | Defines s preprocessing symbsols fior your source file.

F e 5 e

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 89

STEP 13: Next in Configuration Properties, expand the Linker folder and select General. Highlight the Additional Library
Directories row and click on the dropdown. Enter the path for the CRSP libraries. In this example, it is c:\crsp86\
acclib64.

crsp_itmsamp] Proper

Configurateon: [Dchug - Platform: [Jﬂ v] :nl:gm‘ngurﬂ-pnmmgu,_]

General] Output File SOt Dhar) S (TargetMame) §(TargetEa)

Debugging Show Progress Mat Sst

VC» = Directonies 1 Version

4 CfCas Enable Incrermantal Linking Yes (INCREMENTAL)
General Suppress Starup Banner Yes (/NOLOGO)
Optirization Ignone Imgort Library Mo
Preprocessor Register Output No
Cadh Gandiataoni Per-user Redirection Ne
S s || TR <'crops6cciuo Addtionaliban Directories) (7]
Ovtpust Files Link Library Dependencies Yes
Erowse Infarmation gl lL':s:kL;;:: Dependency Inputs Mo
2:::1::::‘] Line Prevent DI Elm‘llng
2 Uinkar Trest Lunker Warning As Errors

Genersl Force File Output
Input Creste Hot Patchable Imege
Manifest File Specify Sectuon Attributes
Debugging
System
Optimization
Embedded IDL
Advanced

Commyne L Additional Library Directories
Manifest Tool = | | Allows the user to overnide the environmental library path (/LIBPATH:folder)

LW T Py
m

ok [conca || septy |

STEP 14: Stay in the Linker folder and select Input. Click on the Additional Dependencies row, click on the dropdown and
Edit. Enter the CRSP library file name, crsp 1ib.1ib and click OK to close the window.

Configuration: | Release ~| Platform: | Activeisd) *| | Configuration Mansger... |

Common Properties] Additional Dependencies erip_liblib-%(Additional Dependencies) ﬂ

4 Configuration Properties Ignere All Default Libraries
General Ignere Specific Default Libranes
Debugging Madule Definition File
W+ Directories Add Module to Assemibshy

a C/Ces Embed Managed Resource File
Genersl Force Symbel References
Ottt Delay Loaded Dils

P
c:::!roﬁc;ﬂ;::.im Assemibly Link Resource

Language g|
Precompiled Heade
Qutput Files
Browse Information
Advanced
Command Line
4 Linker
General
Input
Marnifest File
Debugging
System
Optimization
EonDiiec L Additional Dependencies
Arkenies ~ | Specifies additional items to add to the link command line [i.e. kemel32 lib]

O n ol Lom

ok || conce |[sopy |

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 90

STEP 15: Finally, within Linker, select Command Line and click Apply in the lower right corner of the screen. Click OK to
close the Properties Pages.

Configuration: | Release | Blatform: [Active(ssd) v | Canfiguration Mansger... |

Cemmon Properties A Options
4 Configuration Properties AOUT e Maren 86 wweek \atkitm _samp 1'obd \Fslaass’sthitm_samp 1.0 ANCREMENTAL:NO /MNOLOGO /LIBPATH"e:
{ orpBitaccib84” “omp_lib Ib™ Tkemel32ib™ “userdZib” "gdi32ib” "winapool ib” "comdig T2 ib" "advapi32 ib™ “shel12Mb"
Genera "ok 325" "shanud 3206 ” “uuid b “odbe32 1" “adberp32 i /MANIFEST /ManiastFie w64\ Rslanse
Debugging \athitm_samp 1 e intermediate mandfest” JALLOWISOLATION /MANIFESTUAL: Tewel = asinvoker ulAccess«Talse™ /DEBUG
V4 Direckories /PDE: e \orsp BE\woratkitm_samp 1'x64\ Releass’stkiim_samp 1 pdb” /SUBSYSTEM.CONSOLE /OPT-REF AOFT.ICF
; PG e erep 86 ek \stkitm _samp 1'wb4' Ralaase’stkim_samp 1| pgd™ /LTCG /TLBID:1 /DYNAMICBASE /HWXCOMPAT
CiCes /MACHINE XE4 /ERRORREFORT QUELE
Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
+ XML Document Generator
Browse Informaticn
Build Events

Custam Build Step Inhert from parent or project defauks ||

STEP 16: At this point, all entries should have been made in order to build the solution. From the menu bar, select Build >
Build stkitm sampl. Assuming that the build runs successfully to completion, you ill see the following message once the
build is complete:

Build: 1 succeeded, O failed, O skipped.

Prior to running your program, check the Visual Studio Menu bar to confirm that the Solution Configurations set the mode
to Release. (Note: At CRSP, if not set to Release mode, we encountered an error message stating that MSVCR100.dll is not
found)

File Edit View Project Build Debug Team Data Tools Test Window Help
e R R h—:&.{}|‘1'f'";;:i‘$$|b'ﬁeleait -!;ﬁd
Debug
Release

Configuration Manager...

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 91

STEP 17: Once you have built your program successfully, you can now run it to generate output. From the Menu Bar, click
on Debug > Start Without Debugging. The program will begin running and for this example, will work sequentially through
the universe of CRSP PERMNOs.

5-?CﬁFTnduwﬂurﬂenﬂlwundENE “'. o . N

IHHM record quvrPnT

.1-1Ef|l-1
bHBH
7Baea

| 8888
FII"'LI AHH U
proc | 168 cords; cu AT T T
pro | BAE cord pErmano
pro | 1266E - IPPe pPEFRANG =
proc | 7 *ds; current permno:
proc 148B@ records; current pernno:
proce | 15888 records: current permno
pro | 1HHHP records; current permno
Pro 178088 : current permno
proce: 188868 x current permRno
I?HHH .] urrent permno:
: urrent -

. | UrthT - PAND :
JL-HUH el)y current = AN

Your output will be located in c:\CrRsP86\work, or as specified in your project.

Dstsmplou-Noepad S e W 0 WO oo » SN

Eile Edit Format Miew Help

98390810 10950 XSIRIUS INC

50483320 10951 MICRO DISPLAY SYSTEMS INC
15060220 10952 CEDAR REALTY TRUST INC

01880010 10953 ALLIANT COMPUTER SYSTEMS CORP
12499190 10954 BUTTE COPPER & ZINC CO

00753810 10955 ADVANCED MEDICAL SCIEMCES INC
58003010 10956 MCDANIEL AUSTIN CORP

31958910 10957 FIRST CITIZENS FINANCIAL CORP
08207210 10958 BENJAMIN FRAMKLIN F 5 L A OR
46146210 10959 INVESTORS BANK CORP MINTKA MN
30241110 10960 F B X CORP

15133710 10961 CENTENNIAL BANCORP

12499290 10962 BUTTERICK CO

02690940 10963 AMERICAN INTERMAT PETE CORP NEW
63934910 10964 NAYLOR INDUSTRIES INC

20690130 10965 CONFERTECH INTERNATIONAL INC
05463x10 10966 AXOGEN INC

20810810 10967 CONMER PERIPHERALS INC

31945110 10968 FIRST CHATTANOOGA FINL CORP
23790310 10969 DATA MEASUREMENT CORP

12556910 10970 € I T FINANCIAL CORP

00755110 10971 ADVENT CORP

75834110 10972 REEDS JEWELERS INC

55378810 10973 M TECH

72290310 10974 PINNACLE BANCSHARES INC
22905110 10975 CRYOTECH INDUSTRIES INC
12478110 10976 C B & T FINAMCIAL CORP

01852Q10 10977 ALLIANCE BAMCORP OF NEW ENG INC
56522Kk10 10978 MID AMERICA REALTY INVESTMTS INC
20555920 10979 COMPUTERIZED MEDICAL SYS PLC
12615010 10980 C P C REXEL INC

59540C10 10981 MID MAINE SAVINGS BANK FSB ALUB
46048510 10982 INTERMATIONMAL TEXAS INDS INC
51165810 10983 LAKELAND FIRST FINANCIAL GRP INC
54890010 10984 LOWRANCE ELECTRONICS INC
4373210 10985 HOME SAVINGS ASSN TAMAQUA PA
02091010 10986 ALPHA 1 BIOMEDICALS INC
87592410 10987 TANGRAM ENTERPRISE SOLUTIONS INC
92790510 10988 VISION SCIENCES INC

08658U10 10989 BESTFOODS

00755710 10990 ADVERTISING UNLIMITED LTD
06187910 10991 BANK OF EAST TENNESSEE

Fl

3810 19861216-19940526
3570 19861217-19890508
6798 19861217-20140228
3570 19861217-19911017
1000 19251231-19600203
0 19730320-19750602
7370 19861217-19920615
6710 19861217-19970822
6030 19861217-19900221
6710 19861217-19950428
3660 19861217-19900620
6020 19861217-20021115
710 19251231-19360324
1380 19861217-20001106
1620 19861216-19930714
4810 19880218-19950315
3845 19861217-20140228
5045 19880412-19960202
6030 19861219-19930129
3620 19861218-19960110
6146 19251231-19800131
3651 19721214-19810414
5944 19861219-20040506
7370 19861219-19880629
6712 19861217-20080214
2060 19861219-19921028
6710 19861219-19930625
6036 19861219-20040401
6798 19861219-19980806
3690 19861219-19870706
3070 19861219-19921123
6036 19861222-19940729
2830 19861222-19871106
6030 19861222-19950629
3810 19861223-20060313
6020 19861223-19890629
2830 19861223-19950524
7370 19861223-20021009
3850 19861223-19910304
2046 19251231-20001004
2750 19750605-19871023
6020 19861223-19930430

i L 5 LA I A A A el L R L i B R L L P L I L L P G L L L L L L

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 92

WINDOWS COMMAND PROMPT

The sample programs can also be compiled and run from a command prompt window. In order to do so, the environment

must be set for Intel Fortran to run.

To set the Windows 32-bit environment to Intel(R) Fortran, click on Start > All Programs > Intel(R) Software Development

Tools > Intel(R) Fortran Compiler 9.1 > Build Environment for Fortran 1A-32 applications.

To set the Windows 64-bit environment to Intel(R) Fortran, click on Start > All Programs > Intel Parallel Studio XE 2011 >

Command Prompt > Parallel Studio XE with Intel Compiler > Intel 64 Visual Studio 2008 mode.

e e e p— U= D% |
B ¢ e | i %5
- .] T R TP o - tra

A= EeT B e g o s e) e) i e o N[3 & WA N A nER E‘
jrrdzomsneie 4 v i cai [T _ _ = = ———
n o W ik ks . 3’ - g R T T T T PR SRR T

S oy |

O et r-

= s B

fam L FE T li

£ riewn o |

0 Gare r!

£ bt Otficn ¥l

0 Pl i Tl +

£7) Frnita inherai Prring rI

[00 ri

) Habs o

7 Sanamre: Chank Sacaiy rl

o Wiy &

[Aokt cuiter £.1

[Aot Bochat 6.0 Frofssscned
W ook gefdy T,

& AdenaPhehoshen 70T

. T [o e i 0

1
il bel
£ el Bagiaee

sl ﬂ Frizrft Pt
| . gl PR
E *grasl® IThe Al (G Ttk B
HaTy o
4 Forraie fnmiares

ﬂ Merorod: Diinn Eoc (B ikt e

A Wik P
[l o v ot s ik

5] ekt e fuie 1M B
.:1:‘?:....:,.:,.?.,.- & koo !
0] abnrsony? kst ¥ B Bkt rovmrrrn o I orms DHE] L ok of o
."'l A Tt s (3) R Fitvan (o LY . el e pme o Pt e molodtone
[.rf e Bl T et rlemros Marager For PR 6 B Bubeererrart S Pl g Roemr-d 80 damed ik soonn
!) et skns s [l ') et et S ol g scomerao o
'u_i-l Hidgad L L A egr g e o B e :
X ¥ Fliemalk SO0 Smever 2008 ¥ & ceetnd bt Qs 3 [& Sraetoin 1

R Pagr e I £ Pzt Vool Sl 3005

A DOS window will open ready for you to run your Fortran 95 programs.

Intel(R) Visual Fort 028 Build Environment for 32-bit applications

Intel{R) WUisuwal Fortran Compiler P.1.828 Build Environment for 3I2-hit applicatio
pyrdight (C» 1985-2886 Intel Corporation. All rights rezerved.
fetting environnent For wsing Hicrosoft Uisual Studieo 2885 xB6 tools.

G Documents and SettingssJanet>

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES

PAGE 93

Compiling from the Command Prompt

To compile a sample program from the command prompt using the Intel Fortran Compiler, copy it to your program directory
and invoke the invoke the ifort command as shown below.

> copy %crsp_sample%\stkitm fsampl.f90
> ifort /I%crsp include% stkitm fsampl.f90 S%crsp lib%\crsp lib.lib %crsp.lib%$\crsp lib F95.1ib

To run the program:

> .\stkitm fsampl

Using a Make File

Sample programs can also be compiled and linked at the command prompt using the nmake utility. A sample description
file, f95_samp.mak, exists in the %crsp_sample% directory. To use the sample description file with your own program, copy
it to your program directory and modify it to include your program instead of the sample.

> copy %crsp sample$\f95 samp.mak

To compile a specific sample program:

> nmake /f £95 samp.mak stkitm fsampl.exe

To compile all sample programs:

> nmake /f £95 samp.mak

To run the program:

> .\stkitm fsampl

CRSP PROGRAMER’S GUIDE | ITEM BASED SAMPLES PAGE 94

CHAPTER 5: LEGACY SET ACCESSINC

CRSPACCESS C DATA STRUCTURES

C Programming allows complete support for CRSP databases, including random access on PERMNO, CUSIP and other
header variables, and full support of all data items. There are sample programs, header files, and an object library
available.

DATA ORGANIZATION FOR C PROGRAMMING

The basic levels of a CRSPAccess database are the database, set type, set id, module, object, and array. They are defined
as follows:

e Database (crspDB) is the directory containing the database files. A crspDB is identified by the database path.

e Set Type is a predefined type of financial data. Each set type has its own defined set of data structureH6s, spe- cial-
ized access functions, and keys. CRSPAccess stock databases support stock (sTk) and index (1nD) set types. A
CRSPDB can include more than one set type.

e Set Identifier (seT1D) is a defined subset of a set type. seT1Ds of the same set type use the same access func- tions,
structures, and keys, but have different characteristics within those structures. For example, daily stock sets use the
same data structure as monthly stock sets, but time series are associated with different calendars. Multiple seT1Ds of
the same set type can be present in one CRSPDB.

¢ Modules are the groupings of data found in the data files in a crspDB. Multiple data items can be present in a module.
Data are retrieved at a module level, and access functions retrieve data items for keys based on selected modules.
Modules correspond to the physical data files.

¢ Objects are the fundamental data types defined for each set type. There are three fundamental object types: time
series (CRSP_TIMESERIES), event arrays (CRSp_ARRAY), and headers (CrRsp_Rrow). Objects contain header information
such as counts, ranges, or associated calendars (crRsp_caL) plus arrays of data for zero or more observations. Some
set types allow arrays of objects of one type. In this case, the number of available objects is determined by the seT1D,
and each of the objects in the list has independent counts, ranges, or associ- ated calendars.

e Arrays are attached to each object. The array contains the set of observations and is the basic level of program- ming
access. An observation can be a simple data type such as an integer for an array of volumes, or a complex structure
such as for a name history. When there is an array of objects, there is a corresponding array of arrays with the data.

DATA OBJECTS
There are four basic types of information stored in CRSP databases. Each is associated with a CRSP object structure.

¢ Header Information. These are identifiers with no implied time component.

¢ Event Arrays. Arrays can represent status changes, random events, or observations. The time of the event and rel-
evant information is stored for each observation. There is a count of the number of observations for each type of event
data.

¢ Time Series Arrays. An observation is available for each period in an associated calendar. A beginning and ending
point of valid data are available for each type of time series data. Data are stored for each period in the range — miss-
ing values are stored as placeholders if information is not available for a period.

e Calendar Arrays. Each time series is tied to an array of relevant time periods. This calendar is used in conjunction with
the time series arrays to attach times to the observations.

PAGE 95

An observation can be a simple value or contain multiple components such as codes and amounts. Time series, except
Portfolios, are based on calendars which share the frequency of the database. In a monthly database, the time series are
based on a month-end trading date calendar. In a daily database, the time series are based on a daily trading date calendar
excluding market holidays. Portfolio calendars are dependent on the rebalancing methodology of the specific portfolio type.
All calendars are attached automatically to each wanted time series object when the database is opened.

There are four base CRSPAccess C structures called objects used in crsppBs. The following table contains each of the
objects in all caps, followed by the components, lower case and indented, that each object type contains. All data items are
defined in terms of the following objects:

OBJECT OR FIELD USAGE DATA TYPE

CRSP_ARRAY Structure for storing event-type data

objtype object type code identifies the structure asa crRsp_ARRAY, always = 3 int

arrtype array type code defines the structure in the array. Base C types or CRSP- defined structures each have associated int
codes defined in the constants header file

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type | int
fields

size_of array number of bytes in each array element int

width

maxarr maximum number of array elements containing valid data int

num number of array elements containing valid data int

durmmy data secondary subtype code int

arr object array is a pointer to the array containing the actual data. The array can be a base C data type or a CRSP-defined | void *
structure. Its size and type are determined by arrtype, size of array width,andmaxarr

CRSP_ROW Structure for storing header data

objtype object type code identifies the structure as a crsp_row, always =5 int

arrtype array type code defines the structure in the array. Base C types or CRSP- defined structures each have associated int
codes defined in the constants header file

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type | int
fields

size of array_ array structure size in bytes int

width

arr object array is a pointer to the array containing the actual data. The array can be a base C data type or a CRSP-defined | void *
structure. Its size and type are determined by arrtype and size_of_array_width. The array size is always 1

CRSP_TIMESERIES | Structure for storing time series data

objtype object type code identifies the structure as a CRSP_TIMESERIES, always = 2 int

arrtype array type code defines the structure in the array. Base C types or CRSP- defined structures each have associated int
codes defined in the constants header file

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type | int
fields

size of array array structure size in bytes int

width

maxarr maximum number of array elements int

beg first array index with valid data for the current record, or 0 if no valid range int

end last array index with valid data for the current record, or 0 if no valid range int

caltype calendar time period description code describes the type of time periods. Calendar Type (caltype) is always 2, int
indicating time periods are described in the Calendar Trading Date (caldt) array by the last trading date in the period

cal calendar associated with time series is a pointer to the calendar associated with the time series array. The calendar CRSP_CAL *
includes the matching period- ending dates for each array index

CRSP PROGRAMER'S GUIDE | LEGACY SET ACCESS IN C PAGE 96

OBJECT OR FIELD USAGE DATATYPE

arr object array is a pointer to the array containing the actual data. The array can be a base C data type or a CRSP-defined | void *
structure. Its size and type are determined by arrtype, size_of_array_width, and maxarr
CRSP_CAL Structure for storing calendar period data
objtype object type code identifies the structure as a CRSP_CAL, always = 1 int
calid calendar identification number is an identifier assigned to each specific calendar by CRSP int
type generic group code of calendar, ie. daily or monthly. All current time series use 2 for calendar trading date (caldt) only | int
loadflag calendar type availability flag is a code indicating the types of calendar arrays loaded. Currently = 2 for calendar int
trading date (caldt) only
maxarr maximum number of trading periods allocated for the calendar int
ndays number of days is the index of the last calendar period int
name the calendar name in text char[80]
callist calendar period grouping identifiers reserved for array of alternate grouping identifiers for calendar periods int *
caldt calendar trading date is an array of calendar period ending dates, stored in YYYYMMDD. Calendars start at element 1 int *
and end at element number of days (ndays)
calmap used to store array of first and last calendar period array elements in a linked calendar to elements in this calendar CRSP_CAL_MAP *
basecal used to point to a calendar linked in calmap CRSP_CAL *

SET STRUCTURES AND USAGE

Stock and indexes access functions initialize and load data to C top-level defined set structures. Top-level structures are
built from general object and array structure definitions and contain object and array pointers that have memory allocated
to them by access open functions.

Two set types and six set identifiers are currently supported for stock and indexes data. The identifier must be speci- fied
when opening or accessing data from the set.

DATA SET TYPE SET IDENTIFIERS FREQUENCY

CRSP Stock Data STK 10 Daily
20 Monthly

CRSP Indexes Data IND 400 Monthly Groups (in IX product only)
420 Monthly Series
440 Daily Groups (in IX product only)
460 Daily Series

Each set structure has three types of pointer definitions.

= Module pointers point to cksp_oBJeCT ELEMENT linked lists and are only needed internally to keep track of the objects
in a module. These have the suffix _obj and can be ignored by ordinary programming.

= Obiject pointers define a CRSP_ARRAY, CRSP_ROW, OF CRSP_TIMESERIES object type. A suffix, arr,

= _ts, Or _row is appended to the variable name. Range variables num, beg, and end are accessed from these variables.

= Array pointers define the data item array. The array has the same rank as the object but without the suffix. It is a pointer
to the array element of the object and is used for general access of the data item.

If a module has multiple types of objects, a group structure is created with definitions for those objects and is included in
the main structure.

If a module has a variable number of objects of one type, an integer variable keeps track of the actual number. These
variables end with the suffix types and are based on the set type.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 97

Each of the top-level structures contains three standard elements:

» PERMNO - the actual key loaded

= loadflag, a binary flag matching the set wanted parameters indicating which pointers have been allocated. See the open function for the set for more information
about wanted parameters.

= setcode, a constant identifying the type of set (1=sTk, 3=1nD)

For example, a Stock Structure has crsp_TIMESERIES object called prc_ts containing an array called prc.

C LANGUAGE DATA OBJECTS FOR CRSP STOCK DATA

Each stock structure is comprised of a fixed set of objects. Objects contain the header information required to use the CRSP data structures and the data arrays.
Data elements are described in the C Data Structure Table under the array name.

Time series beg and end are both equal to O if there are no data. Otherwise beg > 0, beg <= end, and end <= maxarr. The Oth element of a time series array is
reserved for the missing value of the underlying data type for that time series.

The stock structure contains an array of portfolio time series. Each member contains the portfolio statistic and assignment data for one portfolio type. Each mem-
ber can have a different range and calendar. The count of Portfolio Types is found in the port types variable.

RANGE
ELEMENTS
ARRAY ONA
STRUCTURE SECURITY ELEMENTS OF
MODULE OBJECT OBJECT TYPE ARRAY TYPE DATA SUBTYPE SIZE BASIS A SET BASIS ARRAY NAME
STK_HEAD header_row Stock Header CRSP_ROW CRSP_STK_HEADER NUM = 50 0 172 none none stk.header
Header Module Structure
STK_EVENTS names_arr Security Name CRSP_ARRAY CRSP_STK NAME NUM = 51 0 160 num maxarr stk.events.names
Event Arrays Module History
STK_EVENTS dists_arr Distribution History CRSP_ARRAY CRSP_STK_DIST_NUM = 52 1] 40 num maxarr stk.events.dists
Event Arrays Module Array
STK_EVENTS shares_arr Shares Structure CRSP_ARRAY CRSP_STK_SHARE _NUM = 53 CRSP_SHARES_IMP_NUM 16 num maxarr stk.events.
Event Arrays Module Array =0 shares
STK_EVENTS delist arr Delisting Structure CRSP_ARRAY CRSP_STK DELIST NUM = 54 0 40 num maxarr stk.events.
Event Arrays Module Array delist
STK_EVENTS nasdin_arr Nasdaq Structure CRSP_ARRAY CRSP_STK_NASDIN_NUM = 55 0 24 num maxarr stk.events.
Event Arrays Module Array nasdin

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 98

RANGE

ELEMENTS
ARRAY ONA
STRUCTURE SECURITY ELEMENTS OF

MODULE OBJECT OBJECT TYPE ARRAY TYPE DATA SUBTYPE SIZE BASIS A SET BASIS ARRAY NAME
STK_PORTS port _ts[] Portfolio Statistics CRSP TIMESERIES | CRSP_STK PORT NUM = 56 Each Portfolio time series | 4 begand maxarr, cal, stk.porttypes-1
Portfolios Module and Assignments in the array has subtype end (foreach | stk.porttypes

equal to the Permanent portfolio time

Index Identification series)

Number of the associated

group index
STK_GROUPS group_arr([] Array of Group CRSP_ARRAY CRSP_STK_GROUP_NUM=57 Each Group CRSP_ARRAY 16 num (for each maxarr, stk.group
Groups Module Arrays in the array has subtype group array) stk.grouptypes

equal to the Permanent

Index Identification

Number of an associated

group index
STK_LOW bidlo_ ts Bid or Low CRSP_TIMESERIES | CRSP_FLOAT NUM = 1 CRSP_PRICE NUM = 1 4 begand end maxarr, cal stk.bidlo
Bid or Low Data
STK_HIGHS askhi ts ASk or ngh CRSP_TIMESERIES | CRSP_FLOAT NUM = 1 CRSP_PRICE_NUM = 1 8 begand end maxarr, cal stk.askhi
Ask or High Data
STK_PRCS prc_ts Closing Price or Bid/ | CRSP_TIMESERIES | CRSP_FLOAT_NUM = 1 CRSP_PRICE NUM = 1 4 begand end maxarr, cal stk.prc
Prices Module Ask Average
STK_RETURNS ret ts Holding Period CRSP_TIMESERIES | CRSP_FLOAT NUM = 1 CRSP_RETURN_NUM = 2 |4 begand end maxarr, cal stk.ret
Returns Module Return
STK_VOLUMES vol ts Share Volume CRSP_TIMESERIES | CRSP_INTEGER NUM = 2 CRSP_VOLUME_NUM = 6 | 4 begand end maxarr, cal stk.vol
Volumes Module
STK_BIDS bid ts Nasdaq Closing Bid | CRSP_TIMESERIES | CRSP_FLOAT NUM = 1 CRSP_PRICE_NUM =1 4 begand end maxarr, cal stk.bid
Bids Module
STK_ASKS ask_ts Nasdaq Closing Ask | CRSP_TIMESERIES | CRSP_FLOAT_NUM = 1 CRSP_PR|CE_NUM =1 4 begand end maxarr, cal stk.ask
Asks Module
STK_RETX retx_ts Return Without CRSP_TIMESERIES | CRSP_FLOAT NUM = 1 CRSP_RETURN_NUM =214 begand end maxarr, cal stk.retx
Returns Without Dividends
Dividends Module
STK_SPREADS spread_ts Month End BId/ASk CRSP_TIMESERIES | CRSP_FLOAT _NUM = 1 CRSP_PR|CE_NUM =1 4 begand end maxarr, cal stk.spread
Bid/Ask Spreads Spread
Module

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 99

RANGE

ELEMENTS

ARRAY ONA

STRUCTURE SECURITY ELEMENTS OF
MODULE OBJECT OBJECT TYPE ARRAY TYPE DATA SUBTYPE SIZE BASIS A SET BASIS ARRAY NAME
STK_TRADES numtrd_ts Nasdaq Number of CRSP_TIMESERIES [CRSP_INTEGER NUM = 2 CRSP_COUNT_NUM - 7, 4 begand end maxarr, cal stk.numtrd
Number of Trades or Trades or or
Module (Daily) altpredt_ts | o CRSP_DATE_NUM = 26 stk-attpredt
STK_ Alternate Price Date
ALTPRCDTS

Alternate Price Date
Module (Monthly)

STK_OPENPRCS openprc_ts Open Price CRSP_TIMESERIES | CRSP_FLOAT NUM = 1 CRSP_PRICE_NUM = 1 4 begand end maxarr, cal stk.openprc

Open Price or or or

Module (Daily) altpre_ts Alternate Price stk.altprc
STK_ALTPRCS
Alternate
Prices Module
(Monthly)

C LANGUAGE DATA STRUCTURE FOR CRSP STOCK DATA

All CRSP-defined data type structures have names in all capitals beginning with crsp_ and are immediately followed by the definitions in the next level of inden-
tation

Index and Date Ranges for all elements in a structure are the same as for the structure itself. There are three structure levels indicated by the indentation in the
mnemonic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indi-
cates data grouped in modules. See the CRSPAccess Stock Users Guide for data item definitions.

All character strings, indicated by char[#], are NULL terminated. The number of characters -1 is the maximum string length allowed. Actual maximums may be
lower. The top level stk structure is an example used by CRSP Stock sample programs. Other names can be used, and multiple CRsp_STK STRUCTs can be declared
in a program. See the crsp_sTK open access function for initializing a stock structure.

MNEMONIC NAME DATATYPE DATA USAGE INDEX RANGE DATE USAGE OBJECT USAGE
stk Master Stock Structure CESERSTEI[ESE

STRUCKT
header Stock Header Structure
permno PERMNO int stk.header->permno stk.header_row
permco PERMCO int stk.header->permco stk.header_row
compno Nasdaq Company Number int stk.header->compno stk.header_row
issuno Nasdagq Issue Number int stk.header->issuno stk.header_row

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 100

MNEMONIC DATATYPE DATA USAGE INDEX RANGE DATE USAGE OBJECT USAGE

hexcd Exchange Code - Header int stk.header->hexcd stk.header row
hsiccd Standard Industrial int stk.header->hsiccd stk.header_row
Classification (SIC) Code -
Header
begdt Begin of Stock Data int stk.header->begdt stk.header_row
enddt End of Stock Data int stk.header->enddt stk.header row
dlstcd Delisting Code - Header int stk.header->dlstcd stk.header_row
hcusip CUSIP - Header char[16] stk.header->hcusip stk.header row
htick Ticker Symbol - Header char[16] stk.header->htick stk.header row
hcomnam Company Name - Header char([36] stk.header->hcomnam stk.header_row
hnaics North American Industry char[8] stk.header->hnaics stk.header_ row
Classification System (NAICS)
- Header
htsymbol Trading Ticker Symbol - char[12] stk.header->htsymbol stk.header row
Header
trdstat Trading Status - Header char[1] stk.header->htrdstat stk.header_row
hsecstat Security Status - Header char[1] stk.header->hsecstat stk.header_row
events Master Stock Structure EREEE SIS VETES
STKEV
ENT_
STRUCT
names Security Name History i between o and stk. name effective from stk.events. stk.events.names_arr
events.names_arr->num-1 names[1] .namedt 10 stk.events.
names [i] .nameenddt
namedt Name Effective Date int stk.events.names[i] .namedt
nameenddt Last Date of Name int stk.events.names[i] .nameenddt
ncusip CUSIP char[16] stk.events.names[1i] .ncusip
ticker TickerSymb0| char[8] stk.events.names[i].ticker
comnam Company Name char[36] stk.events.names[i] .comnam
shrcls Share Class char[4] stk.events.names[i].shrcls
shrcd Share Code int stk.events.names[i].shrcd
exchcd Exchange Code int stk.events.names[i] .exchcd
siccd Standard Industrial int stk.events.names[i].siccd
Classification (SIC) Code
naics North American Industry char[8] stk.events.names[1i].naics
Classification System (NAICS)

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 101

MNEMONIC NAME DATATYPE DATA USAGE INDEX RANGE DATE USAGE OBJECT USAGE
tsymbol Trading Ticker Symb0| char([12] stk.events.names[i].tsymbol
trdstat Trading Status char[1] stk.events.names[i].trdstat
secstat SecurityStatus char[1] stk.events.names[i] .secstat
dists Distribution History Array i between o and stk. distribution effective on stx.events. stk.events.dists_arr
events.dists_arr->num-1 dists[i].exdt
distcd Distribution Code int stk.events.dists[i].distcd
divamt Dividend Cash Amount float stk.events.dists[i].divamt
facpr Factor to AdeSt Price float stk.events.dists[1i].facpr
facshr Factor to AdeSt Shares float stk.events.dists[i].facshr
Outstanding
dclrdt Distribution Declaration Date int stk.events.dists[i].dclrdt
exdt Ex-Distribution Date int stk.events.dists[1i] .exdt
rcrddt Record Date int stk.events.dists[i].rcrddt
paydt Payment Date int stk.events.dists[i].paydt
acperm Acquiring PERMNO int stk.events.dists[i].acperm
accomp Acquiring PERMCO int stk.events.dists[i].accomp
shares Shares Structure Array i between o and stk. shares observation effective from stk . stk.events.shares arr
events.shares_arr->num-1 events.shares[i] .shrsdt to stk.
events.shares[i] .shrsenddt
shrout Shares Outstanding int stk.events.shares[i].shrout
shrsdt Shares Outstanding int stk.events.shares[i].shrsdt
Observation Date
shrsenddt Shares Outstanding int stk.events.shares[i].shrsenddt
Observation End Date
shrflg Shares Outstanding int stk.events.shares[i].shrflg
Observation Flag
delist Delisting Structure Array i between o and stk. delist observation on stk.events. stk.events.delist arr
events.delist_arr->num-1 delist[i].dlstdt
dlstdt DeIisting Date int stk.events.delist[i].dlstdt
dlstcd Deiistingcode int stk.events.delist[i].dlstcd
nwperm New PERMNO int stk.events.delist[i].nwperm
nwcomp New PERMCO int stk.events.delist[i].nwcomp
nextdt Delisting Date of Next int stk.events.delist[i].nextdt
Available Information
dlamt Amount After Delisting float stk.events.delist[i].dlamt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 102

MNEMONIC DATATYPE DATA USAGE INDEX RANGE DATE USAGE OBJECT USAGE
dlretx DeIisting Return without float stk.events.delist[i].dlretx
Dividends
dlprc De”sting Price float stk.events.delist[i].dlprc
dlpdt De"Sting Payment Date int stk.events.delist[i].dlpdt
dlret DeIisting Return float stk.events.delist[i].dlret
nasdin NASDAQ Structure Array i between o and stk. NASDAQ status effective from stk . stk.events.nasdin arr
events.nasdin_ arr->num-1 events.nasdin[i] .trtsdt {0 stk.
events.nasdin[i] . trtsenddt
trtsdt NASDAQ Traits Date int stk.events.nasdin[i].trtsdt
trtsenddt NASDAQ Traits End Date int stk.events.nasdin[i].trtsenddt
trtscd NASDAQ Traits Code int stk.events.nasdin[i].trtscd
nmsind NASDAQ National Market int stk.events.nasdin[i].nmsind
Indicator
mmcnt Market Maker Count int stk.events.nasdin[i] .mmcnt
nsdinx NASD Index Code int stk.events.nasdin[i] .nsdinx
port Portfolio Statistics and 5 between o and stk. value for period ending stk.port array of stk.port_ts
Assignments porttypes-1, i between ts[j]->cal->caldt[i]
stk.port_ts[j]->beg and
stk.port ts[j]->end
port Portfolio Assignment Number | int stk.port[j][i].port
stat Portfolio Statistic Value double stk.port[j][i].stat
groups Group Array 5 between o and stxk. value for period ending stk.group array of stk.group arr
group-1, i between stk. arr[j]->cal->caldt[i]
group_arr[j]->beg and stk.
group_arr[j]->end
grpdt Begin of Group Data int stk.group->grpdt
grpenddt End of Group Data int stk.group->grpenddt
grpflag Group Flag of Associated int stk.group->grpflag
Index
grpsubflag Group Secondary F|ag int stk.group->grpsubflag
Time Series Data Arrays
bidlo Bid or Low Price float * stk.bidlo[i] i between stk.bidlo ts- value on date stk.pbidlo ts->cal- stk.bidlo_ts
>beg and stk.bidlo ts->end | >caldt[i]
askhi Ask or High Price float * stk.askhi[i] i between stk.askhi_ts- value on date stk.askni_ts->cal- stk.askhi_ts
>beg and stk.askhi_ts->end | >caldt[i]

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 103

MNEMONIC NAME DATATYPE DATA USAGE INDEX RANGE DATE USAGE OBJECT USAGE
prc Price or Bid/Ask Average float * stk.preli] i between stk.prc_ts->beg | valueondate stk.prc_ts->cal- stk.prc_ts
and stk.prc ts->end >caldt[i]
ret Holding Period Total Return | float * stk.ret[i] i between stk.ret ts->beg | valueondate stk.ret ts->cal- stk.ret_ts
and stk.ret_ts->end >caldt[i]
vol Volume Traded int * stk.vol[i] i between stk.vol ts->beg | valueondate stk.vol ts->cal- stk.vol_ts
and stk.vol ts->end >caldt[i]
bid Bid float * stk.bid[i] i between stk.bid ts->beg | Valueondate stk.bid ts->cal- stk.bid_ts
and stk.bid ts->end >caldt[i]
ask Ask float * stk.ask[i] i between stk.ask ts->beg value on date stk.ask ts->cal- stk.ask_ts
and stk.ask ts->end >caldt[i]
retx Return Without Dividends float * stk.retx[i] i between stk.retx ts->beg | Valueondate stk.retx ts->cal- stk.retx_ts
and stk.retx ts->end >caldt[i]
spread Spread Between Bid and Ask | fleat * stk.spread[i] i between stk.spread ts- value on date stk.spread ts->cal- stk.spread_ts
>beg and stk.spread_ts- >caldt[i]
>end
altprc Price Alternate Date (monthly | int * stk.altpredt[i] i between stk.altprcdt ts- | valueondate stk.altprcdt ts- stk.altpredt_ts
or only) >beg and stk.numtrd ts- Scal->caldt[i]
or or >end or or
or
numtrd Nasdaq Number of Trades fnt * stk.numtrd(i] i between stk.numtrd ts- | valueondate stk.numtrd ts->cal- | Stk.numtrd ts
(da"yonW) >beg and stk.numtrd ts- >caldt[i]
>end
openprc Open Price (daily only) float * stk.openprcli] i between stk.openprc ts- value ondate stk.openprc ts->cal- | Stk.openprc_ts
or >beg and stk.openprc;;s— >caldt[i] -
or or >end or or
or
altpre Price Alternate (monthly only) | float * stk.altprcli] i between stk.altprc ts- valueondate stk.altprc ts->cal- | Stk.altprc_ ts

>beg and stk.altprc ts-

>end

>caldt[1i]

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 104

EXAMPLES OF C VARIABLE USAGE FOR CRSP STOCK DATA

These assume a variable stk of type CRSP_STK STRUCT.

CRSP Row/Header Data
Object Variable: stk.header row
Data Structure: stk.header
Sample Print Statement:

printf (“%d %$8d-%8d\n”, stk.header->permno,

stk.header->begdt, stk.header->enddt);

CRSP Array/Distributions
Object Variable: stk.events.dists arr
Data Array: stk.events.dists

Sample Print Statement: This sample loop prints all distribution codes and ex-
distribution dates.

for (i = 0; 1 < stk.events.dists arr->num; ++1i)

printf (“%$4d %$8d\n”, stk.events.dists[i].distcd, stk.events.
dists[i].exdt);

CRSP Time Series/Prices
Object Variable: stk.prc_ts
Data Array: stk.prc

Sample Print Statement: This sample loop prints all prices and dates in the issue’s
range.

for (i = stk.prc_ts->beg; i <= stk.prc ts->end; ++i)

printf (“$11.5f %8d\n”, stk.prcl[i], stk.prc ts->cal-
>caldt[i]) ;CRSP

CRSP Array of Time Series/Portfolios
Object Variable: stk .port ts[j]
Data Array: stk.port [7]

(There are stk.porttypes portfolios available; j above is between 0 and stk.

porttypes -1)

Sample Print Statement: This prints the associated indno and the sample
loop prints the date and assignment for each year in the issue’s range for

porttype=0 NYSE/NYSEMKT/NASDAQ Capitalization deciles.

printf (“indno = %d\n”, stk.port ts[0].subtype);

for (i = stk.port ts[0]->beg; i <= stk.port ts[0]->end; ++1i)
printf (“%8d %2d\n”, stk.port ts[0]->cal->caldt[i],
stk.port[0] [1] .port);

CRSP Array of Group Arrays

Object Variable: stk.group arr(3]

Data Array: stk.group[j]

(There are stk.grouptypes groups available; j above is between 0 and stk.
grouptypes -1)

Sample Print Statement: This only prints if the security has ever been included in
the S&P 500 universe (grouptype = 16).

3 =16 - 1;
for (i = 0; i < stk.group arr[15]->num; ++1i)
printf (“%8d %8d %2d %2d \n”,

stk.group[j][i].grpdt,
stk.group[] i

i] .grpenddt,

[311047.

[(J1047.
stk.group[j][i].grpflag,

[J1047.

stk.group[j] [1] .grpsubflag) ;

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 105

C LANGUAGE DATA OBJECTS FOR CRSP INDEXES DATA

CRSP assigns a Permanent Index |dentification Number (indno) to access the indexes data in C for individual series or portfolio groups. In the CRSP US Stock

Database, a subset of market series is available. Additional series and groups are available when you subscribe to the CRSP US Indexes Database and Security

Portfolio Assignment Module. The index structure supports data for one series or group and includes header, rebalancing, and result information for one or more
portfolios comprising the index.

Each index structure contains a fixed set of possible objects. Objects contain the header information needed to use the CRSP data structures as well as the data
arrays. Data elements are described in the C Data Structure Table under the array name.

Time series beg and end are both equal to O if there are no data. Otherwise beg > 0, beg <= end, and end < maxarr. The Oth element of a time series array is
reserved for the missing value for that data type.

Multiple series in the index structure refers to portfolio subgroups. Each of these will have the same beg, end, and calendar. In a SERIES SETID, the multiple series
has a count of 1. In a GrouP SETID, the count of series is found in the corresponding xxxtypes variable.

MODULE OBJECT NAME OBJECT TYPE ARRAY TYPE DATA SUBTYPE ARRAY

STRUCTURE

RANGE ELEMENTS
ELEMENTS ONA
SET BASIS

ARRAY NAME

SIZE ONA
SECURITY
BASIS

Portfolio Total Counts

Series

for each series

ind.indtypes

0 to

IND_HEAD indhdr_row Indexes Header CRSP_ROW CRSP_IND_HEADER NUM = 200 | 0 300 none none ind.indhdr

Index Description Object

IND REBAL rebal arr[] Rebalancing CRSP_ARRAY CRSP_IND REBAL NUM = 201 0 64 num for each maxarr, ind. ind.rebal[j], 3 from

Rebalancing Data Arrays series rebaltypes 0 to ind.rebaltypes
-1

IND LISTS listiarr[] LhtArmys CRSP_ARRAY CRSP_IND LIST NUM = 202 0 24 num for each maxarr, ind. ind.list[j], j O to

Issue Lists series listtypes ind.listtypes -1

IND USDCNTS usdent_ts[] UsedCountThne CRSP_TIMESERIES | CRSP_INTEGER NUM = 2 CRSP_COUNT_NUM = 7 4 begand end maxarr, cal, ind.usdent[j], 3 from

Portfolio Used Counts Series for each series ind.indtypes 0 to ind.indtypes -1

IND TOTCNTS totent_ts[1 | Total Count Time CRSP_TIMESERIES | CRSP_INTEGER NUM CRSP_COUNT_NUM = 4 begandend | maxarr, cal, ind.totcent[3], 5 from

ind.indtypes -1

IND_USDVALS
Portfolio Used Weights

usdval_ts[]

Used Value Time
Series

CRSP_TIMESERIES

CRSP_DOUBLE_NUM

CRSP_WEIGHT_ NUM

begand end
for each series

maxarr, cal,

ind.indtypes

ind

0 to

.usdval([j], j from

ind.indtypes -1

IND TOTVALS
Portfolio Total Weights

totval ts[]

Total Value Time
Series

CRSP_TIMESERIES

CRSP_DOUBLE_NUM

CRSP_WEIGHT NUM

begand end
for each series

maxarr, cal,

ind.indtypes

ind

0 to

.totval[jl, J from

ind.indtypes -1

IND_TRETURNS
Portfolio Total Returns

tret_ts[|

Total Return Time
Series

CRSP_TIMESERIES

CRSP_FLOAT_NUM =

CRSP_RETURN_NUM

begand end

for each series

maxarr, cal,

ind.indtypes

ind.

ind.

tret[j], 3 from 0

indtypes -1

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 106

MODULE

OBJECT

OBJECT TYPE

ARRAY TYPE

DATA SUBTYPE

ARRAY
STRUCTURE

SIZE

RANGE
ELEMENTS
ONA
SECURITY
BASIS

ELEMENTS
ONA
SET BASIS

ARRAY NAME

Levels

Series

IND ARETURNS aret_tsl[] Capital CRSP_TIMESERIES | CRSP FLOAT NUM CRSP_RETURN NUM = 4 begandend | maxarr, cal, | ind.aret[j], j from 0
Portfolio Capital Appreciation Time for each series ind.indtypes ind.indtypes -1
Appreciation Returns Series

IND IRETURNS iret_ts[] Income Return CRSP_TIMESERIES | CRSP_FLOAT NUM CRSP_RETURN_NUM = 4 begandend | maxarr, cal, | ind.iret[j], § from 0
Portfolio Income Time Series for each series ind.indtypes ind.indtypes -1
Returns

IND TLEVELStal | tind ts[] Total Return Index | CRSP_TIMESERIES | CRSP_FLOAT NUM CRSP_LEVEL NUM = 4 begandend | maxarr, cal, | ind.tind[j], j from 0
Return Index Levels Level Time Series for each series ind.indtypes ind.indtypes -1
IND_ALEVELS aind_ts[] Capital CRSP_TIMESERIES | CRSP_FLOAT NUM CRSP_LEVEL_NUM = 4 begandend | maxarr, cal, | ind.aind[j], j from 0
Capital Appreciation Appreciation Index for each series ind.indtypes ind.indtypes -1

Index Levels Level Time Series

IND_ILEVELS iind ts[] Income Return CRSP_TIMESERIES | CRSP_FLOAT NUM CRSP_LEVEL NUM = 4 begandend | maxarr, cal, | ind.iind[j], j O to
Income Return Index Index Level Time for each series ind.indtypes ind.indtypes -1

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 107

C LANGUAGE DATA STRUCTURE FOR CRSP INDEXES DATA

All CRSP-defined data types have names in all capitals beginning with crsp_ and are immediately followed by the definitions in the next indented level.

Index and date ranges for all elements in a structure are the same as for the structure itself. There are four structure levels indicated by the indentation in the Mne-
monic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates
data grouped in modules. See the Data Description Guide for data item definitions.

All character strings, indicated by char [#], are null terminated. The number of characters - 1 is the maximum string length allowed. Actual maximums may be
lower. The top level ind structure is an example used by CRSP Indexes sample programs. Other names can be used, and multiple CRSP_IND STRUCTs may be

declared in a program.

MNEMONIC

C DATATYPE

C DATA USAGE

C INDEX RANGE

C DATE USAGE

C OBJECT TYPE

ind Master Indexes Structure GRS ERUNDESITRUCTIN o

indhdr Indexes Header Object ind.indhdr_row

indno INDNO int ind.indhdr->indno

indco INDCO int ind.indhdr->indco

primflag Index Primary Link int ind.indhdr->primflag

portnum Portfolio Number if Subset Series | int ind. indhdr->portnum

indname Index Name char[80] ind.indhdr->indname

groupname Index Group Name char[80] ind.indhdr->typename

method Index Methodology Description CRSP_IND_METHOD ind.indhdr->method
Structure

methcode Index Method Type Code int ind.indhdr>method.methcode

primtype Index Primary Methodology Type | int ind.indhdr>method.primtype

subtype Index Secondary Methodology int ind.indhdr->method.subtype
Group

wgttype Index Reweighting Type Flag int ind.indhdr->method.wgttype

wgtflag Index Reweighting Timing F|ag int ind.indhdr->method.wgtflag

flags Index Exception Handling Flags CRSP_IND_FLAGS ind.indhdr->flags

flagcode Index Basic Exception Types Code | int ind.indhdr->flags.flagcode

addflag Index New Issues F|ag int ind.indhdr->flags.addflag

delflag Index Ineligible Issues Flag int ind.indhdr->flags.delflag

delretflag Return of Delisted Issues Flag int ind.indhdr>flags.delretflag

missflag Index Missing Data F|ag int ind.indhdr->flags.missflag

partuniv Index Subset Screening Structure CRSP_UNIV_PARAM ind.indhdr->partuniv

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 108

MNEMONIC

C DATATYPE

C DATA USAGE

C INDEX RANGE C DATE USAGE C OBJECT TYPE

in the Universe in an Index
Restriction

partunivcode | Universe Subset Types Code in a int ind.indhdr>partuniv.univcode
Partition Restriction

begdt Partition Restriction Beginning int ind.indhdr->partuniv.begdt
Date

enddt Partition Restriction End Date int ind.indhdr->partuniv.enddt

wantexch Valid Exchange Codes in the int ind.indhdr>partuniv.wantexch
Universe in a Partition Restriction

wantnms Valid NASDAQ Market Groups int ind.indhdr>partuniv.wantnms
in the Universe in a Partition
Restriction

wantwi Valid When-Issued Securities int ind.indhdr>partuniv.wantwi
in the Universe in a Partition
Restriction

wantinc Valid Incorporation of Securities | int ind.indhdr>partuniv.wantine
in the Universe in a Partition
Restriction

shred Share Code Screen Structureina | CRSP_UNIV_SHRCD ind.indhdr->partuniv.shrcd
Partition Restriction

sccode Share Code Groupings for Subsets | int ind.indhdr>partuniv.shrcd.
in a Partition Restriction sccode

fstdig Valid First Digit of Share Codeina | int ind.indhdr>partuniv.shrcd.
Partition Restriction fstdig

secdig Valid Second Digit of Share Code in | int ind.indhdr>partuniv.shrcd.
a Partition Restriction secdig

induniv Partition Subset Screening CRSP_UNIV_PARAM ind.indhdr->induniv
Structure

indunivcode | Universe Subset Types Codeinan | int ind.indhdr>induniv.univcode
Index Restriction

begdt Restriction Begin Date int ind.indhdr->induniv.begdt

enddt Restriction End Date int ind.indhdr->induniv.enddt

wantexch Valid Exchange Codes in the int ind.indhdr>induniv.wantexch
Universe in an Index Restriction

wantnms Valid NASDAQ Market Groups int ind.indhdr>induniv.wantnms
in the Universe in an Index
Restriction

wantwi Valid When-Issued Securities int ind.indhdr->induniv.wantwi

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 109

MNEMONIC C DATATYPE C DATA USAGE C INDEX RANGE C DATE USAGE C OBJECT TYPE

wantinc Valid Incorporation of Securities | int ind.indhdr>induniv.wantinc
in the Universe in an Index
Restriction
shred Share Code Screen Structure inan | CRSP_UNIV_SHRCD ind.indhdr->induniv.shrcd
Index Restriction
sccode Share Code Groupings for Subsets | int ind.indhdr>induniv.shrcd.sccode

in an Index Restriction
fstdig Valid First Digit of Share Code in int ind.indhdr>induniv.shrcd. fstdig
an Index Restriction

secdig Valid Second Digit of Share Code in int ind.indhdr>induniv.shrcd.secdig
an Index Restriction

rules Portfolio Building Rules Structure | CRSP_TND_RULES ind.indhdr->rules

rulecode Index Basic Rule Types Code int ind.indhdr->rules.rulecode

buyfnct Index Function Code for Buy Rules | int ind.indhdr->rules.buyfnct

sellfnct Index Function Code for Sell Rules | int ind.indhdr->rules.sellfnct

statfnct Index Function Code for int ind.indhdr->rules.statfnct
Generating Statistics

groupilag Index Statistic Grouping Code int ind.indhdr>rules.groupflag

assign Related Assignment Information CRSP_IND_ASSIGN ind.indhdr->assign

assigncode Index Basic Assignment Types int ind.indhdr>assign.assigncode
Code

asperm INDNO of Associated Index int ind.indhdr->assign.asperm

asport Portfolio Number in Associated int ind.indhdr->assign.asport
Index

rebalcal Calendar Identification Number of | int ind.indhdr>assign.rebalcal
Rebalancing Calendar

assigncal Calendar Identification Number of | int ind.indhdr>assign.assigncal
Assignment Calendar

calccal Calendar Identification Number of | int ind.indhdr->assign.calccal

Calculations Calendar

rebal Array of Rebalancing Arrays int ind.rebal[j] [i].rbbegdt 3 between o and ind. data valid from ind. array of ind.rebal_arzr
rebaltypes - 1,ibetween | rebal[j][i].rbbegdt 10
oand ind. rebal arr[j]- ind.rebal[j][i] .rbenddt
>num-1

rbbegdt Index Rebalancing Begin Date int ind.rebal[j] [i].rbbegdt

rbenddt Index Reba|ancing End Date int ind.rebal[j][i].rbenddt

usdcnt Count Used as of Rebalancing int ind.rebal[j][i].usdcnt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 110

MNEMONIC C DATATYPE C DATA USAGE C INDEX RANGE C DATE USAGE C OBJECT TYPE

maxcnt Maximum Count During Period int ind.rebal[j] [i] .maxent
totent Count Available as of Rebalancing | int ind.rebal[j] [i].totent
endent Count at End of Rebalancing int ind.rebal[j][i].endcnt
Period
minid Statistic Minimum Identifier int ind.rebal[j] [i].minid
maxid Statistic Maximum Identifier int ind.rebal[j][i].maxid
minstat Statistic Minimum in Period double ind.rebal[j][i].minstat
maxstat Statistic Maximum in Period double ind.rebal[j][i] .maxstat
medstat Statistic Median in Period double ind.rebal[j][i] .medstat
avgstat Statistic Average in Period double ind.rebal[j][1i].avgstat
list j between 0 and ind. valid from ind.list([j] arrayof ind.list arr
listtypes - 1, i between [1].beg to ind.list[j]
0 and ind.list arr[j]l- [i].enddt
>num-1
list List Arrays int ind.list[j][i].permno
permno Permanent Number of Securities | int ind.list[j][i].permno
in Index List
begdt First Date Included in List int ind.list[j][i].begdt
enddt Last Date Included in a List int ind.list[j][i].enddt
subind Index Subcategory Code int ind.list[j][i].subind
weight Weight of an Issue double ind.list[j][1].weight
Time Series
Data Arrays
aind Index Capital Appreciation Index float* ind.aind[j][1] j between 0 and valueondate ind.aind arrayof ind.aind ts
Level indtypes-1, i between ts[j]->cal>caldt [i]
ind.aind ts[j]->beg and
ind.aind_ts[j]->end
aret Index Capital Appreciation Return | float* ind.aret[j] [4] 3 between 0 and valueondate ind.aret arrayof ind.aret ts
indtypes-1, i between ts[jl->cal>caldt[i]
ind.aret_ts[j]->beg and
ind.aret ts[j]->end
iind Index Income Index Level float* ind.iind[Jj][1] j between 0 and valueondate ind.iind arrayof ind.iind ts
indtypes-1, i between ts[j]l->cal>caldt[i]
ind.iind ts[j]->beg and
ind.iind ts[j]->end

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 111

MNEMONIC

NAME

C DATATYPE

C INDEX RANGE

C DATE USAGE

C OBJECT TYPE

indtypes-1, i between
ind.totval ts[j]->beg
and ind.totval ts[j]-

>end

ts[j]l>cal->caldt[i]

iret Index Income Return float* ind.iret[j][1] j between 0 and valueondate ind.iret arrayof ind.iret ts
indtypes-1, i between ts[j]l->cal>caldt([i]
ind.iret ts[j]->beg and
ind.iret ts[j]->end

tind Index Total Return Index Level float* ind.tind[j][1i] j between 0 and valueondate ind.tind arrayof ind.tind ts
indtypes-1, i between ts[j]->cal>caldt[i]
ind.tind_ts[j]->beg and
ind.tind ts[j]->end

tret Index Total Return float* ind.tret[j][1] j between 0 and valueondate ind.tret arrayof ind.tret_ts
indtypes-1, i between ts[j]->cal>caldt([i]
ind.tret_ts[j]->beg and
ind.tret_ts[jl->end

usdcnt Index Used Count float* ind.usdent[j][1] j between 0 and valueondate ind.usdent arrayof ind.usdent_ts
indtypes-1, i between ts[jl>cal->caldt[i]
ind.usdcnt_ts[j]->beg
and ind.usdcnt_ts[j]-
>end

totcnt Index Total Count float* ind.totent 3] [1] j between 0 and valugondate ind.totcnt arrayof ind.totcnt_ts
indtypes-1, i between ts[jl>cal->caldt[i]
ind.totcnt_ts[j]->beg
and ind.totcnt ts[j]-
>end

usdval Index Used Value float* ind.usdval[j][i] j between 0 and valueondate ind.usdval_ arrayof ind.usdval_ts

indtypes-1, i between ts[jl>cal->caldt[i]
ind.usdval_ts[j]->beg
and ind.usdval ts[j]-
>end

totval Index Total Value float* ind.totval(j] [4i] j between 0 and valueondate ind.totval arrayof ind.totval ts

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 112

C SAMPLE PROGRAMS

There are two sample programs provided that can process the CRSP Stock Database using C. These programs can load
stock and indexes data structures for processing. The sample program code contains additional comment information.

AN Read Stock Data Sequentially

Stk_samp1.c creates a namelist of current names by reading a stock database sequentially
in PERMNO order. It loads one index series before processing the stock data. Output is one line of
header information per security. stk_samp1.c accepts parameters for database directory, stock
set identifier, indexes set identifier, INDNO, CRSP’s permanent index identification number, and
output file name.

I\ V[2He Read Stock Data with a PERMNO List File

Stk_samp2.c reads a stock database using an input file of PERMNOs. It loads one set of
indexes before processing the input list. Output is one line of header information per security.
stk_sampZ2.c accepts parameters for database directory, stock set identifier, indexes set
identifier, Permanent Index Identification Number, input file name, and output file name.

Y\ Process an Input File of PERMNOs with Date Ranges

stk_samp3.c uses CRSP C library functions to read a space-delimited text input file
with PERMNOs and beginning and ending date ranges in YYYYMMDD format. It outputs date,
PERMNO, end of previous week, exchange code, end of current week adjusted price, end of
current week index level for a selected index, end of previous week capitalization, and weekly

total returns.

C HEADER FILES AND DATA STRUCTURES

Header files contain all needed structure definitions, constants, and function prototypes. Two C header files are suffi- cient
to define all CRSP structures, constants, and functions.

1. crsp.h defines all structures and constants used by the CRSP C access and utility functions, and the function

definitions. crsp.h includes several other header files. The primary definitions needed for stock databases are in crsp_
objects.h, crsp_const.h, crsp_stk_objects.h, and crsp_stk_const.h. The primary definitions needed for the indexes data
are in crsp_objects. h, crsp_const.h, crsp_ind_objects.h, and crsp_ind_const.h.

2. crsp_init.h declares internal variables needed to store initialization and error information. This should only be included
in the main program and not in any function modules.

The following list is a more complete summary of individual stock and indexes header files that are included by crsp.h. All
header files are kept in the crRsp_INCLUDE directory.

HEADER FILE DESCRIPTION

crsp stk.h

top level stock header file includes all needed header files for CRSP Stock access

crsp_stk objects.h

defines top level CRSP_STK_STRUCT structure for Stock Data

crsp objects.h

defines all object structures and data array structures for all supported types

crsp_stk const.h

defines stock constants and wanted parameters

crsp const.h

defines generic CRSP constants

crsp_access_stk.h

defines stock access function prototypes

crsp_util_stk.h

defines stock utility function prototypes

crsp_ind.h

top level indexes header file includes all needed header files for CRSP Indexes access

crsp ind objects.h

defines top level CRSP_IND_STRUCT structure for Indexes Data

crsp_ind const.h

define indexes constants and wanted parameters

crsp access_ind.h

defines index access function prototypes

crsp_util ind.h

defines index utility function prototypes

crsp sysio.h

defines system-specific constants

crsp_maint.h

defines internal data structures

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 113

CRSPACCESS C LIBRARY

The CRSPAccess C Library contains the Application Programming Interface (API) used to access and to process the data.
The library is broken into sections based on the type of operations. The following major groups are available. Each can
be further subdivided into subgroups. Functions within subgroups are alphabetical. Each function includes a function

prototype, description, list of arguments, return values, side effects, and preconditions for use.

C LIBRARY CATEGORY DESCRIPTION PAGE

Stock Access Functions Functions used to load stock data from the database into structures page 114
Index Access Functions Functions used to load index data from the database into structures page 128
General Access Functions General calendar and access functions page 137
General Utility Functions Functions utility to process base CRSPAccess structures page 148
Data Utility Functions Functions used to manipulate stock or indexes data page 171

STOCK ACCESS FUNCTIONS

The following tables list the available functions to access CRSPAccess Stock Data. Standard usage is to use an open
function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if there
is a matching structure defined for each one.

FUNCTION DESCRIPTION PAGE

crsp_stk_clear Loads Missing Values to Arrays in a Stock Set Structure page 114
crsp_stk close Closes a Stock Set page 115
crsp_stk_free Deallocates Memory and Reinitializes a Stock Set Structure page 115
crsp_stk_init Initializes a CRSPAccess Database for Stock Access page 118
crsp_stk_open Opens a Stock Set in a CRSPAccess Database page 116
crsp_stk_read Loads Wanted Stock Data For a PERMNO page 120
crsp_stk_read_cus Loads Wanted Stock Data Using Header CUSIP Identifier, Header as the Key page 117
crsp_stk_read permco Loads Wanted Stock Data Using PERMCO as the Key page 122
crsp_stk_read_hcus Loads Wanted Stock Data Using Historical CUSIP as the Key page 118
crsp_stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key page 122
crsp_stk_read_ticker Loads Wanted Stock Data Using Ticker Symbol, Header as the Key page 120
crsp_stk_read_subset Loads Wanted Stock Data for a PERMNO Applying All Subsetting Filters page 121
crsp_stk_read key Loads Wanted Stock Data Using Any Supported Key page 123
crsp_stk_read_key_subset Loads Wanted Stock Data Using Supported Key Applying Subsetting Filters page 121
crsp_stk_alloc Allocates and Initializes Stock Structures page 122
crsp_stk_copy Copies Data from One Stock Structure to Another page 122
crsp_stk_delete Deletes Stock Data for an Existing PERMNO page 122
crsp_stk_insert Inserts New Stock Data for a PERMNO page 123
crsp_stk_modload Allocates and Loads a Module Structure page 123
crsp_stk _newset Inserts a Set of Stock Modules to a CRSP Root Directory page 123
crsp_stk null Function to Zero out the Stock Structure Before Used page 127
crsp_stk_update Updates Stock Data for an Existing PERMNO page 129
crsp_stk_del fromset Removes Modules from Stock Set from a CRSP Root Directory page 124
crsp_stk_add_toset Adds Modules to Stock Set to a CRSP Root Directory page 124
crsp_stk_get_allissues_key Get all Issues for a key page 125

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 114

crsp_stk_clear Loads Missing Value Arrays in a Stock Set Structure

PROTOTYPE: int crsp stk clear (CRSP_STK STRUCT *stk, int clearflag)

DESCRIPTION: Function to clear the stk structure before used. Load defined missing values to all allocated objects in a stock set structure. It is assumed
that the pointers are either NULL or have been allocated by a set open function. The function allows clearing on a range level, range and
array level, or array level.

ARGUMENTS: CRSP_STK STRUCT *stk — pointerto astock structure pointer to be cleared.
int clearflag — constant identifying the level of clearing. Supported values are:

e crsp_crLear 1NIT —only reset num for CRSP_ARRAYs and beg and end for crsp_r1mMEsERIES, and nothing for
CRSP_ROWS

® crsp CLEAR ALL - Set ranges to missing and sets missing values for all elements in the object arrays

® CrSP CLEAR RANGE — Set missing values for all elements in the object arrays within the range between beg and
endinacrsp_TIMESERIES Of between 0 and num-1inacrsp array, or the single element in a CRSP_ROW.

® CrsSP CLEAR SET —Setrangesinthe 0'th element of a crsp_TIMESERIES array or the maxarr-1'th element of a
CrSP_ARRAY 10 missing values specific to the array type, or missing values in crsp_row element.

RETURN VALUES: CRSP_SUCCESS: if success

CRSP_FAIL: if bad parameters
SIDE EFFECTS: The stock structure pointer has all allocated fields initialized according to the c1earflag
PRECONDITIONS: The stock structure must either have object fields set to NULL or allocated with a set open function.
CALL SEQUENCE: Canbe called after crsp stk open and before each crsp stk readcall.

crsp_stk_close Closes a Stock Set

PROTOTYPE: int crsp stk close (int crspnum, int setid, CRSP_STK STRUCT *stkptr)

DESCRIPTION: closes a stock set

ARGUMENTS: int crspnum - identifier of CRSP database, as returned by open
int setid - identifier of the stock set code to close
CRSP_STK_STRUCT *stkptr — pointerto stock structure to be deallocated; if NULL nothing is deallocated

RETURN VALUES: CRSP_SUCCESS: if successfully closed stock set
CRSP_FAIL: if error closing a file or illegal parameter

SIDE EFFECTS: All stock module files are closed, memory allocated by them are freed. If these are the last modules open in the database, the root is also
closed. The stock structure associated with the set is deallocated if st kptr is not NULL.

PRECONDITIONS: The crspnum and setid must be taken from a previous crsp_stk_open call

CALL SEQUENCE: Called by external programs, must be preceded by call to crsp_stk_open calls crsp_closeroot, crsp_closemod.

crsp_stk_free Deallocates Memory and Reinitializes a Stock Set Structure

PROTOTYPE: int crsp stk free (int crspnum, int setid, CRSP_STK STRUCT *stkptr)

DESCRIPTION: deallocates memory and reinitializes a stock set structure

ARGUMENTS: int crspnum — identifier of crsp database, as returned by open
int setid - identifier of the stock set code to close
CRSP_STK_STRUCT *stkptr — pointer to stock structure

RETURN VALUES: CRSP_SUCCESS: if successfully deallocated and reset stock structure, or stk structure is nurz
CRSP_FAIL: if error deallocating memory, error in parameters

SIDE EFFECTS: The stock structures are reset so all pointers are nuz.L and all settings are 0. All memory allocated to existing object element lists is freed.

PRECONDITIONS: The crspnum must be known from a previous crsp_stk_open 0f crsp_openroot call. The setcode is an installation-defined code
for the set.

CALL SEQUENCE: Called by external programs or by crsp_stk_close must be preceded by callto crsp stk alloccalls crsp freemod.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 115

crsp_stk_init Initializes a CRSPAccess Database for Stock Access

PROTOTYPE: int crsp stk _init(CRSP_STK STRUCT *stkptr)

DESCRIPTION: initializes internal access for stock cRspDBs and sets stock structure pointers to NULL. See crsp_stk_clear toclear datafroma
stock structure.

ARGUMENTS: CRSP_STK_STRUCT *stkptr — pointer to a stock structure to initialize. This argument can be nuwt to initialize a stock database
without resetting the structure.

RETURN VALUES: CRSP_SUCCESS: if stock internals successfully initialized
CRSP_FAIL: if error opening or reading initialization file

SIDE EFFECTS: Internal structures will be initialized, including the array of known stock sets. They will be stored in static structures in this module and used
by other stk functions. All of the pointers in the stock structure stkptr will be set to NULL. If a structure is already initialized with crsp_stk_
open, crsp_stk_free should be used or memory will be lost.

PRECONDITIONS: None; crsp stk _initiscalledby crsp stk open

crsp_stk_ open Opens an Existing Stock Set in a CRSPAccess Database

PROTOTYPE: int crsp stk open (char *root, int setid, CRSP_STK STRUCT *stkptr, int wanted, char *mode,
int bufferflag)

DESCRIPTION: opens an existing stock set in a CRSPAccess Database

ARGUMENTS: char *root —path ofroot directory. If the root is NUT.L, the CRSP_DSTK or CRSP_MSTK environment variables are used.

int setid - the setidentifier

10 — Daily CRSP Stock Database

20 — Monthly CRSP Stock Database

CRSP_STK_STRUCT *stkptr — pointer within stock structure to be associated with this database. If wanted objects in stkptr are
NULL then space for objects where the structure is allocated by this function.

int wanted — mask indicating which modules will be used. The list below shows the wanted values for the stock modules. The wanted
values can be summed or summary wanted values can be used to open multiple modules. Only modules that are selected in the wanted
parameter have memory allocated in the stock structure and only those modules can be accessed in further access functions to the
database.

INDIVIDUAL MODULES:

STK_HEAD 1 header structure

STK_EVENTS 2 names, dists, shares, delists, nasdin

STK_LOWS 4 lows

STK_HIGHS 8 highs

STK_PRICES 16 close or bid/ask average

STK_RETURNS 32 total returns

STK_VOLUMES 64 volumes

STK_PORTS 128 portfolios

STK_BIDS 256 bids

STK_ASKS 512 asks

STK_RETXS 1024 returns without dividends

STK_SPREADS 2048 spreads

STK_TRADES/STK_ALTPRCDTS 4096 number of trades or alternative price dates
STK_ALTPRCS/STK_OPENPRCS 8192 alternate prices or open prices
STK_GROUPS 6384 groups

GROUP OF MODULES:

STK_INFOS 3 header and event data

STK_DDATA 124 price, high, low, volume and returns time series
STK_SDATA 4864 bids, asks, and number of trades time series

STK_sTD 5119 header, events, prices, high, low, volume, returns, and ports

STK_ALL 32767 all modules

char *mode — usage while open (r=read, rw=read/write)

int bufferflag — level of buffering: 0: no buffering, 1: use default, n: use factor of default

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 116

RETURN VALUES: crspnun: (integer) if opened successfully. This crspnum is used in further access functions to the database.

CRSP_FAIL: (integer) if error opening or loading files, if bad parameters, root already opened exclusively, stock set already opened rw,
wanted not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for
internal or stock structures.

SIDE EFFECTS: This will load root and stock initialization files if needed, open the root including loading the configuration structure and index structures to
memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the log
file. Files will be opened for all wanted modules. Associated calendars will be loaded if necessary. wanted stock structures will be allocated.

PRECONDITIONS: None. The root may already be open under a different set in r mode.

crsp_stk_read Loads Wanted Stock Data for a Security by PERMNO

. int crsp s rea int crspnum, int setid, in ey, in eyflag, stkptr,
PROTOTYPE: int stk d (int int tid, int *k int keyfl CRSP_STK_STRUCT*stkpt

int wanted)

DESCRIPTION: loads wanted stock data for a PERMNO

ARGUMENTS: int crspnum - crspdb root identifier returned by crsp_stk_open

int setid - the setidentifier used in crsp_stk_open

int *key - specific PERMNO of data to load, or pointer to integer that will be loaded with the key found if a positional ke yflag is used.
int keyflag — CRSP_EXACT constant to search for the PERMNO in *key, or positional constant:
CRSP_FIRST - the first key in the database

CRSP_PREV — the previous key

CRSP_LAST — the last key in the database

CRSP_SAME — the same key

CRSP_NEXT — the next key

CRSP_STK STRUCT *stkptr —structure toload data

int wanted — mask of flags indicating which module data to load. See crsp_stk_open for module codes.

RETURN VALUES: CRSP_SUCCESS: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file CRSP_FOUND_OTHER: if key found in root, but not for this setid
CRSP_NOT_ FOUND: if key not found in root

CrRsp_FAIL:if error with bad parameters, invalid or unopened cxrspnum error in read, impossible wanted

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read
is reset based on the key found. If keyflag is a positional qualifier, the actual PERMNO found is loaded to *key . Data is only loaded to
wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

PRECONDITIONS: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call. st kpt r must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open function.

crsp_stk read cus Loads Wanted Stock Data Using CUSIP Identifier, Header as the Key

PROTOTYPE: int crsp stk read cus (int crspnum, int setid, char *cusip, int keyflag,CRSP_STK STRUCT
*stkptr, int wanted)

DESCRIPTION: loads wanted stock data for a security using the CUSIP Identifier, Header (hcusip) as the key

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 117

ARGUMENTS: int crspnum - crspdb rootidentifier returned by crsp stk open

int setid—thesetidentifierusedin crsp stk open

char *cusip — CUSIP Identifier, Header to load, or pointer to string that will be loaded with the key found if a positional ke yflag is used.
int keyflag — qualify conditions of key searches:

CRSP_EXACT — only accept an exact match

CRSP_BACK —ind last previous key if no exact match

Ccrsp_FORWARD — find the first following key if no exact match or positional constant:

CRSP_FIRST — the first key in the database

CRSP_PREV — the previous key

CRsP_LAST — the last key in the database

CRSP_SAME — the same key

CRSP_NEXT — the next key

CRSP_STK_STRUCT *stkptr — structure to load data

int wanted — mask of flags indicating which module data to load. See crsp stk open for module codes.

RETURN VALUES: CRSP_SUCCESS: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file

CRSP_NOT_FOUND: if key not found

CrsP_FAIL:if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted, invalid CUSIP index

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read
is reset based on the key found. If ke yflag is a positional qualifier, the actual CUSIP Identifier, Header found is loaded to *cusip. Data
is only loaded to wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded
data

PRECONDITIONS: The stock set must be previously opened. The crspnum must be returned from a previous crsp stk _open call. stkpt r must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp stk _open function.

crsp_stk read permco Loads Wanted Stock Data Using PERMCO as the Key

PROTOTYPE: int crsp stk read permco (int crspnum, int setid, int *permco, int keyflag, CRSP_STK_ STRUCT
*stkptr, int wanted)

DESCRIPTION: loads wanted stock data for a security using PERMCO as the key

ARGUMENTS: int crspnum— crspdb root identifier returned by crsp stk open

int setid —thesetidentifierusedin crsp stk open

int *permco — PERMCO to load, or pointer to an integer that will be loaded with the key found if a positional ke yflag is used.
int keyflag — positional qualifier or match qualifier — see crsp_stk read cus

CRSP_STK_STRUCT *stkptr — structure toload data

int wanted — mask of flags indicating which module data to load. See crsp_stk_open for module codes.

RETURN VALUES: CRSP_succCEss: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file

CRSP_NOT_FOUND: if key not found

CRSP_FAIL: if error with bad parameters, invalid or unopened crspnumand stknum, error in read, impossible wanted, invalid
PERMCO index

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read is
reset based on the key found. If xeyflag is a positional qualifier, the actual PERMCO found is loaded to *PERMCO. Data is only loaded to
wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

PRECONDITIONS: The stock set must be previously opened. The crspnum must be returned from a previous crsp stk _open call. stkpt r must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp stk _open function.

crsp_stk read hcus Loads Wanted Stock Data Using Historical CUSIP as the Key

PROTOTYPE: int crsp stk read hcus (int crspnum, int setid, char *cusip, int keyflag, CRSP_STK STRUCT
*stkptr, int wanted)

DESCRIPTION: loads wanted stock data for a security using historical CUSIP as the key

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 118

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crspnum-— crspdb rootidentifier returned by crsp stk open

int setid-—thesetidentifierusedin crsp stk open

char *cusip - historical CUSIP to load, or pointer to string that will be loaded with the key found if a positional ke yflag is used.
int keyflag — positional qualifier or nomatch qualifier—see crsp stk read cus

CRSP_STK_STRUCT * stkptr — structureto load data

int wanted — mask of flags indicating which module data to load. See crsp_stk_open for module codes.

CRSP_sUCCESS: if data loaded successfully

CrRsp_EOF: if next or previous key at end or beginning of file

CRSP_NOT_FOUND: if key not found

CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid CUSIP index

Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read is
reset based on the key found. If ke yflag is a positional qualifier, the actual historical CUSIP found is loaded to * cusip. Data is only loaded
to wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data

The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call. st kpt r must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp stk _open function.

crsp_stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp stk read siccd (int crspnum, int setid, int *siccd, int keyflag, CRSP_STK STRUCT
*stkptr, int wanted)

loads wanted stock data for a security using Standard Industrial Classification (SIC) Code (siccd) as the key

int crspnum- crspdb rootidentifier returned by crsp stk open

int setid—thesetidentifierusedincrsp stk _open

int *siccd - siccdtoload, or pointer to integer that will be loaded with the key found if a positional ke yflag is used.
int keyflag — positional qualifier or no match qualifier— see crsp stk _read cus

CRSP_STK_STRUCT *stkptr — structure to load data

int wanted — mask of flags indicating which module data to load. See crsp stk open for module codes.

CRSP_SUCCESS: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file

CRSP_NOT_FOUND: if key not found

CRSP_FATL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted, invalid siccd index

Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read
is reset based on the key found. If keyflag is a positional qualifier, the actual SIC Code found is loaded to *siccd. Data is only loaded to
wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

The stock set must be previously opened. The cr spnum must be returned from a previous crsp_stk open call. st kptr must have been
passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp stk _open function.

crsp_stk read ticker Loadsthe Wanted Stock Data Using Ticker, Header as the Key

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

int crsp stk read ticker (int crspnum, int setid, char *ticker, int keyflag, CRSP STK STRUCT
*stkptr, int wanted)

loads wanted stock data for a security using Ticker, Header as the key

int crspnum-— crspdb root identifier returned by crsp stk open

int setid-thesetidentifierusedincrsp stk open

char *ticker - pointertoheader ticker toload, or pointer to string that will be loaded with the key found if a positional ke yflag is used.
int keyflag — positional qualifier or no match qualifier— see crsp stk _read cus

CRSP_STK_STRUCT *stkptr — structure to load data

int wanted — mask of flags indicating which module data to load. See crsp stk open for module codes.

CRSP_SUCCESS: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file

CRSP_NOT_FOUND: if ticker not found

CrsP_FAIL:if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid ticker index

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 119

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read is
reset based on the key found. If ke yflag is a positional qualifier, the actual header ticker found is loaded to *t i cker . Data is only loaded
to wanted data structures within the range of valid data for the security. Use stock clear functions to erase previously loaded data.

PRECONDITIONS: The stock set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call. st kpt r must have
been passed to a previous crsp_stk_open call. wanted must be a subset of the wanted parameter passed to the crsp_stk_open
function.

crsp_stk read subset Loads wantea Stock Data for a PERMNO Applying Subsetting Filters

PROTOTYPE: int crsp_stk_read_subset (int crspnum, int setid,int*key, int keyflag, CRSP_STK STRUCT *stkptr, int wanted,
CRSP_UNIV_PARAM_LOAD *subpar)

DESCRIPTION: loads wanted stock data for a PERMNO applying all subsetting filters

ARGUMENTS: int crspnum-— crspdb rootidentifier returned by crsp stk open

int setid—thesetidentifierusedin crsp stk _open

int *key —PERMNO to load

int keyflag — positional qualifier or no match qualifier

CRSP_STK_STRUCT *stkptr — structure to load data

int wanted —mask of flags indicating which module data to load

CRSP_SUBSET PARAM LOAD *subpar — pointer to structure containing subsetting flags

RETURN VALUES: CRSP_SUCCESS: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file

CRsp_NOT_FOUND: if PERMNO not found

CRSP_FAIL: if error with bad parameters, invalid or unopened crspnumand stknum, error in read, impossible wanted, invalid PERMNO index

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the structure. The data loaded in the module buffers may be
changed. The position for further reads will be set to the location of the read. Multiple PERMNOs may be loaded on a positional read if
subsetting totally eliminates PERMNOs that otherwise would be loaded.

PRECONDITIONS: The stock set must be previously opened. The stknum and crspnumand stkpt r are the same as opened and the wanted must be a
subset of the wanted open. The subset parameter structure must be loaded with valid flags. See the crsp_stk_subset_parload function on
page 181.

crsp_stk read key Loads Wanted Stock Data Using Any Supported Key

PROTOTYPE: int crsp stk read key (int crspnum, int setid, void *key, int keytype, int keyflag, CRSP
STK STRUCT *stkptr, int wanted)

DESCRIPTION: Loads wanted stock data using any supported key. Supported keys are PERMNO, Header CUSIP, Historical CUSIP, Historical SIC Code,
Header Ticker and PERMCO.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 120

ARGUMENTS: int crspnum-— crspdb rootidentifier returned by crsp_stk_open
int setid-—thesetidentifierusedincrsp stk open

void *key - keymust point to a structure that matches the xeytype
intif keytype =CRSP_SCD_NUM

CRSP_ScD_cus if keytype = CRSP_SCD_CUSIP

CRSP_SCD_cus if keytype = CRSP_SCD_HCUSIP

CRSP_scD_INT if keytype = CRSP_SCD_SICCD

CRSP_SCD_cus if keytype = CRSP_SCD TICKER

CRSP_scD_INT ifkeytype=CRSP SCD PERMCO

int keytype — The keyword identifying the key to search on. Values are:
CRSP_SCD_cusIp — Header CUSIP

CRSP_scD_HCUsIP — Historical CUSIP

CRSP_scD_sIcch - Historical SIC Codes

CRSP_SCD_TICKER — Header Ticker

CRSP_SCD PERMCO — PERMCO

CRsP_scD_NuM - PERMNO

int keyflag — positional qualifier or no match qualifier. Positioned qualifiers are dependent on the keys selected.
CRSP_STK_STRUCT *stkptr —structure toload data

int wanted —mask of flags indicating which module data to load

RETURN VALUES: CRSP_success: if data loaded successfully

CRSP_EOF —if next or previous key at end or beginning of file

CRSP_NOT_FOUND — if PERMNO not found

CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted.

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the st kpt r structure. The data loaded in the module buffers may
be changed.

PRECONDITIONS: The stock set must be previously opened. The crspnum and stkpt r are the same as opened and the wanted must be a subset of the
openwanted.

crsp stk read key subset Loads Wanted Stock Data Using Supported Key Applying Subset Filters

PROTOTYPE: int crsp stk read key subset (int crspnum, int setid, void *key, int keytype, int keyflag,
CRSP_STK_STRUCT *stkptr, int wanted, CRSP_UNIV_PARAM LOAD *subpar)

DESCRIPTION: loads wanted stock data using supported key applying subsetting filters applied. Supported keys are PERMNO, Header CUSIP, Historical
CUSIP, Historical SIC Code, Header Ticker and PERMCO.

ARGUMENTS: int crspnum- crspdb rootidentifier returned by crsp stk open
int setid—thesetidentifierusedin crsp stk _open

void *key — key must point to a structure that matches keytype
intifkeytype = CRSP_SCD_NUM

CRSP_scD_cus ifkeytype=CrRsP_scD_cusIp

CRSP_SCD_cus if keytype = CRSP_SCD HCUSIP

CRSP_SCD_INT if keytype = CRSP_SCD SICCD

CRSP_SCD_cus if keytype = CRSP_SCD_TICKER

CRSP_SCD_INT if keytype = CRSP_SCD_PERMCO

int keytype - CRSP_SCD cUsIP - Header CUSIP

CRSP_scD HCUSIP — Historical CUSIP

CRSP_scCD_s1ccD — Historical SIC Code

CRSP_SCD_TICKER — Header Ticker

CRSP_SCD_PERMCO — PERMCO

CRSP_SCD_NuM-— PERMNO

int keyflag — positional qualifier or no match qualifier

CRSP_STK STRUCT *stkptr —structure toload data

int wanted —mask of flags indicating which module data to load
CRSP_SUBSET PARAM LOAD *subpar - pointer to structure containing subsetting flags

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 121

RETURN VALUES: CRSP_SUCCESS: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file

CRSP_NOT_ FOUND: if key not found

Crsp_FAIL:if error with bad parameters, invalid or unopened crspnum and stknum, error in read, impossible wanted.

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the st kpt r structure. The data loaded in the module buffers
may be changed. The position of further reads will be set to the location of the read. Multiple PERMNOs may be loaded and discarded on a
positional read if subsetting totally eliminates PERMNOs that otherwise would be loaded.

PRECONDITIONS: The stock set must be previously opened. The crspnumand st kpt r are the same as opened and the wanted must be a subset of the
open wanted. The subset parameter structure must be loaded with valid flags. See the crsp_stk_subset_parload function page 181.

crsp_stk_alloc Builds Stock Set Object Lists, Allocates Memory, and Sets Pointers

PROTOTYPE: int crsp stk alloc (int crspnum, int setid, CRSP_STK STRUCT *stk, int wanted)

DESCRIPTION: Build stock set object lists, allocate memory, and set pointers

ARGUMENTS: int crspnum - identifier of CRSP database, as returned by open

int setid - identifier of the stock set to allocate

CRSP_STK STRUCT *stk - pointer to stock structure

int wanted - binary code of modules wanted; See CRSP_STK_OPEN.

RETURN VALUES: CRSP_sUCCESS - if successfully initialized and allocated stock structure
CRSP_FAIL - if error allocating memory, error in parameters

SIDE EFFECTS: Three levels of pointers are allocated in the stock structure.

object_element list elements are created for each wanted module

object types are allocated for each object in wanted modules, and object level pointers are set
arrays are allocated for each object, and array level pointers are set

setidand wanted are stored in the structure.

PRECONDITIONS: The crspnum must be known from a previous crsp stk _open or crsp_openroot call. The set id is an installation-defined code for the set.

CALL SEQUENCE: Called by external programs or by crsp_stk_open. Must be preceded by call to crsp stk open of crsp_openroot.Calls crsp

allocmod

crsp_stk_copy Copies Data from One Stock Structure to Another

PROTOTYPE: int crsp stk copy (CRSP_STK STRUCT *stktrg, CRSP STK STRUCT *stksrc, int wanted)

DESCRIPTION: Copies data from one stock structure to another

ARGUMENTS: CRSP_STK STRUCT *stktrg - pointer to stock structure target
CRSP_STK_STRUCT *stksrc - pointer to stock structure source
int wanted-wanted flag of modules to copy

RETURN VALUES: CRSP_SUCCESS - if successfully copied data from source to target
CRSP_FAIL -if incompatible structures

SIDE EFFECTS: Data is copied from the source structure to the target structure. The loadflag field is used to identify all wanted modules to copy.

PRECONDITIONS: Both structures must be allocated with crsp_stk_open. The wanted for the target must be a superset of the wanted in the source.
The versions of the structure must be compatible - the source modules must not have missing objects or higher maxarrs than the
counterparts in the target.

CALL SEQUENCE: Called by external programs must be preceded by call to crsp stk _open for each structure.

crsp_stk delete Deletes a PERMNO from a Stock Set

PROTOTYPE: int crsp stk delete (int crspnum, int setid, int key)

DESCRIPTION: Deletes a PERMNO from a stock set in a CRSPAccess database.

ARGUMENTS: int crspnun -identifier of root
int setid -identifier of the set
int key - PERMNO to erase from stock set

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 122

RETURN VALUES: CRSP_SUCCESS - if successfully deleted from stock set
CRSP_FAIL - if key not found, not found in set, not open for rewrite, or illegal parameter

SIDE EFFECTS: If the PERMNO is found in the set it is erased. All space allocated in the module files for this permno will be added to the free list for those
modules. If the PERMNO does not belong to any other modules, it will be erased from the index file and its address record placed on the
address file free list. Otherwise, the index file module flags will be reset and the address records for these stock modules will be set to NULL.

PRECONDITIONS: The root and stock set must be opened previously with crsp stk _open. The open must use the rw mode.

crsp_stk_ insert Adds a New PERMNO to a Stock Set

PROTOTYPE: int crsp stk _insert (int crspnum, int setid, int key, CRSP_STK STRUCT *stkptr, int wanted)

DESCRIPTION: Adds a new PERMNO to a stock set in a CRSPAccess database.

ARGUMENTS: int crspnum-CRSP database identifier from open

int setid - the setidentifier

CRSP_STK_STRUCT *stkptr - pointer to stock structure - data that will be added to the wanted modules
int wanted-astock wanted parameter indicating which stock data modules include data that will be saved.

RETURN VALUES: CRSP_SUCCESS - if successfully added
CRSP_FAIL - if bad parameters, database not open for rw, PERMNO already exists in this set

SIDE EFFECTS: Data for all modules will be added to the proper file. The free list is used to find a location in the module file and may be updated if free space
is used. If the key already exists but in different sets, the index file module flag is updated, and the new module addresses and sizes are
added to the address file. If the key is totally new, a new index file row and address file record are created.

PRECONDITIONS: The stock set must be opened previously with rw mode.

crsp_ stk modload Allocates a Module Structure and Loads a Module and Objects Information into Module Structure

PROTOTYPE: int crsp stk modload (int crspnum, int modindex, int modid, CRSP CONFIG MOD **modstruct)

DESCRIPTION: Allocates a module structure and loads a module and object information into it

ARGUMENTS: int modindex -theindex of the module inthe cRSP MODTYPE structure array
CRSP_CONFIG_MOD “modstruct - pointer to the CRSP_CONFIG_MOD structure

RETURN VALUES: CRSP_SUCCESS - if the module is loaded successfully
CRSP_FAIL - if bad parameters or error allocating and loading module structures

crsp_ stk newset Adds a Set of Stock Modules to a CRSP Database

PROTOTYPE: int crsp stk newset (char *root, int setid, int wanted)

DESCRIPTION: Adds a set of stock modules to a CRSPAccess database. Creates a new database if one does not exist.

ARGUMENTS: char *root - pathofcrspdb rootdirectory

int setid -known stock set number from initialization file

int wanted - mask determining which stock modules are supported in the set; see CRSP_STK_OPEN.
RETURN VALUES: CRSP_SUCCESS - if the stock set is added

CRSP_FATIL - if bad parameters or error manipulating root structures

SIDE EFFECTS: crsp stk newset creates anew CRSPAccess database if one does not exists; it then adds a set of stock modules to the existing crspdb.
It will add the information about the set to the configuration file and recreate the address file with the new modules added to each record.
Empty data files for the modules will be created. If the calendars are new to the root they will be added. The new modules will be assigned to
the proper calendars.

CALL SEQUENCE: crsp_newroot is called to create a CRSPAccess database if none exists. The root must be a CRSPAccess database, unopened, not
including this set id, or an empty directory.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 123

crsp_stk _null Function Zeros Out the Stock Structure Before it is Used

PROTOTYPE: int crsp stk NULL(CRSP_STK_STRUCT *stkptr)

DESCRIPTION: Function zeros out the stock structure before it is used. All pointers are set to NUL1. and integers set to 0. This does not free memory. Use
CRSP_STK_CLEAR toreset data in an allocated structure.

ARGUMENTS: CRSP_STK STRUCT *stkptr - pointer to stock structure

RETURN VALUES: CRSP_SUCCESS - if stock internals successfully initialized
CRSP_FAIL - if error opening or reading initialization file

SIDE EFFECTS: The stock structure will be set to zero according to the loadflag

PRECONDITIONS: None.

crsp_stk_ update Updates Stock Data for a Key

. int crsp stk update (int crspnum, 1int setid, 1int key, stkptr, int wante
PROTOTYPE: i _stk_upd (i i id, int k CRSP_STK_STRUCT *stk i d)

DESCRIPTION: Updates stock data for a key

ARGUMENTS: int crspnum - CRSP database root identifier returned by crsp stk open

int setid-the setidentifierusedin crsp stk _open intkey - specific PERMNO of data to write

CRSP_STK_STRUCT *stkptr - structure containing new data

int wanted - mask of flags indicating which module data to write

RETURN VALUES: CRSP_SUCCESS - if data written successfully

CRSP_FOUND_OTHER - if key found in root, but not for this set

CRSP_NOT FOUND - if key not found in root

CRSP_FAIL - if error with bad parameters, invalid or unopened crspnumand stknum for rw, error in write, impossible wanted.

SIDE EFFECTS: Data from the wanted modules will be written to the proper locations in the module files. The address file may be updated for new offsets
and sizes. If the new data does not fit within the allocated space for that key in the module file the data may be moved to a new location and
the free list modified. The data loaded in the module buffers may be changed.

PRECONDITIONS: The stock set must be previously opened with rw. The crspnumand setid are the same as opened and the wanted must be a subset
of the wanted open. The st kpt r must be compatible with the structure allocated by the open of this crspnumand setid.

crsp_stk _del fromset Deletes Modules from Stock Set from a CRSP Root

PROTOTYPE: int crsp stk del fromset (char *root, int setid, int wanted)

DESCRIPTION: Deletes modules from stock set from a CRSP root

ARGUMENTS: char *root - path of CRSP database root
int setid -identifier of the set
int wanted - binary code of modules wanted to delete

RETURN VALUES: CRSP_SUCCESS - if the stock modules are removed successfully
CRSP_FAIL - if something wrong

SIDE EFFECTS: crsp_stk_del fromset removesthe wanted modules associated with a given stock set from a CRSP database root. All wanted
modules will be erased from the address file, which will be rewritten with a new restricted record length. The index file will also be rewritten,
with keys changed to new module inclusion flags or erased altogether. The configuration file will be rewritten without the modules included in
the stk set. wanted module files of this set will be deleted. If all modules are deleted, delete and the set.

PRECONDITIONS: crsp_stk_del fromset is run off an unopened CRSP database

POSTCONDITIONS: Will leave an unopened CRSP database root

crsp_stk add toset Adds Modules to an Existing Stock Set

PROTOTYPE: int crsp stk add toset (char *root, int setid, int wanted)

DESCRIPTION: Adds modules to an existing stock set in a CRSPAccess database.

ARGUMENTS: char *root - pathof CRSP database root
int setid -identifier of the set

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 124

RETURN VALUES: CRSP_SUCCESS - if the modules are added
CRSP_FAIL - if bad parameters

SIDE EFFECTS: Extra module files are created and attach to the database configuration file. A new address file is created in the database.

PRECONDITIONS: Database must exist with set included. It is unopened. Permission must exist to write to the database root.

crsp_stk_get allissues_key Gets All Issues Associated with Key

PROTOTYPE: int crsp_stk get allissues_key (int crspnum, int setid, CRSP_ARRAY *issue arr, void *key, int
keytype, CRSP_UNIV_PARAM LOAD *subpar, CRSP_STK STRUCT *stk, int begdt, int enddt, int dateflag)

DESCRIPTION: Gets all issues associated with key and store themin cRsp_Tsp ENTITY LIST array.Can be called multiple times to append to list.

ARGUMENTS: int crspnum-CRSP database root identifier returned by crsp_stk_open

int setid-thesetidentifierusedin crsp stk open

CRSP_ARRAY *issue -integerarray to load found PERMNOs. The array type must be initialized to CRSP_ TSP _ENTITY LIST.
void *key -keymust point to a structure that matches keytype

int if keytype = CRSP_SCD NUM

CRSP_SCD CUS if keytype == CRSP_SCD CUSIP

CRSP_SCD_CUS if keytype == CRSP_SCD HCUSIP

CRSP_SCD_INT if keytype == CRSP_SCD SICCD

CRSP_SCD_CUS if keytype == CRSP_SCD TICKER

CRSP_SCD_INT if keytype == CRSP_SCD PERMCO

int keytype - CRSP_SCD CUSIP CRSP SCD HCUSIP

CRSP_SCD _SICCD CRSP SCD TICKER CRSP_SCD_PERMCO

CRSP_scD_NUM (primary - PERMNO)

CRSP_UNIV_PARAM LOAD *subpar - structure specifying subset restrictions. See CRSP_STK UBSET PARAMLOAD 0N page
page 181 for options.

CRSP_STK_STRUCT *stk -allocated stock structure used to store immediate data for determining matches.

int begdt -yyyymmdd format. If stock data is not within begdt and enddt, ignore the PERMNO

int enddt -yyyymmdd format. If stock data is not between begdt and enddt, ignore the PERMNO

int dateflag - Whether the date is relative date CcRsSp_TSP_RELDATE (1) ornotCRSP_ TSP NO RELDATE (0)

RETURN VALUES: CRSP_SUCCESS - if array loaded successfully
CRSP_FAIL - error in parameters, reads, or limits

SIDE EFFECTS: Issue array is loaded with matching issues. Only the PERMNO field is loaded.

PRECONDITIONS: The stock set must be previously opened. crspnumand stkpt r are the same as opened. Stock structure must have wanted at least
HEADER and EVENTS, and also PRICES if subset restrictions are used. Issue array must be allocated with enough space to store possible
keys. If num is nonzero, new matches will be added to the end of the list.

INDEX ACCESS FUNCTIONS

The following tables list the available functions to access CRSPAccess index data. Standard usage is to use an open
function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if there
is a matching structure defined for each one.

ACCESS FUNCTION DESCRIPTION PAGE

crsp_ind_clear Loads Missing Value Arrays in an Indexes Set Structure page 126
crsp_ind_close Closes an Indexes Set page 126
crsp_ind free Deallocates Memory And Reinitializes an Indexes Set Structure page 126
crsp_ind_init Initializes a CRSPAccess database for Indexes Access page 127
crsp_ind_open Opens an Indexes Set in a CRSPAccess Database page 127
crsp_ind_read Loads wanted Data For an Index page 131
crsp_ind alloc Allocates and Initializes Indexes Structures page 129
crsp_ind_copy Copies Data from One Stock Structure to Another page 129
crsp_ind delete Deletes Indexes Data for an Existing INDNO page 130
crsp_ind_insert Inserts New Indexes Data for a PERMNO page 130
crsp_ind modload Allocates and Loads a Module Structure page 130

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 125

ACCESS FUNCTION DESCRIPTION PAGE

crsp_ind newset Inserts a Set of Indexes Modules to a Root page 131
crsp_ind_NULL Function to Zero Out the Index Structure Before it is Used page 131
crsp_ind read subset Reads Indexes Data for One INDNO Applying Subsets page 131
crsp_ind update Updates Indexes Data for an Existing INDNO page 131
crsp_ind del fromset Removes Modules from Indexes Set from a Root Directory page 132
crsp_ind_add_toset Adds Modules to Indexes Set to a Root Directory page 132
crsp_ind free_ ind Frees Memory for Allocated Indexes Structure page 132

crsp_ind_ clear Loads Missing Value Arrays in an Index Set Structure

PROTOTYPE: int crsp ind clear (CRSP_IND STRUCT *ind, int clearflag)

DESCRIPTION: load defined missing values to all allocated objects in an index set structure. It is assumed that the pointers are either NULL or have been
allocated by a set open function. The function allows clearing on a range level, range and array level, or array level.

ARGUMENTS: CRSP_IND STRUCT *ind— pointer toanindex structure pointer to be cleared.

int clearflag — constant identifying the level of initialization. Supported values are:

CRSP_CLEAR INIT - onlyreset numfor CRSP ARRAYs and beg and end for CRSP_ TIMESERIES, and set structure to missing
values for CRSP_ROWs.

CRSP_CLEAR_ALL - set ranges to missing and set missing values for all elements in the object arrays

CRSP_CLEAR_RANGE — set missing values for all elements in the object arrays within the range between beg and end ina crsp_
TIMESERIES or between 0 and num—1ina CRSP_ARRAY, or the single elementina cCRsp_Row.

CRSP_CLEAR_SET —set ranges in the 0'th element of a CRSP_TIMESERIES array or the maxarr-1'th element of a CRsp_ARRAY to
missing values specific to the array type, or sets missing values to the single elementina crRsp_Rrow.

RETURN VALUES: CRSP_SUCCESS: if success
CRSP_FAIL:if bad parameters

SIDE EFFECTS: The index structure pointer has all allocated fields initialized according to the c1earflag

PRECONDITIONS: The index structure must either have object fields set to NULL or allocated with a set open function.

CALL SEQUENCE: call after crsp_ind open and before each crsp_ind read

crsp_ind close Closes an Index Set

PROTOTYPE: int crsp ind close (int crspnum, int setid, CRSP IND STRUCT *indptr)

DESCRIPTION: close an index set

ARGUMENTS: int crspnum — identifier of the CRSP database, as returned by crsp_ind open
int setid - identifier of the index set code to close, as used in the open
CRSP_IND STRUCT *indptr — pointertoindex structure to deallocate; if NULL, no deallocation occurs

RETURN VALUES: CRSP_success: if successfully closed index set
CrRsp_FAIL: iferror closing a file or illegal parameter

SIDE EFFECTS: All index module files are closed, and memory allocated by them in the index structure is freed. If these are the last modules open in the
database, the root is also closed. If indptr is NULL, no structure memory deallocation occurs.

PRECONDITIONS: The crspnumand setid must be taken from a previous crsp ind open call.

crsp_ind free Deallocates Memory and Reinitializes an Index Set Structure

PROTOTYPE: int crsp ind free (int crspnum, int setid, CRSP_IND STRUCT *indptr)

DESCRIPTION: deallocates memory and reinitializes an index set structure

ARGUMENTS: int crspnum — identifier of CRSPDB database, as returned by open
int setid - identifier of the index set code to free
CRSP_IND STRUCT *indptr — pointertoindex structure

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 126

RETURN VALUES: CRSP_suCCEsS: if successfully deallocated and reset index structure, or index structure is NULL
CrRsP_FAIL: if error deallocating memory, error in parameters

SIDE EFFECTS: The index structures are reset so all pointers are NUL.1. and all settings are 0. All memory allocated to existing objects is freed. There is no
effectif indptris NULL.

PRECONDITIONS: The crspnum must be known from a previous crsp_ind_open call. The set id is a predefined identifier for the index daily or monthly
series or group set of index data previously opened with crsp _ind open.

crsp_ind_initInitializes a CRSPAccess Database for Indexes Access

PROTOTYPE: int crsp ind init (CRSP_IND STRUCT *indptr)

DESCRIPTION: initializes an index structure by setting all pointers to NULL and all counts to zero. Initializes CRSP internal structures if no previous
initialization has been done.

ARGUMENTS: CRSP_IND STRUCT *indptr — pointertothe index structure to be initialized. This argument can be NULL to initialize a CRSP internal
database without resetting an existing structure.

RETURN VALUES: CRSP_sUCCESS: if index internals successfully initialized
CRSP_FATIL:if error opening or reading initialization file

SIDE EFFECTS: Internal structures will be initialized, including the array of known sets. They will be stored in internal structures in this module and used by
other CRSP functions. All the pointers in the index structure indptr will be set to NULL. If a structure is already initialized with crsp_ind
open, crsp_ind_free should be used or memory will be lost.

PRECONDITIONS: None

crsp_ind_ open Opens an Existing Index Set in an Existing CRSPDB

PROTOTYPE: int crsp ind open (char *root, int setid, CRSP_IND STRUCT *indptr, int wanted, char *mode,
int bufferflag)

DESCRIPTION: opens an existing index set in an existing cr spdb. This opens database files, allocates needed memory to a structure, and initializes
internal structures to index data can be used. See crsp_ind_clear forclearing data

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 127

ARGUMENTS: char *root — path of root directory. If root is NULL the CRSP_DSTX or CRSP_MSTK environment variables are used.

int setid — the setidentifier

400 =monthly index groups

420 = monthly index series

440 = daily index groups

460 =daily index series

CRSP_IND STRUCT *indptr — pointer toindex structure to be associated with this database. If indptris NULL then space fora
CRSP_IND STRUCT is allocated by this function.

int wanted — mask indicating which modules will be used. The list below shows the wanted values for the index modules. The wanted
values can be summed or summary wanted values can be used to open multiple modules. Only modules that are selected in the wanted
parameter have memory allocated in the index structure and only those modules can be accessed in further access functions to the database.
IND HEAD 1 header structure and index description

IND REBALS 2 rebalancinginformation for index groups

IND_LISTS 4 issuelists

IND_USDCNTS 8 portfolio used counts

IND_TOTCNTS 16 portfolio total eligible counts

IND USDVALS 32 portfolio used weights

IND _TOTVALS 64 portfolio eligible weights

IND TRETURNS 128 total returns

IND_ARETURNS 256 capital appreciation returns

IND_ IRETURNS 512 income returns

IND_TLEVELS 1024 total return index levels

IND ALEVELS 2048 capital appreciation index levels

IND ILEVELS 4096 income returnindex levels

Symbols are available for common groups of modules. IND_ALL selects all the index data.

IND_INFO= IND HEAD + IND REBALS + IND LISTS

IND RETURNS = IND TRETURNS + IND ARETURNS + IND IRETURNS

IND LEVELS = IND TLEVELS + IND ALEVELS + IND ILEVELS

IND COUNTS = IND USDCNTS + IND TOTCNTS + IND USDVALS+IND TOTVALS

IND RESULTS = IND HEAD + IND USDCNTS + IND USDVALS+IND TRETURNS

IND ARESULTS = IND HEAD + IND USDCNTS + IND USDVALS + IND ARETURNS

IND IRESULTS = IND HEAD + IND USDCNTS + IND USDVALS + IND IRETURNS

IND _STD = IND HEAD + IND COUNTS + IND TRETURNS + IND ARETURNS

IND ALL = IND INFO + IND RETURNS + IND LEVELS+IND COUNTS

char *mode — usage while open. Possible string values are:

r =read,

rw = read/write

int bufferflag — level of buffering: 0 : no buffering, 1: use default, n: use factor of default

int crspnum: if opened successfully. This crspnum is used in further access functions to the database

RETURN VALUES: int crsp_FATL: if error opening or loading files, if bad parameters, root already opened exclusively, index set already opened rw, wanted
not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for internal or
stock structures.

SIDE EFFECTS: This will load root and index initialization files if needed, open the root including loading the configuration structure and index structures
to memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the
log file. Files will be opened for all wanted modules. Associated calendars will be loaded if necessary. wanted index structures will be
allocated.

PRECONDITIONS: None; the root may already be open. If a new index structure is passed additional fields may be allocated.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 128

crsp_ind_ read Loads Wanted Index Data For an INDNO

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

crsp_ind_alloc Builds Indexes Set Object Lists, Allocates Memory, and Sets Pointers

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp ind read (int crspnum, int setid, int *key, int keyflag, CRSP_IND STRUCT

loads wanted index data for an INDNO

int crspnum-— crspdb root identifier returned by crsp _ind open

int setid-thesetidentifierusedin crsp ind openint *key — specific indno of data to load

int keyflag— CRSP_EXACT constant to search for the indno in *key, or positional constant:

CRSP_FIRST — the first key in the database

CRSP_PREV — the previous key

CRSP_LAST — the last key in the database

CRSP_SAME — the same key

CRSP_NEXT — the next key

CRSP_STK_STRUCT *indptr — structure toload data

int wanted — mask of flags indicating which module data to load. See crsp_ind open on page 127 for module codes.

CRSP_SUCCESS: if data loaded successfully

CRSP_EOF: if next or previous key at end or beginning of file

CRSP_FOUND_OTHER: if key found in root, but not for this set

CRSP_NOT_FOUND: if key not found in database

CRSP_FAIL: if error with bad parameters, invalid or unopened crspnumand setid, errorin read, impossible wanted

Data from the wanted modules will be loaded to the proper location in the index structure. The position used for the next positional read is
reset based on the key found. If ke yflag is a positional qualifier, the actual INDNO found is loaded to *key. Data is only loaded to wanted
data structures within the range of valid data for the index. Use index clear functions to erase previously loaded data.

The index set must be previously opened. The crspnum must be returned from a previous crsp_stk_open call. indptr must have
been passed to a previous crsp_stk open call. wanted must be a subset of the wanted parameter passed to the crsp_ind open
function.

int crsp ind alloc (int crspnum, int setid, CRSP_IND STRUCT *ind, int wanted)

Builds Indexes set object lists, allocates memory, and sets pointers

int crspnum - identifier of crsp database, as returned by open
int setid -identifier of the Indexes set to allocate CRSP_IND_STRUCT *ind - pointer to Indexes structure int wanted - binary code
of modules wanted

CRSP_SUCCESS - if successfully initialized and allocated Indexes structure
CRSP_FAIL - if error allocating memory, error in paramters

Three levels of pointers are allocated in the Indexes structure.

1-object_element list elements are created for each wanted module

2 - object types are allocated for each object in wanted modules, and object level pointers are set
3 - arrays are allocated for each object, and array level pointers are set.

The setcode and wanted are stored in the structure.

The crspnum must be known from a previous crsp_ind_open ofr crsp_openroot call. The setcode is an installation-defined
code for the set.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 129

crsp_ind_copy Copy Data from One Indexes Structure to Another

PROTOTYPE: int crsp ind copy (CRSP_IND STRUCT *indtrg, CRSP_IND STRUCT *indsrc, int wanted)

DESCRIPTION: Copy data from one indexes structure to another

ARGUMENTS: CRSP_IND STRUCT *indtrg - pointertoindexes structure target
CRSP_IND STRUCT *indsrc - pointer toindexes structure source
int wanted-wanted flag of modules to copy

RETURN VALUES: CRSP_SUCCESS - if successfully copied data from source to target
CRSP_FAIL - ifincompatible structures

SIDE EFFECTS: Data is copied from the source structure to the target structure. The 10adflag field is used to identify all wanted modules to copy.

PRECONDITIONS: Both structures must be allocated with crsp_ind_open. The wanted for the target must be a superset of the wanted in the source.
The versions of the structure must be compatible - the source modules must not have missing objects or higher maxarrs that the
counterparts in the target.

crsp_ind delete Deletes a PERMNO from an Indexes Set

PROTOTYPE: int crsp ind delete (int crspnum, int setid, int key)

DESCRIPTION: Deletes a PERMNO from an Indexes set

ARGUMENTS: int crspnun -identifier of root
int setid -identifier of the set
int key - PERMNO to erase from Indexes set

RETURN VALUES: CRSP_SUCCESS - if successfully closed Indexes set
CRSP_FAIL - if key not found, not found in set, not open for rewrite, or illegal parameter
SIDE EFFECTS: If the PERMNO is found in the set it is erased. All space allocated in the module file for this PERMNO will be added to the free list for that

module. If the PERMNO does not belong to any other modules, it will be erased from the index file and its address record placed on the address
file free list. Otherwise, the index file module flags will be reset and the address records for these Indexes modules will be set to NULL

PRECONDITIONS: The root and Indexes set must be opened previously with crsp_ind_open. The open must use the rw mode.

crsp_ind insert Adds anew PERMNO to an Indexes Set

PROTOTYPE: int crsp ind insert (int crspnum, int setid, int key, CRSP_IND STRUCT *indptr, int wanted)

DESCRIPTION: Adds a new PERMNO to an Indexes set

ARGUMENTS: int crspnum-crspdb identifier from open

int setid-the setidentifier

int key - PERMNO to identify the new issue

CRSP_IND STRUCT *indptr - pointerto Indexes structure, data that will be added to the wanted modules

int wanted -anIndexes wanted parameter indicating which Indexes data modules include data that will be saved.

RETURN VALUES: CRSP_SUCCESS - if successfully added
CRSP_FAIL - if bad parameters, crspdb and indnum not open for rw, PERMNO already exists in this set.

SIDE EFFECTS: Data for all modules will be added to the proper file. The free list is used to find a location in the module file and may be updated if free space
is used. If the key already exists but in different sets, the index file module flag is updated, and the new module addresses and sizes are
added to the address file. If the key is totally new, a new index file row and address file record are created.

PRECONDITIONS: the Indexes set must be opened previously with Rw mode.

crsp_ind modload Allocates a Module Structure, Loads a Module and Objects Information

PROTOTYPE: int crsp ind modload (int crspnum, int modindex, int modid, CRSP CONFIG MOD *modstruct)

DESCRIPTION: Allocates a module structure and loads a module and objects information into it

ARGUMENTS: int crsp_num -
int modindex - the index of the module in the CRsp_MODTYPE structure array. int modid -

CRSP_CONFIG MOD *modstruct -pointertothe CRsp CONFIG MOD structure

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 130

RETURN VALUES: CRSP_SUCCESS - if the module is loaded successfully
CRSP_FAIL - if bad parameters or error allocating and loading module structures

crsp_ind newset Adds a Set of Indexes Modules to a crspdb

PROTOTYPE: int crsp ind newset (char *root, int setid, int wanted)

DESCRIPTION: Adds a set of Indexes modules to a crspdb

ARGUMENTS: char *root - path of existing crspdb root directory

int setid-known Indexes set number from initialization file

int wanted - mask determining which Indexes modules are supported in the set
RETURN VALUES: CRSP_SUCCESS - if the Indexes set is added

CRSP_FAIL - if bad parameters or error manipulating root structures

SIDE EFFECTS: crsp_ind newset adds a set of Indexes modules to an existing crspdb. It will add the information about the set to the configuration
file and recreate the address file with the new modules added to each record. Empty data files for the modules will be created. If the
calendars are new to the root they will be added. The new modules will be assigned to the proper calendars.

PRECONDITIONS: The root must exist and be unopened. It is created separately with the crsp newroot function

crsp_ind null Function to Zero Out the Index Structure Before it is Used

PROTOTYPE: int crsp_ind_NULL(CRSP IND STRUCT *indptr)

DESCRIPTION: Function to zero out the index structure before used

ARGUMENTS: CRSP_IND STRUCT *indptr - pointer to stock structure

RETURN VALUES: CRSP_SUCCESS - if stock internals successfully initialized
CRSP_FAIL - if error opening or reading initialization file

SIDE EFFECTS: The index structure will be set to zero according to the 1oadflag

crsp_ind read subset Loads Wanted Indexes Data for an INDNO Applying All Subsetting Filters

PROTOTYPE: int crsp ind read subset (int crspnum, int setid, int *key, int keyflag, CRSP_IND STRUCT
*indptr, int wanted, CRSP_IND SUBSET PARAMS *subpar)

DESCRIPTION: loads wanted indexes data for an INDNO applying all subsetting filters

ARGUMENTS: int crspnum-crspdb root identifier returned by crsp_ind open

int setid-the setidentifierusedin crsp_ind openint *key - PERMNO to load

int keyflag - positional qualifier or no match qualifier

CRSP_IND STRUCT *indptr - Structure toload data

int wanted - mask of flags indicating which module data to load

CRSP_IND SUBSET PARAMS *subpar - pointer to structure containing subsetting flags

RETURN VALUES: CRSP_SUCCESS - if data loaded successfully

CRSP_EOF - if next or previous key at end or beginning of file

CRSP_NOT_FOUND - if PERMNO not found

CRSP_FAIL- if error with bad parameters, invalid or un opened crspnumand set id, error in read, impossible wanted, invalid INDNO index

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the structure. The data loaded in the module buffers may be
changed. The position for further reads will be set to the location of the read. Multiple INDNOs may be loaded on a positional read if
subsetting totally eliminates INDNOs that otherwise would be loaded.

PRECONDITIONS: The indexes set must be previously opened. The setid and crspnumand indptr are the same as opened and the wanted must be a
subset of the wanted open. The subset parameter structure must be loaded with valid flags

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 131

crsp_ind update Update Indexes Data for a Key

. in Crsp 1in upaate in crspnum, 1n setid, 1n ey, indptr, 1n wante
: int _ind update (int int setid, int k CRSP IND STRUCT *indptr, int ted)

DESCRIPTION: Update Indexes data for a key

ARGUMENTS: int crspnum-crspdb root identifier returned by crsp_ind open
int setid-thesetidentifierusedincrsp_ind open

int key - specific PERMNO of data to write

CRSP_IND STRUCT *indptr - Structure containing new data

int wanted - mask of flags indicating which module data to write

RETURN VALUES: CRSP_SUCCESS - if data written successfully

CRSP_FOUND_OTHER - if key found in root, but not for this set

CRSP_NOT_FOUND - if key not found in root

CRSP_FAIL - if error with bad parameters, invalid or unopened crspnum and indnum for RW, error in write, impossible wanted

SIDE EFFECTS: Data from the wanted modules will be written to the proper locations in the module files. The address file may be updated for new offsets
and sizes. If the new data does not fit within the allocated space for that key in the module file the data may be moved to a new location and
the free list modified. The data loaded in the module buffers may be changed.

PRECONDITIONS: The Indexes set must be previously opened. The indnum and crspnum and indptr are the same as opened and thewanted must be a
subset of the wanted open.

crsp_ind del_ fromset Removes Modules from Index Set from a CRSP Root

PROTOTYPE: int crsp ind del fromset (char *root, int setid, int wanted)

DESCRIPTION: Removes modules from Index set from a root

ARGUMENTS: char *root - path of crspdb root
int setid -identifier of the set
int wanted - hinary code of modules wanted to delete

RETURN VALUES: CRSP_SUCCESS - if the ind modules are removed successfully
CRSP_FAIL - if something wrong

SIDE EFFECTS: crsp_ind_del fromset removes the wanted modules associated with a given index set from a crspdb root. All wanted modules
will be erased from the address file, which will be rewritten with a new restricted record length. The index file will also be rewritten, with keys
changed to new module inclusion flags or erased altogether. The configuration file will be rewritten without the modules included in the ind
set. wanted module files of this set will be deleted. If all modules are deleted, delete and the set.

PRECONDITIONS: will leave an unopened root

crsp_ind add toset Add modules to an existing Indexes set

PROTOTYPE: int crsp ind add toset (char *root, int setid, int wanted)

DESCRIPTION: Add modules to an existing stock set

ARGUMENTS: char *root - path of crspdb root

int setid-identifier of the set

int wanted - hinary code of modules wanted
RETURN VALUES: CRSP_SUCCESS - if the stock set is removed
CRSP_FATIL - if bad parameters

crsp_ind free ind Function to free an Index structure

DESCRIPTION: Function to free an Index structure

ARGUMENTS: CRSP_IND STRUCT *INDptr - pointer toindex structure to be freed
int free flag - free only the array part or all

RETURN VALUES: CRSP_SUCCESS - if successfully initialized

CRSP_FAIL - if bad parameters

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 132

GENERAL ACCESS FUNCTIONS

The CRSPAccess general access functions include error functions and portable file operation functions.

FUNCTION GROUP DESCRIPTION PAGE
Error-handling The CRSPAccess function for handling errors produced by CRSP functions page 133
C Portable File Operations These functions call standard 1/0 functions in the C run time library page 138

Error Handling

PROTOTYPE: int crsp errprintf (va list)

DESCRIPTION: Builds error messages using an installation-wide file of messages, and supports basic handling of the results.

Each error message, including a mnemonic name and text description, is stored in a file in the CRSP initialization directory. A unique integer
error message number is assigned to each message. The function is passed a message number, an error number, flags for type of error
and handling output, plus optionally arguments on where the results are sent and variables to modify the error messages. The message
description is built into an output error message. If the error is from a system call, system error messages and error numbers can be
appended to this message. The message is then written to the location specified in the print flag.

There is a generic message available to users wishing to use the crsp_errprintf functionality and there are two environment variables users
can set to change the behavior of the error message function.

CRSP_TRACE — can be used to modify the output behavior of the function. The default behavior is to add only the formatted string to the
message output, and use the CRSP_nuLL printflag option. If CRSP_TRACE is defined it must have one or more of the following one-letter
codes in a string. Each code present changes the output. The possible codes are:

m= CRSP_MSGNUMBER — add the message number to message output

e= CRSP_ERRNUMBER — add the error number to message output

n= CRSP_MSGNAME — add the message header name to message output

f = CRSP_MSGFORMAT — do not add formatted string to message output

s = CRSP_SEVERITY — add severity name to output

t= CRSP_ERRTYPE —add error type to output

c= CRSP_CALLTRACE — print call error type messages

o= CRSP_NULLOUT - overrides CRSP_NULL printflag option in library functions. Print message directly to standard output
and clear errmsg

r= CRSP_NULLERR — overrides CRSP_NULL printflag option in library functions. Print message directly to standard error and

clear errmsg

w= CRSP_NOWARN — warning messages are ignored

i= CRSP_NOINFO — informational messages are ignored

a= CRSP_NOFATAL — fatal messages are ignored

CRSP_MSGFILE — can be used to use messages from one or more alternate message files. If this environment variable is set to a
comma-delimited set of files, the function will search these files in order for messages. The message files must have a leading line with the
lowest and highest message numbers allowed in the file, followed by lines with three text fields delimited by pipes (|), containing in order
amessage number, a header name, and a format string compatible with the C print £ function. The message lines must be sorted by
message number. Header names are limited to 20 characters, and the format cannot produce a string of more than 500 characters. Message
numbers must be 100,000 or higher to avoid possible conflict with standard CRSPAccess messages

The standard CRSP message file is named crsp_error msg.dat. Itisfound in the directory set by environment variables $CRSP_LIB
onUnix, scrsp_1ib% on Windows, and cRsp_L1B: on OpenVMS. It can contain message numbers in the range of 1 t0 99,999. If an
alternate message file contains a message number also in the CRSP message file, the alternate definition is used, and therefore must have a
compatible format.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 133

ARGUMENTS: variable argument list, including:
int errnum—number assigned to the specific error
int msgnum— number assigned to the specific message, must be defined in the error message file
int errorflag - flagforthe type and severity of the error. It must be a constant of the following form:
CRSP_severity type Where severity is one of:
INFO — informational
WARN — warning
FATAL — fatal
and t ype is one of:
USER — error in user argument or usage
sys — error returned by a system or external function
caLL — function call returned an error
PRINT — print global error messages
int printflag — flag for the method of handling the output. It must be one of the following constants:
CRSP_ERROUT STDERR — Write messages directly to standard error
CRSP_ERROUT STDOUT — Write messages directly to standard output
CRSP_ERROUT_ FILE — Write messages to a file pointer (previously opened with £open) given in the next argument
CRSP_ERROUT_ STRING — Write messages to string given in the next argument. The string must have enough space allocated
to store the message.
CRSP_NULL — append messages to a global string err_msg. If messages extend past the length of the string, previously stored
messages are printed to the screen. This is used by all CRSP library functions.
FILE * errfileptr — optional argument present only if printflagis CRSP_ERROUT FILE. If present, error messages are written
to this file. Exrrfileptr is the file handler returned by fopen.
char * msgstring - optionalargument presentonlyif printflagis CRSP_ERROUT STRING. If present, error messages are
copied to the string
int msgstringlen —optional argument presentonly if printflagis CRSP_ERROUT STRING. If present, msgstringlenisthe
length allocated to msgstring.
.. — list of variables to be embedded in the error message. There can be zero or more variables. There must be a one to one correspondence
between the number and types of variables in this list and the format string in the CRSP error message file for the specified msgnum.

RETURN VALUES: CRSP_success: if error handled successfully
CRSP_FAIL:if errorin parameters or in opening or reading the error message file

SIDE EFFECTS: The crsp_init initialization function is called to initialize access. The crsp error msg.dat filein the initialization directory is
opened the first time the function is called and closed when the program exits.

PRECONDITIONS: CRSP functions always place errors in a global string named err msg. CRSP environment variables must be set properly so the file crsp
error_msg.dat isfoundinthe crRsp_L1B directory. See the description for optional environment variables that affect the results.

C Portable File Functions

These functions call standard 1/0 functions in the C run time library, but can be used on Windows, Unix, and Open- VMS
systems without changes and incorporate the CRSP error handling function.

FUNCTION DESCRIPTION PAGE

crsp_file append generic file append for multiple platforms page 135
crsp_file close generic file c1ose for multiple platforms page 135
crsp_file_ fopen generic file fopen for multiple platforms page 135
crsp_file_lseek generic file 1 seek for multiple platforms page 135
crsp_file_open generic file open for multiple platforms page 136
crsp_file read generic file read for multiple platforms page 129
crsp_file_remove generic file delete for multiple platforms page 137
crsp_file rename generic file rename for multiple platforms page 137
crsp_file_search generic check for existence of a file on multiple platforms page 137
crsp_file_stamp generic generation of a unique file name for multiple platforms page 141

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 134

FUNCTION DESCRIPTION PAGE
crsp_file write generic file wr i te for multiple platforms page 137
crsp_free generic memory free for multiple platforms page 138

crsp_file append Generic File Append for Multiple Platforms

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

int crsp file append (char *origfile, char *newfile)

append a file by adding the data from the second file at the end of the first file

char *origfile — pointer to the original file
char *newfile — pointer to the new file to be appended to the first file

CRSP_sUCCESS: if appended successfully
CRSP_FAIL:errorin parameters or error in open or write operation

both files are opened with fopen, data from the second file is copied to the first, and then both files are closed.

both files must exist and contain character data with no records 500 characters or longer.

crsp_file close Generic File Close for Multiple Platforms

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:
RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

int crsp file close (int file desc)

calls the C close function

int file desc —file handler of file to close, as returned from open function

CRSP_SUCCESS: if closed successfully
Crsp_FAIL: file not opened or error in close

file described by file desc is closed

file must be previously opened, withfile desc returned from open

crsp_ file fopen Generic File fopen for Multiple Platforms

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

(FILE *)crsp_file fopen (va_alist)

platform-independent version of fopen with support for extra OpenVMS options

variable argument list:

char *path —mandatory argument containing path of file to open

char *mode —mandatory argument containing mode passedto fopen, “r” toopenread-only, “rw” toread and write. See
fopen for all options.

0-6 char *rmsflags —up to 6 optional RMS flags passed to fopen on OpenVMS systems, and ignored on other systems

File pointer on success
NULL if error opening file

the file specified in the first parameter is opened. The default setting for OpenVMS systems is “mbc=127" unless overridden by one of the
rmsflags options.

See C documentation on this function for more details

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 135

crsp_file lseek Generic C Iseek for Multiple Platforms

PROTOTYPE: int crsp file lseek (int file desc, int offset, int direction)

DESCRIPTION: Generic file 1seek for multiple platforms. This function positions a file to an arbitrary byte position and returns the new position.
Parameters are passed directly to the C 1 seek function. See C documentation on this function for more details

ARGUMENTS: int file desc - thefile descriptor of the current file returned by C open

int offset —the offset specified in bytes

int direction - aninteger measuring whether the offset is to be measured:
forward from the beginning of the file (direction = SEEK_SET)
forward from the current position (direction = SEEK CUR)
forward from the end of the file (direction = SEEK END)

RETURN VALUES: the new file position if successful
CrRsP_FAIL: error if file descriptor unidentified, or a seek was attempted before the beginning of the file.

SIDE EFFECTS: the current position in the file is set for further operations
PRECONDITIONS: file must be previously opened with the open function

crsp_file open Generic C Open for Multiple Platforms

PROTOTYPE: int crsp file open (char *file spec, int flags, unsigned int mode, int platflags, int pmode,

int allocate, int mbc, int extend)

DESCRIPTION: Generic file open for multiple platforms. Parameters for OpenVMS, Unix, and Windows versions are passed, and only the ones needed for the
current platform are passed to the C open function. See C documentation on this function for more details.

ARGUMENTS: char *file spec - character string containing a valid file specification of a file to be opened.

int flags — flags for permitted usage of opened file

int mode - the file protection of a new file

int platflags — additional flags bitwise or'ed with flags if Windows, ignored if another system
int pmode — additional protection modes or'ed with mode if Windows, ignored if another system
int allocate —blocks to allocate for a new file on OpenVMS, ignored if another system

int mbc - block count per 1/0 on OpenVMS, ignored if another system

int extend - blocks to allocate if additional space is needed on OpenVMS, ignored if another system

RETURN VALUES: file descriptor if opened successfully, to be used in other file operations with this file
CRsp_FAIL: error if file could not be opened

SIDE EFFECTS: the file is opened and the file pointer is returned for further access

PRECONDITIONS: the file existence and protections must agree with flags and modes passed to open

crsp_file read Generic C Read for Multiple Platforms

PROTOTYPE: int crsp file read (int file desc, void *buffer, int nbytes)

DESCRIPTION: Generic file read for multiple platforms

ARGUMENTS: int file desc — the file descriptor of the current file returned by C open
void *buffer —address of contiguous storage where data will be loaded
int nbytes —the maximum number of bytes to read

RETURN VALUES: the number of bytes read. The return value does not necessarily equal nbytes since the function does not read beyond the end of the file or
input terminal line
CRSP_FAIL: if error in parameters or read

SIDE EFFECTS: the current position in the file is set to the end of the read
PRECONDITIONS: file must be previously opened with the open function

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 136

crsp_file remove Generic File Delete for Multiple Platforms

PROTOTYPE: int crsp file remove (char *file spec)
DESCRIPTION: calls the C remove function to delete a file
ARGUMENTS: char *file spec — specification of file to remove
RETURN VALUES: CRSP_SUCCESS: if removed successfully

CRSP_FATL: error in parameters or error in remove operation
SIDE EFFECTS: file is removed
PRECONDITIONS: file must exist and user must have delete permissions

crsp_ file rename Generic File Rename for Multiple Platforms

PROTOTYPE: int crsp file rename (char *old file spec, char *new_file spec)
DESCRIPTION: Calls the C rename function to change the name of a file
ARGUMENTS: char *old file spec —specification of the file to rename
char *new file spec - new specification of the file
RETURN VALUES: CRSP_SUCCESS: if renamed
CRSP_FAIL: error in parameters or error in file operation or permissions
SIDE EFFECTS: the file is renamed
PRECONDITIONS: the old file must exist, the second must be a valid specification, and the rename operation must be valid on the system between the two files.

crsp_ file search Generic Check for the Existence of a File

PROTOTYPE: int crsp_file search (char *file spec)
DESCRIPTION: Checks for the existence of a file
ARGUMENTS: char *file spec —specification of file to check
RETURN VALUES: CRSP_SUCCESS: if the file exists
crsp_FaIL: if the file does not exist or cannot be opened for read access
SIDE EFFECTS: file is opened and closed
PRECONDITIONS: file must have read permissions

crsp file stamp Create a Unique File Name

PROTOTYPE: char *crsp_file_stamp ()

DESCRIPTION: Creates a string that can be built into a unique file name based on system time and user ID. The string contains the process ID returned from
the C getpid function, an underscore, and the system time in seconds returned from the C t ime function.

ARGUMENTS: none
RETURN VALUES: pointer to a string with a file specification if successful

NULL: if failure getting system time or user ID

SIDE EFFECTS: memory is allocated up to 80 characters to store the new file name
PRECONDITIONS: none

crsp file write Generic C Write for Multiple Platforms

PROTOTYPE: int crsp file write (int file desc, void *buffer, int nbytes)

DESCRIPTION: Generic file write for multiple platforms

ARGUMENTS: int file desc - thefile descriptor of the current file returned by C open
void *buffer —address of contiguous storage where data will be retrieved
int nbytes - the maximum number of bytes to write

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 137

RETURN VALUES: the number of bytes written.
CRSp_FAIL:iferrorin parameters or write

SIDE EFFECTS: the current position in the file is set to the end of the written data

PRECONDITIONS: file must be previously opened with the open function

crsp_free Generic Memory Free for Multiple Platforms

PROTOTYPE: int crsp_free (void *ptr)
DESCRIPTION: Calls the C free function
ARGUMENTS: void *ptr - pointer to the memory to be freed
RETURN VALUES: CRSP_SUCCESS: if successfully freed. Always true on Windows and Unix where C £ ree function is void.
CRSP_FAIL: error freeing memory on OpenVMS systems
SIDE EFFECTS: memory pointed to by pt r is deallocated
PRECONDITIONS: none
GENERAL UTILITY FUNCTIONS

The utility functions operate on the base CRSPAccess data structures and are not specific to a type of data. They include
operations on calendars CRSP object structures and general utilities.

FUNCTION GROUP DESCRIPTION PAGE

Calendar Utility Functions Functions used to manipulate CRSP calendars page 145
Calendar Access Functions Functions used to access CRSP calendars page 141
Compare Functions Functions used to compare data in two structures page 151
Object Functions Functions used to manipulate base object structures page 145
String Functions Functions used to manipulate character strings page 156
C Structure Copy Functions Functions used to copy data from one like CRSPAccess structure to another page 152
C Structure Generic Clear Functions Functions used to load missing data to object structures page 154
Data to Time Series Mapping Functions Functions used to map a subset of fields toa CRSP_ TIMESERIES page 174
CRSPAccess C Database Information Function Function used to retrieve information about a database page 155

Calendar Utility Functions

These functions are used to manipulate calendar data in CRSPAccess databases.

FUNCTION DESCRIPTION PAGE

crsp_cal datecmp CALDT Date Search page 138
crsp_cal_dt2lin Transforms YYYYMMDD Format into Linear Date page 146
crsp_cal dtZparts Separates the YYYYMMDD Format into Year, Month and Day page 145
crsp_cal_lin2dt Transfers Linear Date into YYYYMMDD Format page 139
crsp_cal middt Finds the Mid-Point Date of a Range page 139
crsp_cal diffdays Finds the Number of Calendar Days Between two Dates page 139
crsp_cal link Creates a Link to Map Periods of two Calendars page 140
crsp_cal_search Generic Calendar Date Search page 140
crsp_cal incr Increments an Integer Date to the Next Date page 148
crsp_cal_decr Decrements an Integer Date to the Previous Date page 141

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 138

crsp_cal datecmp CALDT Date Search

PROTOTYPE: int crsp cal datecmp (int *calelem, int *caldates, int beg, int end, int flag)

DESCRIPTION: Searches for an array of ca1dates to find the matching date for ca1e1em and return the array index.

ARGUMENTS: int *calelem - pointerto the date in YYYYMMDD format

int *caldates — pointer to the array of calendar dates, usually the caldt pointerina cRsp_caL structure

int beg — Index of the first calendar date range in the first calendar dates array, usually 1

int end — Index of the last calendar date in the last calendar dates array, usually the ndays element of the cRsp_caL structure
int flag — flag for handling inexact matches (see crsp_cal_search)

RETURN VALUES: index of date found if a date found according to flag
CRSP_FAIL:if not acceptable match according to flag

SIDE EFFECTS: none

crsp_cal_ dt2lin Transforms YYYYMMDD Format into Linear Date

PROTOTYPE: int crsp cal dt2lin (int idate)

DESCRIPTION: Transforms the YYYYMMDD format of date into a linear date (number of days since 19000101)
ARGUMENTS: int idate —date to be transformed

RETURN VALUES: linear date
CRSP_FAIL:iferror

SIDE EFFECTS: none

crsp_cal_dt2parts Separates the YYYYMMDD Format into Year, Month, and Day

PROTOTYPE: void crsp _cal dt2parts (int idate, int *year, int *month, int *day)

DESCRIPTION: Separates the YYYYMMDD formatted date into year, month, day.

ARGUMENTS: int idate - date tobe separated

int *year - pointertobe loaded with YYYY year
int *month — pointer to be loaded with MM month
int *day — pointer to be loaded with DD day

RETURN VALUES: none

crsp_cal lin2dt Transfers Linear Dates into YYYYMMDD Format

PROTOTYPE: int crsp cal lin2dt (int linear date)

DESCRIPTION: Transfers the linear date (number of days since 19000101) into YYYYMMDD format date.

ARGUMENTS: int linear date - thedatein linearformat

RETURN VALUES: translated YYYYMMDD date
CRsSp_FAIL:iferror

SIDE EFFECTS: None

crsp_cal middt Finds the Mid-Point Date of a Range

PROTOTYPE: int crsp cal middt (int idatel, int idate2)

DESCRIPTION: Finds a date in the middle of first date and second date

ARGUMENTS: int idatel —first date, in YYYYMMDD format
int idate2 —second date, in YYYYMMDD format

RETURN VALUES: middt: middle date between idatel and idate2
CRSP_FAIL:iferror

SIDE EFFECTS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 139

crsp_cal_diffdays Finds the Number of Calendar Days Between Two Dates

PROTOTYPE: int crsp cal diffdays (int idatel, int idate2)

DESCRIPTION: Finds the number of days between two YYYYMMDD dates

ARGUMENTS: int idatel — the first date
int idate2 —the end date

RETURN VALUES: number of days
CrRsp_FAIL:iferror

SIDE EFFECTS: none

crsp_cal_link Maps from One Calendar to Another

PROTOTYPE: int crsp cal link (CRSP_CAL *calbase, CRSP CAL *calsub, int wanted, int flag)

DESCRIPTION: Finds mapping between a base and subset calendar. The map will have each period in the subset calendar in terms of period index ranges of
the base.

ARGUMENTS: CRSP_CAL *calbase — pointer to base calendar structure
CRSP_CAL *calsub — pointerto subset calendar structure
int wanted — the type of calendar period identification to link in the source calendar. Possible values are:
CAL TYPE ID-—wanted callist
CAL_TYPE_DATE — wanted caldt
CAL_TYPE DATERANGE — wanted date range
CAL_TYPE TIME —wanted date +time
CAL_TYPE TIMERANGE —Wwanted date range +time
int flags - flags for mapping when subset date/range is not applicable to the base. Possible values are:
CRSP_CAL EXACT — (= 0) non-exact matches are not mapped
CRSP_CAL_BACK — (=-1) if not found use previous
CRSP_CAL_NEXT - (=-1) if not found use next

RETURN VALUES: CRSP_SUCCESS: calmap successfully loaded
CRSP_FATL: error

SIDE EFFECTS: This function allocates space for the calmap CRsP_CAL structure element. It loops through calsub and for each date, finds the ca1
index at calbase for the same date and stores them in calsub->calmap. The calsub basecal pointeris set to basecal.

crsp_cal search Date Range Search

PROTOTYPE: int crsp cal search (CRSP_CAL *cal, int wanted, void *calelem, int flag, int rangeflag)

DESCRIPTION: Finds the relevant calendar index number for a given calendar period. The element type may be any of the types supported by crRsp_caL.
crsp_cal_search will use only the calendar type that matches the element type. The flag is used depending on type to handle inexact
matches.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 140

ARGUMENTS: CRSP_CAL *cal - pointerto the calendar structure to search
int wanted — type of calendar element that will be located, one of:

caL_TYpE 1D (1)=callist

CAL TYPE_DATE (2) = caldt

CAL_TYPE DATERANGE (4) = date range

CAL_TYPE TIME (8)=date and time

CAL TYPE TIMERANGE (16)=date+time range
int calelem - calendarelement to find. This s a pointer to a structure that must agree with the wanted parameter, either an int for
CAL TYPE IDOfCAL TYPE DATEOf,aCRSP_CAL TIME,aCRSP_CAL DATERANGE, Ofra CRSP_CAI_TIMERANGE structure.
int flag —flagfor handling inexact matches —

CRSP_CAL_EXACT (0) - onlyexactmatches are acceptable

CRSP_CAL BACK (-1) —ifnotfound use previous

CRSP_CAL NEXT (1) —ifnotfound use next
int rangeflag —option if calendar type and elements are date or time ranges:

0 = not applicable

1 = use beginning of ranges

2 =use end of range

3 = use middle of beginning and end

RETURN VALUES: index of date if a date found according to flag
CRSP_NOMATCH if no acceptable match according to flag
crsp_FAILifinvalid flag or data variable

SIDE EFFECTS: none

crsp_cal_incr Increments an Integer Date to the Next Date

PROTOTYPE: int crsp cal incr (int date)

DESCRIPTION: Increments an integer date to the next date

ARGUMENTS: int date - dateincrement mustbein YYYYMMDD format, a 0, or 99999999.

RETURN VALUES: The next integer date in YYYYMMDD format. If date was 0 or 99999999, that value is returned.
SIDE EFFECTS: none

crsp_cal decr Decrements an Integer Date to the Previous Date

PROTOTYPE: int crsp cal decr (int date)

DESCRIPTION: Decrements an integer date to the previous date

ARGUMENTS: int date - date decrement must be in YYYYMMDD format, a 0, or 99999999.

RETURN VALUES: The previous integer date in YYYYMMDD format. If date was 0 or 99999999, that value is returned.
SIDE EFFECTS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 141

Calendar Access Functions

These functions can be used to load stock data with additional options.

FUNCTION DESCRIPTION PAGE

crsp_obj_copy_cal Copy data from one CRSP calendar structure to another page 142
crsp_obj_free_cal Free memory allocated for a CRSP calendar structure page 147
crsp_obj_init_cal Initialize and allocate a CRSP calendar structure page 143
crsp_cal_load Load a calendar available in a CRSPAccess database page 143

crsp_obj_ copy_cal Copies a CRSP Calendar Structure

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp obj copy cal (CRSP_CAL *trgcal, CRSP_CAL *srccal, int caltype, int appendflag, int
begind, int endind)

Copies a CRSP calendar structure. Can be used to copy all calendar fields or just selected period arrays over a selected range.

CRSP_CAL *trgcal —pointer to target calendar structure to load.
CRSP_CAL *srccal — pointertosource calendar structure.
int caltype —integer binary code indicating which calendar types to copy. The sum of codes can be used to all copy multiple types.
The codes are:
CrRsP_CAL_ID (=1) —calendar list
CRSP_CAL_DATE (=2) - calendar dates
CRSP_CAL DATERANGE (=4) - calendar range
CRSP_CAL TIME(=8)-times
CRSP_CAL_TIMERANGE (=16)—time range
int appendflag — integer code determining whether to overlay new data or copy the entire structure. Valid code values are:
CRSP_COPY RESET.-The source calendar is copied entirely to the target. All header fields are copied directly and all calendar
types selected are copied directly
CRSP_COPY_ OVERLAY — Only the period arrays selected are copied to the target calendar
int begind —index of first calendar period to copy
int endind —index of second calendar period to copy

CRSP_SUCCESS: if the target calendar is loaded successfully.
CRSP_FAIL:if bad parameters on incompatible calendars.

Data are copied to the target calendar according to parameters. No memory is allocated. Calmap and callink data are not copied.

Memory must be allocated for all selected ca1t ype fields in the target calendar. The target maxarr must be greater than or equal to the
source maxarr. If CRSP_COPY OVERLAY is used and the Loadflag is not 0, the ndays must agree.

crsp_obj free_ cal Frees a CRSP Calendar Structure

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp obj free cal (CRSP_CAL **calptr, int free flag)

Frees memory allocated for a CRSP calendar structure. Can be used to free memory allocated to period arrays or the entire structure.

CRSP_CAL **calptr - pointerto pointer to calendar pointer to free.

int free flag—integer code indicating which parts of the structure to free. Valid code values are:
CRSP_FREE_ARR ONLY (=0) - free only period arrays in the calendar structure.
CRSP_FREE OBJ ALL (=1)—free all periods and the structure itself

CRSP_SUCCESS: if the desired arrays are freed successfully.
CRSP_FAIL:if wrong structure type, error freeing memory, or invalid flags

All calendar period types allocated are freed, and arrt ype and maxarr are set to 0. If the ca1map pointer is not NULL it is also freed.
If free flagiSCRSP OBJ FREE ALL, the structure itself is freed. All freed pointers are set to NULL. If calptr isinitially NULL the
function does nothing and returns CRsP_SUCCESS.

calptr mustbe either NULL or point to a pointer to a calendar structure with accurate 10adflag settings. The ca1map pointer must be
NULL if never allocated. Never use this function on a calendar allocated directly with a CRSPAccess open function.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 142

crsp_obj_init_cal Initializes a CRSP Calendar Structure

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp obj init cal (CRSP_CAL **calptr, int maxarr, int caltype, int initflag)

Initializes a CRSP calendar structure. Can be used to allocate the structure itself, allocate calendar period type arrays, and initialize values
within the structure.

CRSP_CAL **calptr — pointer to pointer to calendar structure pointer to initialize.
int maxarr —number of periods to allocate in each calendar type array.

int caltype —integer binary code indicating which calendar types to allocate. The sum of codes can be used to allocate multiple types.
The codes are

CrRsP_CAL_1D(=1) - calendar list

CRSP_CAL_DATE (=2) — calendar dates

CRSP_CAL DATERANGE (=4) — calendar range

CRSP_CAL TIME(=8)-times

CRSP_CAL_TIMERANGE (=16) - time range

int initflag —integer code determining the type of initialization. Valid code values are:
CRSP_CLEAR INIT (=1) —initialize all fields in the structure

CRSP_CLEAR RANGE (=2) — add additional calendar types to the loaded structures only

CRSP_success: if the structure is initialized and desired arrays are allocated successfully.
CRsp_FAIL:if bad parameters, error allocating memory, or inconsistent maxarr

If calptrisinitially NUL1L, it is allocated for maxarr periods with all wanted caltypes. If ca1ptr is already allocated, the behavior
is determined by initflag. If initflagis CRsP_CLEAR INTIT, all fields are initialized and wanted caltypes are allocated. Any previous
information is overwritten. If initflagis CRSP_CLEAR RANGE, Only wanted caltypes not already loaded are allocated. Loadflag is
set to reflect the allocated period types.

calptr must be either NULL or point to a pointer to a calendar structure with accurate 10adflag settings.

crsp_cal_ load Loads an Existing Calendar

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

CRSP_CAL * crsp_cal load(int crspnum, int calid, int loadflag)

Returns a pointer to a CRSPAccess calendar available in a database. The database must be previously opened with one of the crsp
stk_open,Ofcrsp ind open, 0Orcrsp_cst_open functions. All time series accessed in a set automatically have their matching
calendars loaded, so this function is only needed to access a calendar not already available in the set.

int crspnum - database handle returned by a CRSPAccess open function
int calid —identifier of the calendar. Currently available calendars are:
100 (CRSP_CALID DAILY) =CRSP Daily Stock Calendar
101 (CRSP_CALID MONTHLY) =CRSP Monthly Stock Calendar
300 (CRSP_CALID ANNUAL) =CRSP Annual Stock Calendar
310 (CRSP_CALID QUARTERLY) =CRSP Quarterly Stock Calendar
500 (CRSP_CALID WEEKLY) = CRSP Weekly Stock Calendar
int loadflag —the types of calendar period data to load. Values can be added to load multiple types:
1 (cAaL_TyPE_ID) =Calendar ID Lists
(CAL_TYPE_DATE) = Calendar Dates (yyyymmdd)
4 (CAL_TYPE DATERNG =Calendar Date Ranges
(CAL_TYPE TIME) =CalendarDate and Time
16 (CAL TYPE TIMERNG) =CalendarDate and Time Ranges

A pointer to a loaded calendar: if successful. The calendar found is shared by all time series of that frequency in the database. If changing
values in the calendar, use crsp obj init caland crsp obj copy cal tomake alocal copy.
NULL: if bad parameter, unopened database, or unknown calid

The calendar header data and requested calendar period arrays are allocated and loaded only if the calendar is not loaded already.
Loadflag in the calendar structure is changed if additional data is loaded.

The database must be opened with a CRSPAccess open function and the ca11id must be present in the database.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 143

Compare Functions

These functions are used to compare data.

crsp_cmp_int Compares Two Integers

PROTOTYPE: int crsp cmp_int (const void *eleml, const void *elem2)

DESCRIPTION: Compares two integers. Can be used as input functions to C search and sort functions.

ARGUMENTS: const void* - eleml - pointer to the first element
const void* - elem2 — pointer to the second element

RETURN VALUES: int: <0 if eleml < elem2, 0 if eleml = elem2,>1 if eleml > elem2.Based on standard integer comparisons

crsp_cmp_string Compares Two Strings

PROTOTYPE: int crsp cmp_string(const void *eleml, const void *elem2)

DESCRIPTION: Compares two strings. Can be used as input functions to C search and sort functions.

ARGUMENTS: const void* - eleml — pointer to the first terminated string

const void* - elem2 - pointerto the second terminated string

RETURN VALUES: int: <0 if eleml < elem2, 0 if eleml = elem2, >1 if eleml > elem?2.Based on standard string comparisons

CRSP Object Functions

These functions are used to manipulate base CRSPAccess object structures.

FUNCTION DESCRIPTION PAGE

crsp_obj verify ts Verifies a CRSP Time Series Object page 144
crsp_obj verify arr Verifies a CRSP Array Object page 145
crsp_obj verify row Verifies a CRSP Row Object page 145
crsp_obj_init_ts Initializes a CRSP Time Series Object page 150
crsp_obj init arr Initializes a CRSP Array Object page 146
crsp_obj init row Initializes a CRSP Row Object page 146
crsp_obj_comp_ts Compares two CRSP Time Series Objects page 151
crsp_obj comp_arr Compares two CRSP Array Objects page 151
crsp_obj_comp_row Compares two CRSP Row Objects page 147
crsp_obj free ts Frees a CRSP Time Series Object page 147
crsp_obj free arr Frees a CRSP Array Object page 155
crsp_obj free row Frees a CRSP Row Object page 148
crsp_obj_free Frees a CRSP Object Element Link List page 148

crsp_obj verify ts Verifiesa CRSP Time Series Object

PROTOTYPE: int crsp obj verify ts(CRSP_TIMESERIES *ptr, int arrtype, int subtype, int maxarr, int
caltypes)

DESCRIPTION: Verifies a time series object, by comparing array type, size, calendar, and data characteristics against expected values

ARGUMENTS: CRSP_TIMESERIES *ptr — pointer to a CRSP time series object

int arrtype — constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype — constant for the subcategory of data in the array. Constants are defined in crsp_const.h

int maxarr —maximum elements in the array

int caltype —expected calendar type in the time series

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 144

RETURN VALUES: CRSP_SUCCESS: if verification is correct

1251: object type does not verify in CRsp_TIMESERIES structures
1252: array type does not verify in time series

1253: subtype does not verify in time series

1254: maxarr does not verify in time series

1255: caltype does not verify in time series

1256: beg and end do not verify in time series

1257: end cannot be greater than maxarr in time series 1
258: cal pointer cannot be NULL in time series

1259: ndays cannot be greater than maxarr in time series
1260: arr pointer cannot be NULL in time series

crsp_obj verify arr Verifiesa CRSP Array Object

PROTOTYPE: int crsp obj verify arr (CRSP_ARRAY *crsp array ptr, int arrtype, int subtype, int maxarr)

DESCRIPTION: Verifies a CRSP array object, by comparing array type, size, and data characteristics against expected values

ARGUMENTS: CRSP_ARRAY *“crsp_array ptr — pointer to a CRSP array object

int arrtype — constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype - constant for the subcategory of data in the array. Constants are defined in crsp_const.h

int maxarr —maximum elements in the array

RETURN VALUES: CRSP_SUCCESS: if verification is correct

1271:0bject type does not verify in CRSP_ARRAY

1272: array type does not verify in CRSP_ARRAY

1273: subtype does not verify in CRsp_ ARRAY

1274: maxarr does not verify in CRSP_ARRAY

1275: num cannot be greater than maxarr in CRSP_ARRAY
1276: arr pointer cannot be NULL in CRSP_ARRAY

crsp_obj verify row Verifiesa CRSP Row Object

PROTOTYPE: int crsp obj verify row (CRSP_ROW *crsp row ptr, int arrtype, int subtype)

DESCRIPTION: Verifies a CRSP row object, by comparing array type and data characteristics against expected values

ARGUMENTS: CRSP_ROW *crsp_row_ptr— pointer to a CRSP row object to verify
int arrtype - constant for the structure type of the array in the object ar r. Constants are defined in crsp_const.h
int subtype - constant for the subcategory of data in the array. Constants are defined in crsp_const.h

RETURN VALUES: CRSP_SUCCESS: if verification is correct

1282: object type does not verify in CRsp_Row
1283: array type does not verify in crRsp_Rrow
1284: subtype does not verify in cRsp_ROW
1285: arr pointer cannot be NULL in CRSP_ROW

crsp_obj init_tsInitializes a CRSP Time Series Object

PROTOTYPE: int crsp obj init ts (CRSP_TIMESERIES **crsp_ timser ptr, int arrtype, int subtype, int

maxarr, int caltype, int size of array, CRSP_CAL *calptr, void *init ptr

DESCRIPTION: Initializes a time series object. If the crsp_timeser ptr pointer passed is NULL, the function allocates space for the object. If the array
within the object is not allocated, the function allocates space for the array. Object header values are set and the calendar is attached to the
time series. Each element in the object’s array is initialized with the value in init ptr.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 145

ARGUMENTS: CRSP_TIMESERIES **crsp timser_ ptr — pointer to a CRSP time series pointer

int arrtype — constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h

int subtype — constant for the subcategory of data in the array. Constants are defined in crsp_const.h

int maxarr —maximum elements in the array

int caltype — calendar type to allocate, =2 for caldts

int size of array —size of the structure for each array element

CRSP_CAL *calptr —pointertoa calendar that will be attached to the time series object

void *init ptr—apointertoastructureofsize size of array withmissingvalues toload to each element in the array. Can be NULL.

RETURN VALUES: CRSP_sUCCESs: if successfully initialized and space allocated
CRsP_FAIL: if error allocating memory, error in parameters

crsp_obj init arr Initializes a CRSP Array Object

PROTOTYPE: int crsp obj init arr(CRSP_ARRAY **crsp array ptr, int arrtype, int subtype, int maxarr,

int size of array, void *init ptr)

DESCRIPTION: Initializes an array object. If the crsp_array_ptr pointer passed is NULL, the function allocates space for the object. If the array within
the object is not allocated, the function allocates space for the array. Object header values are set and each element in the object’s array is
initialized with the value in init ptr.

ARGUMENTS: CRSP_ARRAY **crsp array_ptr— pointer to a CRSP array structure pointer

int arrtype - constant forthe structure type of the array in the object arr. Constants are defined in crsp_const.h

int subtype - constant for the subcategory of data in the array. Constants are defined in crsp_const.h

int maxarr —maximum elements in the array

int size of array —size ofthe structure for each array element

void *init ptr —apointertoastructure of size size of array with missing values to load to each element in the array. Can be
NULL.

RETURN VALUES: CRSP_sUCCESS: if successfully initialized and space allocated
crsp_FAIL:iferror allocating memory, error in parameters

crsp _obj init row Initializes a CRSP Row Object

PROTOTYPE: int crsp obj init row(CRSP_ROW **crsp_row ptr, int arrtype, int subtype, int size of array,

void *init ptr)

DESCRIPTION: Initializes a row object. If the crsp _row ptr pointer passed is NULL, the function allocates space for the object. If the array within the
object is not allocated, the function allocates space for the array. Object header values are set and the object’s array element is initialized
withthevaluein init ptr.

ARGUMENTS: CRSP_ROW **crsp_row_ptr — pointer to a CRSP row pointer

int arrtype — constant for the structure type of the array in the object arr. Constants are defined in crsp_const.h
int subtype —constant for the subcategory of data in the array. Constants are defined in crsp_const.h

int size of array - size of the structure for the array element

void *init ptr —apointertoastructure of size size_of_array with missing values to load to the row. Can be NULL.

RETURN VALUES: CRSP_sUCCESS: if successfully initialized and space allocated
CRsP_FAIL: if error allocating memory, error in parameters

crsp_obj comp ts Compares Two CRSP Time Series Objects

PROTOTYPE: int crsp obj comp_ts(CRSP_TIMESERIES *crsp_timser ptrl, CRSP TIMESERIES *crsp_timser ptr2
)

DESCRIPTION: Compares two time series objects, by comparing array types, data characteristics, array sizes, and associated calendars

ARGUMENTS: CRSP_TIMESERIES *crsp timser ptrl
CRSP_TIMESERIES *crsp_timser ptr2

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 146

RETURN VALUES: CRSP_SUCCESS: if comparison is correct

1261: the two crsp_TIMESERIES have different object types

1262: the two crsP_TIMESERIES have different array types

1263: the two crsp_TIMESERIES have different subtypes

1264: the two crRsp_TIMESERIES have different array widths

1265: the two crRsp_TIMESERIES have different maximum arrays
1266: the two crRsp_TIMESERIES have different calendar types
1267: the two CRSP_TIMESERIES calendar pointers do not compare

crsp _obj comp arr Compares Two CRSP Array Objects

PROTOTYPE: int crsp obj comp_arr(CRSP_ARRAY *crsp_array ptrl, CRSP_ARRAY *crsp array ptr2)
DESCRIPTION: Compares two CRSP_ARRAY objects, by comparing data array type, size, and data characteristics
ARGUMENTS: CRSP_ARRAY *crsp array ptrl
CRSP_ARRAY *crsp array ptr2
RETURN VALUES: CRSP_SUCCESS: if array objects match

1277: the two crRsp_ARRAYS have different object types

1278: the two crRsp_ ARRAYs have different array types

1279: the two crsP_ARRAYS have different subtypes

1280: the two crsp_ARRAYS have different array widths

1281: the two cksp_ARRAYS have different maximum array types

crsp_obj_ comp_row Compares Two CRSP Row Objects

PROTOTYPE: int crsp obj comp row(CRSP_ROW *crsp_row ptrl, CRSP_ROW *crsp row ptr2)
DESCRIPTION: Compares two CRSP row objects, by comparing data array type and data characteristics
ARGUMENTS: CRSP_ROW *crsp_row_ptrl
CRSP_ROW *crsp row ptr2
RETURN VALUES: CRSP_SUCCESS: if row objects match

1286: The two cRsP_ROW objects have different object types
1287: The two cRsP_RoOW objects have different array types
1288: The two crsp_Rrow objects have different subtypes
1289: The two crsp_ROW objects have different array widths

crsp_obj free_ ts Freesa CRSP Time Series Object

PROTOTYPE: int crsp_obj_free_ts (CRsp_TTIMESERTES **crsp timeser_ptr, int free_flag)

DESCRIPTION: Frees a CRSP time series object by deallocating memory for just the data array or the entire object

ARGUMENTS: CRSP_TIMESERIES **crsp timser ptr - pointstoa CRSP time series object pointer
int free_ flag—freesonly the arr part orall. Valid values to be freed are:
CRSP_FREE_ARR_ONLY

CRSP_FREE_OBJ ALL

RETURN VALUES: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

SIDE EFFECTS: Frees part or whole of the ckRsp_TIMESERIES, depending onthe free flag set.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 147

crsp_obj_ free_arr Freesa CRSP Array Object

0 int crsp obj free arr (CRSP ARRAY crsp array ptr, int free flag
PROTOTYPE: ' _obj_free arr(_ i _ _ int free flag)

DESCRIPTION: Frees a CRSP array object by deallocating memory for just the data array or the entire object

ARGUMENTS: CRSP_ARRAY **crsp array ptr — points toa CRSP array object pointer
int free flag—freesonly the arr part or all. Valid values to be freed are:
CRSP_FREE_ARR ONLY

CRSP_FREE_OBJ ALL

RETURN VALUES: CRSP_SUCCESS: if free is successful
CRsP_FAIL: if error freeing memory or bad pointer or flag

SIDE EFFECTS: Frees part or whole of the cRsP_ARRAY, depending on the free flag set.

crsp_obj_ free_row Freesa CRSP Row Object

PROTOTYPE: int crsp obj free row(CRSP ROW **crsp row ptr, int free flag)

DESCRIPTION: Frees a CRSP row object by deallocating memory for just the data array or the entire object

ARGUMENTS: CRSP_ROW **crsp_row_ptr — points to a CRSP row object pointer

int free flag—freesonly the arr part orall. Valid values to be freed are:
CRSP_FREE_ARR ONLY

CRSP_FREE_OBJ ALL

RETURN VALUES: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if error freeing memory or bad pointer or flag

SIDE EFFECTS: Frees part or whole of the cRsp_Rrow, depending onthe free flag set.

crsp_obj_free Freesa CRSP Object Element Link List

PROTOTYPE: CRSP_OBJECT ELEMENT *objlist

DESCRIPTION: Frees a CRSP object element link list.

ARGUMENTS: CRSP_OBJECT ELEMENT *objlist -objectelement list pointer

RETURN VALUES: CRSP_SUCCESS: if free is successful
CRSP_FAIL: if free fails

String Functions

These functions can be used to manipulate strings.

FUNCTION DESCRIPTION PAGE

crsp_util convtype Converts CRSP Constant Names to Integers page 153
crsp _util lowercase Converts Strings to All Lowercase Letters page 149
crsp_util strtrim Removes Trailing Blanks from Strings page 157
crsp_util uppercase Converts Strings to All Uppercase Letters page 149
crsp_util squeeze Removes White Space from Character Strings page 149
crsp util strtoken Locates the First Delimiter in a String page 150
crsp_util_cvt_date mmddyy_i |Converts Character Date String YYMMDD into a Y-2K Compliant Date page 150
crsp_util cvt t i Converts a Text String to an Integer page 150
crsp util cvt t 1 Converts a Numeric Text String into a Long Integer page 150
crsp_util cvt t f Converts a Text String to a Floating Point Number page 164
crsp_util cvt t d Converts a Text String to a Double Floating Point Number page 157
crsp_util_cvt_cdate i Convert a Character Date String into an Integer page 154

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C PAGE 148

FUNCTION DESCRIPTION PAGE
crsp util cvt i cdate Convert Integer Date to Character Date String page 158
crsp_util cvt_i_ingdate Convert an Integer Date (YYYYMMDD) into an Date-Field-Compatible Character String Date page 152

crsp_util convtype Converts CRSP Constant Names to Integers

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

int crsp util convtype (char *typestring)

converts a CRSP constant name string to an integer. All CRSP defined _NuM constants defined in crsp_const. h are supported.

char * typename — string to convert

integer code found
CRSP_FATIL:if string not supported

none

none

crsp_util lowercase Converts Strings to All Lowercase Letters

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:
RETURN VALUES:
SIDE EFFECTS:
PRECONDITIONS:

void crsp util lowercase (char *string)

converts a string to all lowercase letters.

char *string — stringto convert

none

string may be changed. If the string is a string of spaces, the routine leaves one leading space.

string must be a NULL-terminated character string

crsp_util strtrimRemoves Trailing Blanks From Strings

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:
RETURN VALUES:
SIDE EFFECTS:
PRECONDITIONS:

void crsp util strtrim (char *string)

converts a string by moving the string termination to after the last nonblank character.

char *string - stringto convert

none

string may be changed

string must be a NULL-terminated character string

crsp util uppercase Converts Strings to All Uppercase Letters

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:
RETURN VALUES:
SIDE EFFECTS:
PRECONDITIONS:

void crsp_util uppercase (char *string)

converts a string to all uppercase letters.

char *string - stringtoconvert

none

string may be changed

string must be a NULL-terminated character string

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSIN C

PAGE 149

crsp_util squeeze Removes White Space from Character Strings

PROTOTYPE: int crsp stk clear (CRSP_STK STRUCT *stk, int clearflag)

DESCRIPTION: converts a string by removing white space. All leading and trailing tabs or spaces are removed, and multiple tabs and spaces are replaced
with a single space.

ARGUMENTS: char *string - stringto convert

int clearflag — constant identifying the level of clearing. Supported values are:

CRSP_CLEAR_INIT —onlyresetnum

CRSP_CLEAR_ALL —set num to 0 and set missing values for all elements in the object arrays

CRSP_CLEAR_RANGE — set missing values for all array elements between 0 and num-1

CRSP_CLEAR_SET —setrangesinthe maxarr-1’ th element of the cRsp_ARRAY to missing values specific to the array type.

RETURN VALUES: none
SIDE EFFECTS: string may be changed
PRECONDITIONS: string must be a NULL-terminated character string

ARGUMENTS: CRSP_STK_STRUCT *stk — pointer to a stock structure pointer to be cleared

crsp_util strtoken Locates the First Delimiter in a String

PROTOTYPE: char * crsp util strtoken(char *ptr, char *delimiters)

DESCRIPTION: Locate the first delimiter in a string. Find the first terminator character, replace that character with a NUT.1, and update the pointer to the
remaining string. Unlike the standard library function, strtok, this function can handle consecutive delimiters.

ARGUMENTS: char *ptr -string to parse

char *delimiters -delimiter charactersin a string

RETURN VALUES: pointer to the remainder of the string, or NULL if no delimiter character was found

SIDE EFFECTS: string may be changed

PRECONDITIONS: strings must be NULL terminated character strings

crsp util cvt date mmddyy i Converts Character Date String YYMMDD into a Y-2K Compliant Date

PROTOTYPE: int crsp util cvt date mmddyy i(char *text ptr, int *date value)

DESCRIPTION: Converts a character date string of the format YYMMDD into a year 2000 compliant integer based on a 1950 cutoff. Year values < 50 are
assumed to be +2000.

ARGUMENTS: char *text ptr -stringtoconvert
int *date_ value - pointer to location into which will be put the integer value

RETURN VALUES: crRsP_success Normal successful completion
crsp_FAIL One or more fields could not be converted to integer values

SIDE EFFECTS: date value is loaded

crsp util cvt_t i Convertsa Text String to an Integer

PROTOTYPE: int crsp util cvt t i(char *text, int text size, int *output)

DESCRIPTION: Convert a text string to an integer. Cannot convert a string larger than 11 characters. The string is assumed to NOT be NULL terminated.

ARGUMENTS: char *text - Pointer to integer string
int text size -Number of digits to convert
int *output - Pointer to location into which is written the results of the conversion

RETURN VALUES: CRSP_succEss - Normal successful completion
Anything else - system error, no value
ERANGE - Number is too big to convert

SIDE EFFECTS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 150

crsp_util cvt_t 1 Converts a Numeric Text String into a Long Integer

PROTOTYPE: int crsp util cvt_t 1(char *text, int text size, long *output)

DESCRIPTION: Converts a numeric text string into a long integer

ARGUMENTS: char *text - Pointer to integer string
int text_size - Number of digits to convert

int *output - Pointer to long integer location into which is written the results of the conversion

RETURN VALUES: CRSP_succEss - Normal successful completion
Anything else - system error, no value
ERANGE - Number is too big to convert

SIDE EFFECTS: output is loaded
PRECONDITIONS: Text string must be terminated numeric value. Output must minimally point to size (long) bytes of accessible memory.

crsp util cvt_t £ Convertsa Text String to a Floating Point Number

PROTOTYPE: int crsp util cvt t f(char *text, int text size, int precision, float *output)

DESCRIPTION: Converts a text string to a floating point number. The string is assumed to not be NUT.1.-terminated and to contain no decimal points. This
routine does not handle scientific notation.

ARGUMENTS: char *text - Pointer to character string to be converted

int text size - Number of characters in the string

int precision -Number of characters to the right of the implied decimal point

float *output - Pointer to floating point variable where the results of the conversion are written

RETURN VALUES: CRSP_sUCCESS - Normal successful completion
Other - system error, no value

SIDE EFFECTS: Output is loaded
PRECONDITIONS: Output must point to at least size of (float) bytes of accessible memory.

crsp_util cvt_ t d_Converts a Text String to a Double Floating Point Number

PROTOTYPE: int crsp util cvt t d(char *text, int text size, int precision, double *output)

DESCRIPTION: Converts a text string to a double precision floating point number. The string is assumed to not be to NULL terminated and contain no
decimal points. This routine does not handle scientific notation.

ARGUMENTS: char *text - Pointer to character string to be converted

int text size - Number of characters in the string

int precision - Number of characters to the right of the implied decimal point

float *output - Pointer to floating point variable where the results of the conversion are written

RETURN VALUES: CRSP_succEss - Normal successful completion
Other - system error, no value

SIDE EFFECTS: Output is loaded.
PRECONDITIONS: Output must point to at least size (double) bytes of accessible memory.

crsp_util cvt cdate_i Convert a Character Date String into an Integer

PROTOTYPE: int crsp util cvt cdate i(char *date str, int *date_int)

DESCRIPTION: Convert a character date string into an integer. Date format: “Mon May 19 18:05:12 1996 Integer format:19960519

ARGUMENTS: char *date_str - Pointer to the nULL terminated string to be converted

int *date_int - Pointer to the integer into which is written the converted date value

RETURN VALUES: CRSP_succEss - Normal successful completion

CRSP_FAIL - Conversion failed. Character string was possibly not the valid date format

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 151

SIDE EFFECTS: String may be changed.

PRECONDITIONS: String must be NULL terminated character string. Date-integer must point to at least size of (integer) bytes of accessible memory.

crsp_util cvt i cdate Converts an Integer Date to a Character Date String

PROTOTYPE: int crsp util cvt i cdate(int int date, char *char buffer)
DESCRIPTION: Convert integer date to character date string Integer format: 19960519 Date format: “Mon May 19 18:05:12 1996”
ARGUMENTS: int int_date - Value to be converted to date string
char *char buffer - Pointer to the character buffer into which is written the converted text string
RETURN VALUES: CRSP_succEss - Normal successful completion
CRSP_FAIL - Conversion failed. Integer value was possibly not a valid date
SIDE EFFECTS: Character buffer is loaded.
PRECONDITIONS: Character buffer must point to at least 25 bytes of accessible memory.

crsp _util cvt i ingdate Convert an Integer Date (YYYYMMDD) into an Date-Field-Compatible Character String Date

PROTOTYPE: int crsp util cvt i ingdate(int date_ int, char *date str)

DESCRIPTION: Convert an integer date (YYYYMMDD) into a date field compatible character string date. Note: Integer value ‘99999999’ converted to 31-
dec-2299 Integer value ‘0’ converted to blank

ARGUMENTS: int date_int Integer date to be converted to character string
char *date str -Pointerto character string where new date is output

RETURN VALUES: CRSP_succEss - Normal successful completion
CRSP_FAIL - Conversion failed. Integer value was possibly not a valid date

SIDE EFFECTS: Date string is loaded with resultant string.

PRECONDITIONS: Date string must point to at least 12 bytes of accessible memory.

C Structure Copy Functions

These functions are used to copy data from one like CRSPAccess structure to another.

FUNCTION DESCRIPTION PAGE

crsp_util_copy_ts Copy Time Series Data to Another Time Series page 152
crsp_util copy_arr Copy CRSP Array Data to Another CRSP Array page 153
crsp_util copy_cal2ts Copy a Calendar to a Time Series page 153

crsp_util copy ts Copy Time Series Data in a Given Range to Another Time Series

PROTOTYPE: int crsp util copy ts(CRSP_TIMESERIES *src ts, CRSP_TIMESERIES **trg ts, int beg, int end,
int appendflag)

DESCRIPTION: Copy time series data in a given range to another time series. Copies data from one time series to another within a given range. It is optional
whether to overlay the source data on top of existing target data or replace the target with only the source data in the range.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 152

ARGUMENTS: CRSP_TIMESERIES *src_ts - pointer to existing source time series

CRSP_TIMESERIES **trg ts -pointerto pointer to target time series to be loaded. This pointer can be changed to point to a new
time series if it is NULL or a different time series type

int beg - beginning index to copy from source time series

int end - ending index to copy from source time series

int appendflag - option on whether to overlay or reset the target time series. Possible values include:

CRSP_COPY_ RESET - The target time series is reset. If NULL, it is initialized, and if not NULL but a different time series from the source,
it is freed and re-initialized. Beg and end will become the new beg and end for the target, and data for that range will be copied from the
source.

CRSP_COPY OVERLAY - The source data in the range is overlaid on top of the existing target time series. The target time series must

be allocated and must compare to the source time series. The new data in the range is copied into the target, the ranges are changed
accordingly.

RETURN VALUES: CRSP_SUCCESS - if successfully
CRSP_FAIL - if bad parameter, mismatched time series on overlay, unable to initialize target if needed

SIDE EFFECTS: The target time series is initialized if different from source and loaded with data in the range copied from the source time series. The 0’ th
array element of the source time series (assumed containing the missing value for that time series) is copied to the target time series.

PRECONDITIONS: The source time series must exist and have beg and end such that beg >= source time series beg, end <= source time series end, and
beg >= end.If appendflagis cRsp_copy OVERLAY, the target time series must be allocated and compare with the source time series.

crsp _util copy arr Copy CRSP Array Data to Another CRSP Array

PROTOTYPE: int crsp util copy_ arr (CRSP_ARRAY *src_arr, CRSP_ARRAY *trg arr)

DESCRIPTION: Copy CRSP array data to another CRSP array

ARGUMENTS: CRSP_ARRAY *src_arr -pointerto an existing source CRSP array
CRSP_ARRAY *trg arr - pointer to an existing target CRSP array

RETURN VALUES: CRSP_SUCCESS - if successful
CRSP_FAIL - if bad parameter, mismatched time series on overlay, unable to initialize target if needed

SIDE EFFECTS: The source CRSP array is copied to target CRSP array. All data in array is copied and target num is set.

PRECONDITIONS: The source and target CRSP array must exist and must be compatible.

crsp_util copy_ cal2ts Copy aCalendar to a Time Series

PROTOTYPE: int crsp util copy cal2ts(CRSP_CONFIG CAL *cal, CRSP_TIMESERIES **ts, int cal type)

DESCRIPTION: Copy a calendar to a time shares

ARGUMENTS: CRSP_CONFIG CAL *cal -pointertoa calendar in the internal config structure.

CRSP_TIMESERIES **ts - pointer toapointerto CRSP_TIMERSERIES to store the result in the internal
CRSP_ARRAY config[crspnum]->cal or equivalent. Time Series will be initialized if NULL.

int caltype - determines which calendar new is copied. It must be one of:

CAL_TYPE ID-copy callistarray

CAL_TYPE DATE - copy caldt array

CAL_TYPE DATERANGE - copy date range array

CAL TYPE TIME - copy time array

CAL TYPE TIMERANGE - copy time range array

RETURN VALUES: CRSP_SUCCESS - if successful
CRSP_FAIL - iffailure

SIDE EFFECTS: Time series will be allocated if necessary. See crsp_obj_init_ts on page 150 for expected allocation.

PRECONDITIONS: Database must be opened with crsp_openroot or one of the crsp_* open functions. If initialized, time series must be NULL.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 153

C Structure Generic Clear Functions

These functions are used to load missing data to CRSPAccess object structures. CRSPAccess access functions may be
used when the set type is not known ahead of time.

FUNCTION DESCRIPTION PAGE

crsp_util clear arr Setsa crRsp_ARRAY to missing values page 154
crsp_util clear_elem Sets one structure to missing values page 154
crsp_util clear row Setsa crsp_Rrow to missing values page 155
crsp_util clear_ts Setsa CRsP_TIMESERIES to missing values page 155
crsp_util delete_ts Deletes ranges from a CRsp_ TIMESERIES given a second CRSP_TIMESERIES page 155
crsp_util insert_ts Inserts ranges froma CRSP_TIMESERIES given a second CRSP_TIMESERIES page 172
crsp_util_update_ts Updates ranges from a CRsP_ TIMESERIES given a second CRSP_TIMESERIES page 158
crsp_util is missing Handle missing value problem in CRSP_TIMESERIES structure parameters page 163
crsp_util reset enddts Resets end date for an array structure page 164
crsp_util merge arr Merges two array structures to a third, single array page 159
crsp_util merge ts Merges two time series to a third, single time series page 160

crsp_util clear arr Load Missing Values to an Array

- int crsp util clear arr (CRSP ARRAY *arr, int clearflag
PROTOTYPE: i _util_clear . (. * i learflag)

DESCRIPTION: Loads missing values into a CRsp_ARRAY on a range level or array level.

ARGUMENTS: CRSP_ARRAY *arr —pointertoa CRSP ARRAY

int clearflag — constant identifying the level of clearing. Supported values are:

CRSP_CLEAR_INIT —onlyresetnumto0

CRSP_CLEAR ALL —Sset numto 0 and set missing values for all elements in the object arrays

CRSP_CLEAR_RANGE - set missing values for elements between 0 and num-1

CRSP_CLEAR_SET —setrangesinthemaxarr-1’ th element of the cRsp_ARRAY to missing values specific to the array type.

RETURN VALUES: CRSP_SUCCESS: if success
Crsp_FAIL:if bad parameters

SIDE EFFECTS: The array pointer has all allocated fields initialized according to the c1earflag. If clearflagis CRSP_CLEAR INIT onlynumis setto
0. If clearflagis CRSP_CLEAR_RANGE all elements between 0 and num-1 are set to missing values. If clearflagis CRSP_CLEAR
ALL num is set to 0 and missing values are set for all elements in the object arrays. If c1earflagis CRSP_CLEAR_SET, the maxarr-
1'th element of the array is set to the missing value for the arrt ype and subt ype.

PRECONDITIONS: The array pointer must be NULL or initialized with a valid arrt ype and subt ype.

crsp _util clear elemLload Missing Values to One Array Element or Structure

PROTOTYPE: int crsp util clear elem (void *elem, int arrtype, int subtype)

DESCRIPTION: Loads missing values into one structure identified by array type and subtype.

ARGUMENTS: void *elem - pointer to structure to be loaded with missing values
int arrtype —integercode identifying the structure or simple data type of the element
int subtype - integercode identifying the subcategory of data loaded in the element

RETURN VALUES: CRSP_SUCCESS: if success
CrRsP_FAIL:if bad parameters or unknown arrtype or subtype

SIDE EFFECTS: The proper missing values are loaded to the element
PRECONDITIONS: arrtype and subtype must be valid

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 154

crsp _util clear row Load Missing Values to a Row

5 int crsp util clear row (CRSP ROW *row, int clearflag)
PROTOTYPE: _ _ _ _

DESCRIPTION: Loads missing values into a CRsp_Row

ARGUMENTS: CRSP_ROW *row — pointer to a CRSP_ROM.

int clearflag — constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT —justreturnsuccess
CRSP_CLEAR_ALL — set missing values for the array element
CRSP_CLEAR_RANGE - set missing values for the array element
CRSP_CLEAR_SET — set missing values for the array element

RETURN VALUES: CRSP_SUCCESS: if successfully cleared or NUL.L row or row array
CRSP_FAIL:if unknown arrtype or subtype

SIDE EFFECTS: The array pointer has all allocated fields initialized according to the clearflag. If clearflagis CRSP_CLEAR INIT it
doesn’t do anything. If any other flag is passed it set missing value in the in the ar r part

PRECONDITIONS: The row pointer must be NUT.L or initialized with a valid arrt ype and subtype.

crsp_util clear ts Loads Missing Values to a Time Series

- int crsp util clear ts (CRSP TIMESERIES *ts, int clearflag
PROTOTYPE: i _util_clear ts (- * i learflag)

DESCRIPTION: Loads missing values into a time series on a range level or array level.

ARGUMENTS: CRSP_TIMESERIES *ts - pointer toatime series to be loaded.

int clearflag — constant identifying the level of clearing. Supported values are:

CRSP_CLEAR INIT —onlyresetbegandendto0

CRSP_CLEAR ALL —Setbeg and end to 0 and set missing values for all elements in the time series.

CRSP_CLEAR_RANGE — set missing values for elements between beg and end of the time shares

CRSP_CLEAR_SET - set ranges in the 0'th element of the cRsp_TIMESERIES to missing values specific to the array type.
RETURN VALUES: CRSP_SUCCESS: if success

CRsP_FAIL:if bad parameters

SIDE EFFECTS: The time series pointer has all allocated fields initialized according to the c1earflag. If clearflagis CRSP_CLEAR INIT onlybeg
and end aresetto 0. If c1learflagis CRSP_CLEAR RANGE all elements between beg and end are set to missing values. If clearflag
iSCRSP_CLEAR ALLbeg and end are set to 0 and missing values are set for all elements in the time series. If c1earflagis CRSP
CLEAR_SET, the 0'th element of the time series is set to the missing value for the arrt ype and subtype.

PRECONDITIONS: The time series pointer must be NULL or initialized with valid arrt ype and subt ype.

crsp _util clear arr user Load Missing Values to an Array Based on User Function

PROTOTYPE: int crsp_util_clear_arr_user (CRsp_ARRAY *arr, void (*clear_fnct) void *elem, int c1earflag)

DESCRIPTION: Loads missing values into a CRsp_ARRAY on a range level or array level.

ARGUMENTS: CRSP_ARRAY *arr — pointertoa CRSP_ARRAY
void (*clear fnct) void *elem - pointerto user’s function
int clearflag — constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT —onlyreset numto 0
CRSP_CLEAR_ALL —set num to 0 and set missing values for all elements in the object arrays
CRSP_CLEAR RANGE — set missing values for elements between 0 and num-1
CRSP_CLEAR_SET - setranges in the maxarr-1'th element of the cRsp_aARRAY to missing values specific to the array
type.
RETURN VALUES: CRSP_SUCCESS: if success
CRSP_FAIL:if bad parameters

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 155

SIDE EFFECTS: The array pointer has all allocated fields initialized according to the c1earflag. If clearflagis CRSP_CLEAR INIT only numis setto
0. If clearflagis CRSP_CLEAR RANGE all elements between 0 and num-1 are set to missing values. If clearflagis CRSP_CLEAR
ALL num is set to 0 and missing values are set for all elements in the object arrays. If c1earflagis CRSP_CLEAR SET, themaxarr-
1'th element of the array is set to the missing value for the arrtype and subtype.

PRECONDITIONS: The array pointer must be NULL or initialized with a valid arrtype and subtype.User’s function must exist with one void pointer argument.
This function must be able to clear one element of the user’s array.

crsp _util clear row_user Load Missing Values to a Row

. int crsp util clear row user (CRSP ROW *row, oid (*clear fnct) void *elem, int clearflaqg)
PROTOTYPE: _ _ _row_ _ _

DESCRIPTION: Loads missing values into a CRsp_RowW

ARGUMENTS: CRSP_ROW *row - pointertoacrsp Row.

void (*clear fnct) void *elem -pointer to user's function

int clearflag — constant identifying the level of clearing. Supported values are:
CRSP_CLEAR_INIT —justreturnsuccess
CRSP_CLEAR_ALL — set missing values for the array element
CRSP_CLEAR_RANGE — set missing values for the array element
CRSP_CLEAR_SET — set missing values for the array element

RETURN VALUES: CRSP_SUCCESS: if successfully cleared or NULL row or row array
CRsP_FAIL:if unknown arrtype or subtype

SIDE EFFECTS: The array pointer has all allocated fields initialized according to the clearflag. If clearflagis CRSP_CLEAR INTT it
doesn't do anything. If any other flag is passed it set missing value in the in the arr part

PRECONDITIONS: The array pointer must be NULL or initialized with a valid ar rt ype and subt ype.User’s function must exist with one void pointer
argument. This function must be able to clear one element of the user’s array.

crsp_util clear ts user Loads Missing Values to a Time Series

PROTOTYPE: int crsp util clear_ ts_user (CRSP_TIMESERIES *ts, void (*clear_ fnct) void *elem, int
clearflag)

DESCRIPTION: Loads missing values into a time series on a range level or array level.

ARGUMENTS: CRSP_TIMESERIES *ts — pointerto atime series to be loaded.

void (*clear fnct) void *elem

int clearflag — constant identifying the level of clearing. Supported values are:

CRSP_CLEAR_INIT —onlyresetbegandendto0

CRSP_CLEAR ALL -—Setbegand end to 0 and set missing values for all elements in the time series.
CRSP_CLEAR_RANGE — set missing values for elements between beg and end of the time shares

CRSP_CLEAR_SET —set ranges in the 0'th element of the cRsp_TIMESERIES to missing values specific to the array type.

RETURN VALUES: CRSP_SUCCESS: if success
Crsp_FAIL:if bad parameters

SIDE EFFECTS: The time series pointer has all allocated fields initialized according to the c1earflag. If clearflagis CRSP_CLEAR INIT onlybeg
and end aresetto0.1f clearflagis CRSP_CLEAR_ RANGE all elements between beg and end are set to missing values. If clearflag
iSCRSP_CLEAR ALLbeg and end are set to 0 and missing values are set for all elements in the time series. If c1learflagis CRSP
CLEAR_SET, the 0'th element of the time series is set to the missing value for the array type and subtype.

PRECONDITIONS: The array pointer must be NULL or initialized with a valid ar rt ype and subt ype.User’s function must exist with one void pointer
argument. This function must be able to clear one element of the user’s array.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 156

crsp_util cmp_ float Compares two floating point values at different levels of precision

PROTOTYPE: int crsp util cmp float (float *iteml, float *item2, int epsflag, double epsilon)

DESCRIPTION: Compares two floating point values at different levels of precision.

FORMAL float *iteml - pointer to the first floating point number
PARAMETERS: float *item2 - pointerto the second floating point number
int epsflag - code used to determine precision in
comparisons.

-1 make an absolute comparison to the value in epsilon. If the difference between item1 and item2 is less than or equal to
epsilon, they are reported as equal

0 make an exact comparison between the two numbers

>0 the number of significant digits to compare. Format to a decimal scientific notation at that many digits, and then compare
exactly mantissa, sign, and magnitude

if global int fit compare mode is 1 then positive epsflag is done as a relative comparison.

double epsilon the minimum difference between the two numbers before they are considered as equal if epsflag is -1. Ignored if epsflag is not -1.

RETURN VALUE: 1 ifitem1 is greater than item2
0 if item1 is equal to item2 within epsilon parameters
-1 ifiteml is less than item2

crsp util cmp string Compares two character strings using preprocessing options.

PROTOTYPE: int crsp util cmp string(char *iteml, char *item2, int cepsflag)

DESCRIPTION: Compares two character strings using preprocessing options.

ARGUMENTS: char *iteml- pointerto the first string
char *item2- pointerto the second string
int cepsflag -code used to determine preprocessing in comparison
0 - exact string comparison using strcmp
1 - trim strings (remove trailing white space) before comparing them
2 - squeeze strings (remove leading and trailing white space and replace repeated white space with a single space) before
comparing them

RETURN VALUES: 1 ifitem1 is greater than item2
0 if item1 is equal to item2 after preprocessing
-1 ifitem1 is less than item2

SIDE EFFECTS: If trim or squeeze options are used, the string may be modified
PRECONDITIONS: Both strings must be NULL terminated

crsp_util delete_ts Deletes Ranges from a CRSP_TIMESERIES Based on a Second CRSP_TIMESERIES

PROTOTYPE: int crsp util delete ts(CRSP_TIMESERIES *src_ ts, CRSP_TIMESERIES *del ts, int exactflag, int

rangeflag, int cepsflag, int epsflag, double epsilon)

DESCRIPTION: Deletes ranges froma CRspP_TIMESERIES given a second CRSP_TIMESERIES. It is optional whether the structure must match an
existing row exactly or if only key fields identify the structure to delete

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 157

ARGUMENTS: CRSP_TIMESERIES *src_ts - pointerto existing CRsp_TIMESERIES to be modified
CRSP_TIMESERIES *del ts - pointerto existing CRsp_TIMESERIES to be removed from the source
int exactflag -optiononwhether the element to be deleted must be an exact much or if a match on the keys fields only is sufficient.
Possible values are:

CRsP_MATCH_EXACT the function reports cksp_NOT_FOUND if any overlapping rows in the source and delete time series
do not match

CRSP_MATCH_IGNORE the function only considers the ranges of the time series, not the values within the time series. int
rangeflag - option on which types of overlapping ranges are accepted. Possible values are:

CRSP_RANGE_NONE no restrictions are made on input ranges; all overlapping ranges are erased

CRSP_RANGE_BEG the begin ranges must match between source and delete time series

CRSP_RANGE_END the end ranges must match between source and delete time series

CRSP_RANGE_ONE at least one of the begin or end ranges must match between source and delete time series int cepsflag -
flag used to compare string fields within structure. “crsp_util_cmp_string” on page 156.

int epsflag - flag used to compare float fields within structure. See “crsp_util_cmp_float” on page 156 for values.

double epsilon -the maximum difference between two float fields in the structures before they are considered different,
used only if epsflagis-1.

RETURN VALUES: CRSP_SUCCESS - if successfully deleted
CRSP_NOT FOUND-ifdel tsvaluesnotfoundinthe src_ts values accordingto exactflag
CRSP_FAIL - if bad parameter or fail function calls or mismatched ranges according to rangeflag

SIDE EFFECTS: beg and end of source time series will be changed
PRECONDITIONS: The time series must be allocated, and elem must be correct type with valid data in at least key fields.

crsp util insert ts DataInto a CRSP_TIMESERIES from a Second CRSP_TIMESERIES

PROTOTYPE: int crsp util insert ts(CRSP TIMESERIES *src_ts, CRSP TIMESERIES *ins ts, int rangeflag)

DESCRIPTION: Inserts ranges from a CRSP_ TTMESERIES given a second CRSP_TIMESERIES. Options govern handling of overlapping data

ARGUMENTS: CRSP_TIMESERIES *src ts -pointertoexisting CRSP TIMESERIES to be modified

CRSP_TIMESERIES *ins_ts -pointertoexisting CRSp_TIMESERIES to be inserted to the source

int rangeflag - option on which types of overlapping ranges are accepted. Possible values are:
CRSP_RANGE_OVER no restrictions are made on input ranges; all overlapping ranges are replaced with the insert ts values
CRSP_RANGE_KEEP no restrictions are on input ranges; keep existing values in all overlapping ranges
CRSP_RANGE BEG the insert end must be one less than the source begin
CRSP_RANGE_END the insert begin must be one higher than the source end
CRSP_RANGE ONE at least one of the previous two conditions must be true

RETURN VALUES: CRSP_SUCCESS - if successfully inserted
CRSP_NOT_FOUND - if del_ts values not found in the src_ts values according to exactflag

SIDE EFFECTS: beg and end of source time series will be changed

PRECONDITIONS: The time series must be allocated, and elements must agree on type with valid data in at least key fields

crsp util update ts Updates Dataina CRSP_TIMESERIES From Data in a Second CRSP_TIMESERIES

PROTOTYPE: int crsp_util update ts(CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *new_ts, CRSP_TIMESERIES
*old ts, int exactflag, int cepsflag, int epsflag, double epsilon)

DESCRIPTION: Updates ranges froma CRsP_TIMESERIES given a second CRSP_TIMESERIES. It is optional whether the structure must match an
existing row exactly or if only key fields identify the structure to delete.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 158

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

CRSP_TIMESERIES *src_ts - pointer to existing CRsP_TIMESERIES to be modified

CRSP_TIMESERIES *new ts -pointertoexisting CckRsp_TIMESERIES to be updated into the source

CRSP_TIMESERIES *old ts -pointertoexisting CRsp_TIMESERIES to be compared to the existing source. Used only for exact
matches (exactflag=CRSP_MATCH_EXACT)

int exactflag - option on whether the element to be updated must be an exact match or if a match on the keys fields only is sufficient.
Possible values are:

CRSP_MATCH_EXACT the function reports

CRSP_NOT_FOUND if any overlapping rows in the source and old time series do not match

CRSP_MATCH_IGNORE the function only considers the ranges of the time series, not the values within the time series.
int* code - pointer to location used to store structure specific results of a comparison of all fields. If code is -1, then only the key-based
comparison is made. Otherwise, code is set to a positive number containing information of the fields that are different
int cepsflag - flag used to compare string fields within structure. See “crsp_util_cmp_string” on page 156 for values.
int epsflag - flag used to compare float fields within structure. See “crsp_util_cmp_float” on page 156 for values.
double epsilon -the maximum difference between two float fields in the structures before they are considered different, only used if
epsﬂagh-l

CRSP_SUCCESS - if successfully updated
CRSP_NOT_FOUND - if old_ts values not found inthe src_ ts values according to exactflag
CRSP_FAIL - if bad parameter or fail function calls or mismatched ranges according to rangeflag

beg and end of source time series will be changed and data will be loaded if successful.

The time series must be allocated, and array types and calendars must agree, with valid data in at least key fields.

crsp_util is missing Determine Whether One Array Element Contains Missing Data

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

int crsp util is missing(void *elem, int arrtype, int subtype)

Determines whether one passed array element contains missing data according to arrt ype and subt ype. This function is useful if there
are multiple missing values for a type of data. Normally the first element of a CRSP time series array, or the last element of a CRsp_aARRAY
contains the primary missing data for that type of data. This function supports all primary and secondary missing values.

void *elem-a pointerto element to be checked
int arrtype -a CRSP-defined array type constant identifying the structures
int subtype -aCRSP-defined subtype constantidentifying possible subcategories of data loaded in the element

0 - CRSP_NOT_ MISSING - value present
1 - CRSP_IS_MISSING -value missing
-1 - unknown or unsupported arrtype Ofr subtype

none

elem must point to valid data for the structure indicated by ar rt ype.

crsp _util reset_ enddts Resets End Date for the CRSP_ARRAY Histories

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

int crsp util reset enddts (CRSP_ARRAY *array, int lastenddt, int begdt offset, int enddt
offset)

Resets end date to the next begin date minus 1 for the cksp_ARRAY structure

CRSP_ARRAY *array - Source array structure lastenddt - date in CCYYMMDD format to be used for the end date of the last event.
Resets end dates for crsp_ARRAY event histories. Sets end dates in array structure to one day before the following event's effective
date. The end date of the last event must be provided as a parameter. Only valid for arrays containing contiguous increasing effective dates.
int begdt offset -offsetof begin date field of the specified array stucture

int enddt offset - offset of end date field of the specified array structure

CRSP_SUCCESS - if successfully set
CRSP_FAIL -if error in parameters or loading process

enddt - offset for each event from - to num-1 is updated.

Array must be allocated and loaded. begdt_offset with each event structure must be an integer date feed in YYYYMMDD format.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 159

crsp_util merge arr Compare Two Source Arrays; if They are Equal, Copy Main Array Data into Target Array

PROTOTYPE: int crsp util merge_arr (CRSP_ARRAY *trg arr, CRSP_ARRAY *main_arr, CRSP_ARRAY *sub_arr, int

*status, int cepsflag, int epsflag, double epsilon)

DESCRIPTION: Compare two source array, put two records in order into target array, if they are equal, copy main array data into target, where the main
array takes the precedence.

ARGUMENTS: CRSP_ARRAY *trg_ arr -output, pointerto CRsp_ ARRAY
CRSP_ARRAY *main_arr -input, pointerto CRSP_ARRAY
CRSP_ARRAY *sub_arr -input, pointerto CRSp_ARRAY
int *status - flag to indicates the status of the data

RETURN VALUES: CRSP_SUCCESS - successfully ran
CRSP_FAIL - failed torun

SIDE EFFECTS: Any previously stored data in target array will be overwritten

crsp_util merge_ ts Merges Two Source Time Series to One Target Time Series

PROTOTYPE: int crsp_util_merge_ts(CRSP_TIMESERIES *trg ts, CRSP_TIMESERIES *srcl_ts, CRSP_TIMESERIES

*src2_ts)

DESCRIPTION: Merges two source ts(srcl ts, src2 ts) totargetts (trg ts),where trg ts takes the precedence

ARGUMENTS: trg_ts-output, pointer to CRSP_TIMESERIES
srcl_ts -input, pointerto CRSP_TIMESERIES
src2_ts-input, pointto CRSP_TIMESERIES

RETURN VALUES: CRSP_SUCCESS - successfully ran

CRSP_FAIL - failed torun

Data to Time Series Mapping Utility Functions

FUNCTION DESCRIPTION PAGE

crsp_util map_arr2ts Maps a subset of fields froma CRspP_ARRAY t0 @ CRSP_TIMESERIES page 160
crsp_util_map_row2ts Maps a subset of fields from a CRsp_Rowtoa CRSP_TIMESERIES page 161
crsp_util map_ts2ts Maps a subset of fields from one CRsP_TIMESERIES to another page 170

crsp_util map arr2ts Maps Selected Fields in a CRSP_ARRAY into a CRSP_TIMESERIES

PROTOTYPE: int crsp util map_arr2ts (CRSP_ARRAY *src_arr, CRSP_TIMESERIES *trg ts, int flags, int
rangflag, int offset, int length, int begdt offset, int enddt offset)

DESCRIPTION: Loads selected fieldsina cksp_aRRay intoa cRsp TIMESERIES. The specific fields are identified with the offset within the array
structure and the length of the field. Date range fields in the array used to map to the time series calendar are specified with their offsets.
This function only works with status change event arrays where each event refers to the status values until the next event.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 160

ARGUMENTS: CRSP_ARRAY *src arr — pointer to source array. The array must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg ts — pointerto target time series with desired calendar loaded.
int flags - flagsused to interpret date ranges
CRSP_ACTUAL - target is loaded with source at the end of target period, trg[i] = £(src[i])
CRSP_EFFECTIVE — target is loaded with source at the end of the previous target period, trg[i+1] = £(src[i])
CRSP_NLAST - last data from the source is moved to all periods on target
int rangflag - flags used to interpret time series ranges outside of explicit source ranges. Flags are:

CRSP_RANGE AS_IS-asitis, target set to missing outside of explicit source range

CRSP_RANGE_FIRST — assume first source event is valid back to beginning of target range

CRSP_RANGE_LAST — assume last source event is good forever

CRSP_RANGE FIRST LAST — both firstand last
int offset — the offset in bytes of the target field from the beginning of the structure in the source array.
int length - the number of bytes of the target field
int begdt offset —the offset in bytes of the effective date field of the source structure from the beginning of the structure in the
source array.
int enddt offset —the offsetin bytes of the last effective date field of the source structure from the beginning of the structure in the
source array.

RETURN VALUES: CRSP_SUCCESS: if successful
CRsP_FAIL:if bad parameter, mismatched time series size or uninitialized source or target, or unmatched parameters.

SIDE EFFECTS: The target time series is loaded with data from the source array according to flags.

PRECONDITIONS: The source array must be allocated and loaded with the data to copy. The target time series and calendar must be allocated. The target
size of array width mustmatch the length parameter and target object fields arrtype and subtype must be set according to
the data to be loaded. No offsets can extend past the size of the array structure.

crsp_util map row2ts Maps Selected Fields in One CRSP_ROW into a CRSP_TIMESERIES

PROTOTYPE: int crsp util map row2ts (CRSP_ROW *row ts, CRSP TIMESERIES *trg ts, int offset)

DESCRIPTION: Loads selected fields ina cksp_rowintoa crRsp_TIMESERIES. The specific fields are identified by the offset within the source
structure and the size of array width of the target. The row field value is copied to every period in the target time series.

ARGUMENTS: CRSP_ROW *src_row - pointer to source row. It must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg ts — pointerto target time series with desired calendar loaded and desired beg and end set.
int offset —the offsetin bytes of the target field from the beginning of the structure in the source row.

RETURN VALUES: CRSP_SUCCESS: if successful
CrRsP_FAIL:if bad parameter, uninitialized source or target, or unmatched parameters.

SIDE EFFECTS: The target time series is loaded with data from the source. Data is copied to each period between the target beg and end.

PRECONDITIONS: The source time series must be allocated and loaded with the data to copy. The target time series and calendar must be allocated and the
desired beg and end must be set. Target object fields arrtype and subt ype must be set according to the data to be loaded.

crsp_util map ts2ts Maps Selected Fields in One CRSP_TIMESERIES into Another

PROTOTYPE: int crsp util map ts2ts (CRSP_TIMESERIES *src_ts, CRSP TIMESERIES *trg ts, int offset)

DESCRIPTION: Loads selected fieldsina crsp_TIMESERIES into another cRsp_T1MESERIES. The specific fields are identified bythe offset within
the source structure and the size of array width of the target. The two time series must have identical calendars.

ARGUMENTS: CRSP_TIMESERIES *src_ts — pointertosource time series. It must be allocated and loaded with the data to map.
CRSP_TIMESERIES *trg ts — pointertotarget time series.
int offset — the offset in bytes of the target field from the beginning of the structure in the source array.

RETURN VALUES: CRSP_SUCCESS: if successful
CRsP_FAIL:if bad parameter, mismatched time series size or uninitialized source or target, or unmatched parameters.

SIDE EFFECTS: The target time series is loaded with data from the source array according to flags. Data is copied on a period by period basis and the target
beg and end are copied from the source.

PRECONDITIONS: The source time series must be allocated and loaded with the data to copy. The target time series and calendar must be allocated. Target
object fields arrt ype and subt ype must be set according to the data to be loaded. The two time series must have identical calendars.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 161

CRSPAccess C Database Information Function

This function is used to retrieve information about a database.

crsp_root_info_ get Load CRSPAccess Database Information

PROTOTYPE: int crsp root info get (int crspnum, CRSP ROOT_ INFO *info)

DESCRIPTION: Loads database information from a CRSPAccess database into a structure. CRSP_ROOT_INFOQ is defined in crsp_objects. h. The
following fields are available:

crt_date — 25-character string containing the time the database was created, in the format “Dow Mon DD HH:MM:SS YYYY”
mod_date — 25-character string containing the time the database was last modified, in the format “Dow Mon DD HH:MM:SS YYYY”
cut_date — 25-character string containing the last date of data in the database, currently loaded as YYYYMM

binary_type — Lif IEEE Little-Endian, and B if IEEE Big-Endian

code version — 19-character string containing the CRSPAccess version used to create the database

product_code — 11-character CRSP Product Code product_name — 47-character Product name of the database version — integer
version number of the database

settypes —anarray of up to eight integer settypes available in the database setids — an array of up to eight integer setids available in the
database setnames — an array of up to eight names of the sets in the database

numsets — the number of data sets in the database

calids —anarray of up to eight integer calids of calendars available in the database calavail — an array of up to eight integer caltypes of
the calendars available in the database calnames — an array of up to eight names of the calendars in the database

numcals — the number of calendars in the database

ARGUMENTS: int crspnum - database identifier returned by a CRSPAccess database open function
CRSP_ROOT INFO *info —structure that will be loaded with database information
RETURN VALUES: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL: if database is not open or error loading information structure
SIDE EFFECTS: none
PRECONDITIONS: the database must be opened with one of the CRSPAccess open functions.
DATA UTILITY FUNCTIONS

The CRSP library contains several groups of data functions described in the following table. Subsections in this sec- tion
contain the descriptions of the individual functions within each of the function groups.

FUNCTIONS GROUP DESCRIPTION PAGE

Adjust Functions Functions to Adjust Prices or Other Data page 162
Excess Returns Functions Functions to Make Excess Returns Calculations page 179
Name Array Functions Functions to Map Name History Fields to Time Series page 180
NASDAQ Information Mapping Functions Functions to Map NASDAQ Information Elements to Time Series page 164
Returns Functions Functions to Calculate Returns page 166
Shares Outstanding Functions Functions to Manipulate Shares Data page 174
Subset Functions Functions to Print Specialized Stock Data page 178
Translation Functions Functions to Translate Data to New Time Series page 191

Adjust Functions

These functions adjust prices, dividends, volumes, and shares for splits or other price factors.

FUNCTION DESCRIPTION PAGE

crsp_adj_load Builds a Price Adjustment Structure Array page 163
crsp_adj_map_ts Adjusts a Source crRsp_TIMESERIES According to an Adjustment Array page 167
crsp_adj _map_arr Adjusts a Source cRsp_ARRAY According to an Adjustment Array page 165
crsp_adj_stk Adjusts all relevant fields in a Source Stock Structure page 164

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 162

crsp_adj_load Builds a Price Adjustment Structure Array

PROTOTYPE: int crsp adj load (CRSP_STK STRUCT *stk, CRSP_ARRAY *adj arr, int adjdt, int factyp, int
gapflg, int knowexch)

DESCRIPTION: loadsa crsp_array of crsp_adj_struct structures with cumulative adjustment factors and effective dates.

ARGUMENTS: CRSP_STK STRUCT *stk — stk structure with at least events and prices loaded.
CRSP_ARRAY *adj_arr —adj array that will be loaded. It must exist with enough space to store completed array of adjustment events
int adjdt — base anchor date guaranteed to have 1.0 factor
int factyp —code of adjustment type: 0 = stock splits and dividends only 1 = all dists with facpr
int gapflg —
0 carry adjustments over a gap
1 adjustments stop when trading on unknown exchange
int knowexch — unused, always set to 0.

RETURN VALUES: CRSP_SUCCESS: if adjustment structure successfully loaded
CRSP_FAIL:if errorin parameters or structures

SIDE EFFECTS: The adj_arr will be loaded. The subtype inthe adj_arr is set to the adjust base date.

PRECONDITIONS: It is assumed that events and prices have been loaded. The adj_arr musthave arrtype CRSP_ADJ_STRUCT_ NUM

crsp_adj map_ts Adjusts a Source CRSP_TIMESERIES According to an Adjustment Array

PROTOTYPE: int crsp_adj map_ ts(CRSP_TIMESERIES *src ts, CRSP TIMESERIES *trg ts, CRSP_ARRAY *adj arr,

int begrng, int endrng, int endflg, int direct)

DESCRIPTION: adjusts a source time series according to an adjust array and put the results in a target time series. The adjust array must exist.

ARGUMENTS: CRSP_TIMESERIES *src_ts — pointer to source time series, already loaded by crsp_adj_load

CRSP_TIMESERIES *trg ts —pointerto preexisting target time series, empty

CRSP_ARRAY *adj_arr — pointer to adjustment array already loaded

int begrng — begin date index of the date range adjustment

int endrng — end date index of the date range adjustment

int endflg — determines whether adjustments can be made after the last day of prices. If set to 1 missing values are set for the range after
the end date; otherwise the last adjustment value is used

int direct — direction flag multiply or divide with ad+ factor 1= multiply with adjustment factor

-1=divide with adjustment factor

RETURN VALUES: CRSP_SUCCESS: (integer) if successfully adjusted

CRSP_FAIL: if error in parameters or adjustment

SIDE EFFECTS: The target time series is loaded with the adjusted data items from the source time series, for the date range specified by begrng and endrng.

PRECONDITIONS: The src_ts,trg ts,andadj arrmustexist. src_tsand trg ts musthave the same arrtype and subtype and the same
calendar. The src_ts subt ype cannot be any of these: CRSP_ RETURN_NUM Of CRSP_PRICE_ADJ_ NUMOf CRSP_VOLUME_ADJ_
NUM. The wanted date range must be a subset of the data date range and the adj _arr date range.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 163

crsp_adj_map_arr Adjusts a Source CRSP_ARRAY According to an Adjustment Array

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp _adj map_arr (CRSP_ARRAY *src_arr, CRSP_ARRAY *trg arr, CRSP ARRAY *adj arr, int
begdt, int enddt, int endflg, int direct)

adjusts a source CRSP_ARRAY according to an adjust array and put the results in a target cRsp_ARraY. The adjust array must exist.

CRSP_ARRAY *src_arr — pointer to source time series, already loaded
CRSP_ARRAY *trg_arr — pointerto preexisting target time series, empty
CRSP_ARRAY *adj_arr — pointer to adjustment array already loaded by crsp_adj_load int begdt — begin date index of the date range
adjustment
int enddt — end date index of the date range adjustment
int endflg — determines whether adjustments can be made after the last day of prices. If set to 1 missing values are set for the range after
the end date; otherwise the last adjustment value is used.
int direct — direction flag multiply or divide with adj factor
1= multiply by adjustment factor (prices)
-1=divided by adjustment factor (shares and values)

CRSP_SUCCESsS: if successfully adjusted
CRSP_FAIL:if errorin parameters or adjustment

The target crRsP_ARRAY is loaded with the adjusted data items from the source cRsp_ARRAY, for the date range specified by begdt and
enddt.

The src_arr, trg_arrandadj arr mustexist. stc_arrand trg arr must have the same arrtype and subtype.The src_
arr subtype can not be any of these: CRSp_SHARES ADJ NUMOr CRSP_DISTS ADJ NUMOrCRSP_DELIST ADJ NUM.The
wanted date range must be a subset of the data date range and the adj _arr date range.

crsp_adj_ stk Adjusts All Relevant Fields in a Source Stock Structure

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp adj stk (CRSP_STK STRUCT *src_stk, CRSP_STK STRUCT *trg_stk, int adjdt, int factyp,
int gapflg, int endflg, int knownexch)

adjusts a source stk structure according to an adjust array and put the results in a target stk structure. The adjust array is initialized and
loaded inside this function.

CRSP_STK_STRUCT “src_stk — pointer to source stk structure

CRSP_STK_STRUCT *“trg_ stk — pointer to target stk structure

int adjdt — base anchor adjustment date guaranteed to have 1.0 factor

int factyp — code of adjustment type:

0 = stock splits and dividends only

1 =all dists with facpr

int gapflg — take into account gaps in the date range or not (values: 1,0) and set the adj fac accordingly
if adjdt < begin of gap and gapflg is set then zero out all ad fac after the gap

if adjdt > end of gap and gapflg is set then zero out all adj £ac before the gap

if adjdt between the gap and gapflg is set then zero out all adj fac

int endflg — determines whether adjustments can be made after the last day of prices. If set to 1 missing values are set for the range after
the end date; otherwise the last adjustment value is used.

int knownexch — unused. Always set to 0, no restriction

CRSP_SUCCESS: if successfully adjusted
Crsp_FAIL:if errorin parameters or adjustment

The target stk structure is loaded with the adjusted data items from the source stk structure. The subt ypes of objects loaded with
adjusted data are changed to reflect the adjusted data. See crsp_const for *_ NUM subtype constants.

The source src_ stk must be already loaded with all the modules wanted to be adjusted. The target trg_ stk must already be
initialized. Use crsp stk _open toinitialize a new structure. If an object subt ype indicates adjusted data is already loaded, no
adjustment will be made. Use the crsp_stk_clear function to reset stock structures to unadjusted subt ypes.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 164

Excess Returns Functions

CRSP excess returns compare two returns time series, and produce a series of returns with the amounts a source time
series is in excess of a base time series.

crsp_xs_calc CRSP Stock Excess Returns Calculation

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

crsp_xs_port Builds Portfolio Returns into One Series

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

Name Array Functions

int crsp xs calc (CRSP_TIMESERIES *bas ts, CRSP TIMESERIES *ind ts, CRSP_TIMESERIES *trg

ts, int beg, int end, int missflag)

general CRSP stock excess returns calculation given a base return series, a reference return series, and a date range, loads excess returns
for each date in the series.

CRSP_TIMESERIES *bas ts —time series of issue returns

CRSP_TIMESERIES *ind ts - timeseriesofindexreturns CRsSp TIMESERIES *trg ts — target output of excess returns int
beg, end — index range to calculate excess returns

int missflag — flag for handling missing returns

CRSP_KEEP — base missing returns are copied to target, index returns are compounded over gap

CRSP_SMOOTH - first return after gap is geometrically averaged so entire gap has the same amount

CRSP_IGNORE — missing returns are treated as 0's; missing returns in index always generate a missing excess return It is assumed that
targ, base, and ind have been allocated and have the same calendar.

0 < start <=end < maxarr must be true for each time series

CRSP_SUCCESS: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

The target time series object is loaded with excess returns data. The range is set to the min of current beg and passed start, and max of
current end and passed end. Any excess returns already loaded are kept only if they are outside of start/end. If there is a gap between
existing range and new range the returns are loaded with missing values.

The subtype 0f bas st and ind tsiSCRSP _RETURN NUM
The subtype 0f trg_tsiSCRSP_RETURN XS NUMOrCRSP_RETURN_CUM NUM

int crsp xs_port (CRSP TIMESERIES **ind ts, int indtypes, CRSP_TIMESERIES port ts, int
porttype, CRSP_TIMESERIES *trg ts)

builds a time series of index returns by mapping from an array of index returns time series based on a portfolio time series

CRSP_TIMESERIES **ind ts - pointertoindexes returnstime series

int indtypes — total number of indexes types

CRSP_TIMESERIES **port_ts — time series array of portfolio assignments

int porttype — portfolio type index of interest CRsP_ TIMESERIES *trg_ts —target index based on portfolio trg tsandall
indexes must be allocated and have the same calendar

CRSP_SUCCESS: if returns successfully loaded
Crsp_FAIL:iferrorin parameters or structures

The trg_ts time series object is loaded with index data by mapping to an index based on a portfolio time series.

The target time series and all the indexes time series must exist prior calling the function and must all verify (see crsp_obj_verify_ts on page
144) and have the same calendar

These functions map elements in the names event array to time series.

FUNCTION DESCRIPTION PAGE

crsp_map_shrecd Map name history share codes to a time series page 166
crsp_map_exchcd Map name history exchange codes to a time series page 170
crsp_map_siccd Map name history siccd codes to a time series page 170
crsp_map_ncusip Map name history name CUSIPs to a time series page 167

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 165

FUNCTION DESCRIPTION PAGE

crsp_map_ticker Map name history tickers to a time series page 182
crsp_map_comnam Map name history company names to a time series page 168
crsp_map_shrcls Map name history share classes to a time series page 168
Crsp_cur_name Finds index of name structure on a select date page 168

crsp _map shrcd Map Share Codes to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp_map_shrcd (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

loads a target time series from a source CRsp_ARRAY by copying the share type code of the stock event’s names structure over each
restricted period according to the target calendar file.

CRSP_ARRAY *names_arr —SOUrCe CRSP_ARRAY stock event’s names histories

CRSP_TIMESERIES *trg ts —targettime series

int flags — flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[il = f(srclil)
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[(i+1]1 = £ (src[il)
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source cRsP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The names_arr arrtype musthe CRSP_STK NAME NUM

The trg ts subtype mustbe CRSP_SUB SHRCD NUM

crsp_map_exchcd Map Exchange Codes to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp map_exchcd (CRSP_ARRAY *names_arr, CRSP TIMESERIES *trg ts, int flags)

loads a target time series from a source CRsP_ARRAY by copying the exchange code of the stock event’s names structure over each
restricted period according to the target calendar file.

CRSP_ARRAY *names_arr —SOUrCe CRSP_ARRAY stock event’s names histories

CRSP_TIMESERIES *trg ts —targettime series

int flags — flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period ontarget trg (i1 = f£(src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = f(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:iferrorin parameters or loading process

Source CrRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The names_arr arrtype musthe CRSP_STK NAME NUM

The trg tsarrtype mustbe CRSP_INTEGER NUMand subtype mustbe CRSP_SUB_EXCHCD NUM

crsp_map siccd Map SIC Codes to a Time Series

PROTOTYPE:

DESCRIPTION:

int crsp map siccd (CRSP_ARRAY *names_arr, CRSP TIMESERIES *trg ts, int flags)

loads a target time series from a source CRsp_ARRAY by copying the SIC code of the stock event’s names structure over each restricted
period according to the target calendar file.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 166

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

CRSP_ARRAY *names_arr — SOUrCeé CRSP_ARRAY stock event’s names histories

CRSP_TIMESERIES *trg ts —targettime series

int flags — flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period ontarget trg[i] = £(srcli])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = £(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source crRsP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The names_arr arrtype mustbe CRSP_STK NAME NUM

The trg ts subtype mustbe CRSP_SUB SICCD NUM

crsp_map ncusip Map CUSIPs to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp map ncusip (CRSP_ARRAY *names_arr, CRSP TIMESERIES *trg ts, int flags)

loads a target time series from a source CRsp_ARRAY by copying the cusip of the stock event’s names structure over each restricted
period according to the target calendar file.

CRSP_ARRAY *names_arr —SOUrCe CRSP_ARRAY stock event’s name histories

CRSP_TIMESERIES *trg ts —targettime series

int flags — flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period ontarget trg[i] = £ (srcli])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1]1 = £ (srclil])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source cRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The names_arr arrtype musthe CRSP_STK NAME NUM
The trg_ts subtype musthe CRSP_SUB NCUSIP_ NUM

crsp_map_ticker Map Tickers to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp map_ticker (CRSP_ARRAY *names_arr, CRSP _TIMESERIES *trg_ts, int flags)

loads a target time series from a source CRsP_ARRAY by copying the ticker of the stock event’s names structure over each restricted
period according to the target calendar file.

CRSP_ARRAY *names_arr —SOUrCe CRSP_ARRAY stock event’s name histories

CRSP_TIMESERIES *trg_ts — target time series

int flags — flags passed to the function. One of:
CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = f(srcli])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = £(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source crRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The names_arr arrtype mustbe CRSP_STK NAME NUM

The trg ts subtype mustbe CRSP_SUB_TICKER NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 167

crsp_map comnam Map Company Names to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

crsp_map_shrcls Map Share Classes to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

crsp_ cur name Finds Index of Name Structure on a Selected Date

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp map comnam (CRSP_ARRAY *names arr, CRSP TIMESERIES *trg ts, int flag)

loads a target time series from a source CRsp_ARRAY by copying the company name of the stock event’s names structure over each
restricted period according to the target calendar file.

CRSP_ARRAY *names_arr —SOUrCe CRSP_ARRAY stock event’s names histories

CRSP_TIMESERIES *trg ts —targettime series

int flags — flags passed to the function. One of:

CRSP_ACTUAL means data from the source is moved to the same period ontarget trg(i] = £ (src([i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+11 = £ (srclil])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source CrRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The names_arr arrtype musthe CRSP_STK NAME NUM

The trg_ts subtype mustbe CRSP_SUB COMNAM NUM

int crsp map_shrcls (CRSP_ARRAY *names_arr, CRSP_TIMESERIES *trg_ts, int flags)

loads a target time series from a source CRsP_ARRAY by copying the shares class of the stock event’s names structure over each
restricted period according to the target calendar file.

CRSP_ARRAY *names_arr —SOUrCe CRSP_ARRAY stock event’s name histories

CRSP_TIMESERIES *trg_ts — target time series

int flags — flags passed to the function. One of:

CRSP_ACTUAL means data from the source is moved to the same period ontarget trg (i1 = £ (src[i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = £(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:iferrorin parameters or loading process

Source crRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The names_arr arrtype mustbe CRSP_STK NAME NUM

The trg ts subtype mustbe CRSP_SUB_SHRCLS NUM

int crsp cur_name (CRSP_ARRAY *names_arr, int ndate, int code)

finds the index of the name structure given a date. If the name is earlier than the first name date it returns a value passed as a parameter.

CRSP_ARRAY *names_arr — pointertoa CRsp_ARRAY with stock names data loaded.
int ndate — date in yyyymmdd format to find
int code — value to return if date earlier than first name

name index —index of last name structure effective on or before date passed \
code — if date is before first name structure or names array not initialized.

None

Source names array must exist and be allocated

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 168

NASDAQ Information Mapping Functions

These functions map data in the NASDAQ Information event arrays to time series.

FUNCTION DESCRIPTION PAGE

crsp_map_trtscd Map NASDAQ status codes to a time series page 169
crsp_map_nmsind Map NASDAQ National Market indicator to a time series page 169
crsp_map_mmcnt Map NASDAQ Market Maker count to a time series page 174
crsp_map_nsdinx Map NASDAQ index code to a time series page 174

crsp_map_trtscd Map NASDAQ Status Codes to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp map_trtscd (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg ts, int flags)

loads a target time series from a source CRsP_ARRAY by copying the NASDAQ status code of the stock event’s nasdin structure over
each restricted period according to the target calendar file.

CRSP_ARRAY *nasdin_arr —Source CRSP_ARRAY stock event’s nasdin NASDAQ information history
CRSP_TIMESERIES *trg ts —targettime series

int flags — flags passed to the function. One of:

CRSP_ACTUAL means data from the source is moved to the same period ontarget trg (i1 = £ (src([i])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1]1 = f(srcli])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source CrRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The nasdin_arr arrtype mustbe CRSP_STK NASDIN NUM

The trg ts subtype mustbe CRSP_SUB_TRTSCD NUM

crsp_map nmsind Map NASDAQ National Market Indicator to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp map_nmsind (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg ts, int flags)

loads a target time series from a source CRsp_ARRAY by copying the National Market indicator of the stock event’s nasdin stucture over
each restricted period according to the target calendar file.

CRSP_ARRAY *nasdin_arr —Source CRSP_ARRAY stk events nasdin NASDAQ information history
CRSP_TIMESERIES *trg ts —targettime series

int flags — flags passed to the function. One of:

CRSP_ACTUAL means data from the source is moved to the same period ontarget trg[i] = £(srcli])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = £(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_success: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source CrRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The nasdin arr arrtype mustbe CRSP STK NASDIN NUM

The trg ts subtype musthe CRSP__SUB NMSIND NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 169

crsp_map mmcnt Map NASDAQ Market Maker Count to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp map_mmcnt (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg ts, int flags)

loads a target time series from a source CRsp_ARRAY by copying the market maker count of the stock event's nasdin structure over
each restricted period according to the target calendar file.

CRSP_ARRAY *nasdin_arr —Source CRSP_ARRAY stk events nasdin NASDAQ Information History
CRSP_TIMESERIES *trg ts —targettime series

int flags —flags passed to the function. One of:

CRSP_ACTUAL means data from the source is moved to the same period ontarget trg[i] = £(srcli])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = £(src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source crRsP_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The nasdin arr arrtype mustbe CRSP STK NASDIN NUM

The trg ts subtype mustbe CRSP_SUB MMCNT NUM

crsp_map nsdinx Map NASDAQ Index Code to a Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

Returns Functions

int crsp map_nsdinx (CRSP_ARRAY *nasdin_arr, CRSP_TIMESERIES *trg ts, int flags)

loads a target time series from a source CRsp_ ARRAY by copying the NASDAQ index code of the stock event’s nasdin structure over
each restricted period according to the target calendar file.

CRSP_ARRAY *nasdin_arr —Source CRSP_ARRAY stk events nasdin NASDAQ information history
CRSP_TIMESERIES *trg ts targettime series

int flags — flags passed to the function. One of:

CRSP_ACTUAL means data from the source is moved to the same period on target trg[i] = £(srcli])
CRSP_EFFECTIVE means data from the source is moved to the next period on target trg[i+1] = £ (src[i])
CRSP_NLAST means last data from the source is moved to all periods on target

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Source crRsp_ARRAY must be loaded with stock event’s name histories data. The target time series must exist. Also, a calendar must be
associated with the target time series.

The nasdin arr arrtype mustbe CRSP STK NASDIN NUM

The trg ts subtype mustbe CRSP_SUB_NSDINX NUM

These functions make various CRSP returns calculations.

FUNCTION DESCRIPTION PAGE

crsp_ret_calc Stock Returns Calculations page 170
crsp_ret_calc_del CRSP Delisting Returns Calculations page 180
crsp_ret_calc_one Returns Calculation for One Return page 171
crsp_ret_off exch Marks Returns when it is Not Traded on the Exchange page 172
crsp_ret_ordinary Determines if a Distribution Is Considered Ordinary page 172
crsp_ret_payments Calculates Price Factor and Cash Dividend Amounts page 172
crsp_stk_ret_append ts Appends Return to the £nd of the Returns Time Series page 173
crsp_stk_ret_append_dlret | Appends Delisting Return to the Returns Time Series page 173
crsp_stk_delret params Parses a Delisting Parameter File page 173

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 170

crsp_ret calc Stock Returns Calculations

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp_ret calc (CRSP_STK STRUCT *stk, CRSP_TIMESERIES *pl, CRSP_TIMESERIES *p2, CRSP_
TIMESERIES *r, CRSP TIMESERIES *rn, int start, int end, int gapwindow, int validexch)

general CRSP stock returns calculations, with and without dividends, allowing one or two price series for before/after, options on gap limits
before considered missing, and valid exchanges.

CRSP_STK_STRUCT *stk — stock structure with names, distributions, and price data loaded
CRSP_TIMESERIES *pl —time series of primary prices

CRSP_TIMESERIES *p2 —time series of secondary prices (NULL if unused)

CRSP_TIMESERIES *r —time series toload total returns

CRSP_TIMESERIES *rn - time series to load returns without dividends

int start, end—indexrange to calculate returns

int gapwindow —gap in periods before considered missing, use 0 for default (10 periods)

int validexch — hinary code for valid exchange codes 1=nyse, 2=NYSEMKT, 4=nasd, 8=arca, 0 = no restriction

CRsP_success: if returns successfully loaded
CRSP_FAIL: if error in parameters or structures

Return time series objects are loaded with returns data. The subt ype of these time series will be set to cRsp_ RETURN _NuM. The beg
and end ranges will be set according to start and end parameters and price range, so all previous returns ranges and data loaded will be
erased. If start and end are outside of price ranges missing returns will be generated for the range outside of prices.

It is assumed that r and rn have been allocated and have the same calendar as the price time series. One can be NULL if that type is not
wanted. Prices, names and distribution histories must be loaded.

crsp_ret calc_del CRSP Delisting Returns Calculations

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

EXCEPTION CODES:

int crsp ret calc_del (CRSP_STK_STRUCT *stk, float *delret, float *delretx, float *effnewprc,

int *effnewdt, int gapwindow, int crspnum, int setnum)

CRSP stock delisting returns calculations. The delisting return is the return between the last price and the value of the stock after delisting,
either based on the value given for the stock or the price on a new exchange. Returns are calculated with these steps:

find if sufficient delisting information exists to calculate a return; if not, use the correct missing value.

find a payment date and payment amount. The amount will either be the d1prc, the sum of final distributions, or the sum of both. The date
will be the delist date + 1 period, or the nextdt if one is available.

calculate a normal CRSP return between endprc and payment date, using 1astprc and payment, using all distributions.

CRSP_STK_STRUCT *stk — stock structure

float *delret - delistingreturn

float *delretx —delisting return without dividends

float *effnewprc - value after delisting

int *effnewdt — date of value after delisting

int gapwindow —gap in periods before considered missing

int crspnum, setnum— database and setidentifiers to load prices, these can be set to -99 if prices are loaded

CRSP_SUCCESS: if returns successfully loaded,
CRSP_FAIL:if errorin parameters or structures

A delisting return with dividends is placed in d1 ret. A delisting return without dividends is placed in d1 ret x. An effective last payment is
placed in effnewprc. The effective date of the last payment is placed in effnewdt. This will load the prices time series if prices are needed
and they are not already loaded.

Exception codes (in order of precedence): STK_RMISSR —issue still active, STK_RMISSD — no sources to establish value after delist,
STK_RMISSG — no acceptable previous price to calculate return, sTk_RMISSP — trades on new exchange, but no price available.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 171

crsp_ret calc_one Returns Calculation for One Period

. float crsp ret calc one (CRSP ARRAY *di, float pl, float p2, float *rn, int start, int end)
PROTOTYPE: _ret_ _ _

DESCRIPTION: General CRSP stock returns calculation for one period given two prices, the dates of the two prices, and a distributions array. Total return is
returned; return without dividends can be loaded by reference.

ARGUMENTS: CRSP_ARRAY *di — stock distributions structure

float pl — previous price

float p2 —current price

float *rn—place toload returns without dividends (NULL if unwanted)
int start, end— actual YYYYMMDD dates of p1 and p2

int gapwindow —gap in periods before considered missing

RETURN VALUES: Total return
CRSP_FAIL:if errorin parameters or structures
SIDE EFFECTS: Returns without Dividends is loaded to rn if not NULL

crsp_ret off exch Marks Returns when Security is Not Traded on Valid Exchange

PROTOTYPE: int crsp ret off exch (CRSP_ARRAY *nam, CRSP_TIMESERIES *rl, CRSP_TIMESERIES *r2, int start,

int end, int validexch)

DESCRIPTION: uses the names history to mark returns from a time period when not on the desired exchange. Returns are marked as off exchange: during
the effective range of a name structure that overlaps the returns range when the exchange code of that name structure is:

0 = (unknown)

1 = known but not one of CRSP-supported exchanges (NYSE, NYSEMKT, NASDAQ, ARCA)

2 =0n one of these valid exchanges but not one part of the validexch binary code

ARGUMENTS: CRSP_ARRAY *nam — Names array

CRSP_TIMESERIES *rl, *r2 —returnsand returnswithout dividends

int start, end — effective range of returns to check

int validexch — hinary code of valid exchanges: 1 = NYSE, 2 = NYSEMKT, 4 = NASDAQ, 8 = ARCA, sum for combinations

RETURN VALUES: CRSP_SUCCESS:
CRsP_FAIL:if bad or missing parameters
PRECONDITIONS: The two returns time series must be loaded or set to NULL.

crsp_ret ordinary Determines if a Distribution Is Considered Ordinary

PROTOTYPE: int crsp ret ordinary (int code, float facpr)

DESCRIPTION: uses the distribution code and price factor to determine whether a distribution is considered ordinary for the purposes of the returns without
dividends calculation

ARGUMENTS: int code — 4-digit CRSP distribution code
float facpr — CRSP distribution price factor

RETURN VALUES: 1 if ordinary

0 if non-ordinary
2 to use factor

SIDE EFFECTS: None

crsp ret payments Calculates Price Factor and Cash Dividend Amounts

PROTOTYPE: int crsp ret payments (double *t fp, double *t odiv, double *t ndiv, CRSP_ARRAY *di, int
dp, int date)

DESCRIPTION: calculates price factor and cash dividend amounts for a period using the distribution events array. It is passed a distribution array, a current
event, and an ending date of the period. It cumulates information for all distributions in the period and returns the number of the distribution
after the period.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 172

ARGUMENTS: double *t_fp —price factor for period

*t_odiv —ordinary cash dividends for period

*t_ndiv —non-ordinary cash dividends for period

CRSP_ARRAY *di — distributions array

int dp — current distribution event in array

int date —ending calendar date of period the first three parameters are passed as pointers so they can be loaded with the result values

RETURN VALUES: integer: current location in distributions array, this will be the first distribution after date

SIDE EFFECTS: the parameters t _fp, t odiv,and t ndiv are set with period price factor, ordinary amount, and non-ordinary amount

CALL SEQUENCE: Assumes exdt, distcd order

crsp_stk ret append ts Appends Returntothe End of the Returns Time Series

PROTOTYPE: int crsp stk ret append ts (CRSP_TIMESERIES *ret ts, float ret, int date)

DESCRIPTION: appends return to the end of the returns time series

ARGUMENTS: CRSP_TIMESERIES *ret_ts — pointer to return time series
float ret -returnto be appended to the end of return time series
int date — date (YYYYMMDD) that the return is associated with

RETURN VALUES: CRSP_SUCCESS: if return successfully appended
CcrsP_FAIL:if date does not follow existing returns range

SIDE EFFECTS: The return is added to the returns time series on date. All periods between the previous end of returns and the date are loaded with missing
values.

PRECONDITIONS: ret_ts must be previously opened. Date must be at least as large as the last day when the return is not missing

crsp_stk _ret append dlret Appends Delisting Returns to the Returns Time Series

PROTOTYPE: int crsp stk ret append dlret (CRSP _STK STRUCT *stk, CRSP_STK DLSTCD LIST *list)

DESCRIPTION: appends delisting returns to the returns time series

ARGUMENTS: CRSP_STK STRUCT *stk — pointer to stock structure

CRSP_STK_DLSTCD LIST *list - userlinked listof values to use as approximations for missing delisting returns of specified delist
code ranges or exchanges.

RETURN VALUES: CRsP_success: if delist return successfully added

CrRsp_FAIL:if needed data not available or error in parameters

SIDE EFFECTS: The delisting return is appended to the end of the returns time series and the delisting return without dividends is appended to returns
without dividends time series. If the delisting returns are missing or contain partial month returns, the value can be adjusted from a user list
of values. If the security matches the exchange code and delist code from the list and the delisting return is missing, the value from the list is
used. If the security matches and the delisting return is a partial month return, the value from the list is compounded with the partial month
return.

PRECONDITIONS: The stock set must be previously loaded with events and returns arrays. The list can be loaded from a user file with the crsp stk
delret params function.

crsp_stk delret params Parses a Delisting Parameter File

PROTOTYPE: int crsp stk dlret params (CRSP_STK DLSTCD LIST **itemlist, char *filename)

DESCRIPTION: Parses a delisting parameter file with information on user replacement values for missing delisting returns based on exchange or delist code.
Each different exchange or delist code is represented in this file with a space delimited line with six fields. The fields are beg delisting code,
end delisting code, beg exchange code, end exchange code, delisting return, and delisting return without dividends.

ARGUMENTS: CRSP_STK_DLSTCD LIST **itemlist — pointer tolinked list that will be loaded in with replacement delisting returns information.
char *filename — pointer to string containing path of delist returns parameter file.

RETURN VALUES: CRSP_success: if list is created successfully
CRSP_FAIL:ifan error in parsing arguments opening or reading file, or space allocation

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 173

SIDE EFFECTS:

PRECONDITIONS:

*filename is opened for read, loaded, and then closed.
Ttemlist now points to aloaded linked list with delist parameters loaded.

Itemlist should be set to NULL before starting. Fi1ename must exist with read access in the format described above.

crsp ret map payments Maps Adjustment Factors and Payments to a Time Series

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

int crsp ret map payments (CRSP_STK STRUCT *stk, CRSP_TIMESERIES *fp ts, CRSP_TIMESERIES
*odiv_ts, CRSP_TIMESERIES *ndiv ts)

calculates payments over range based on distribution events array

CRSP_STK_STRUCT *stk — stock structure with events loaded

CRSP_TIMESERIES *fp ts —targettsoffactor of adjust prices

CRSP_TIMESERIES *odiv_ts — target ts of total ordinary dividend amount

CRSP_TIMESERIES *ndiv_ ts - targetts of total dividend amount

It is assumed that at least one of the three target is not NULL and if more than one target exist then they have the same calendar

CRSP_SUCCESS: (integer) if returns successfully loaded
CRSP_FAIL:if errorin parameters or structures

Shares Outstanding Functions

FUNCTION

DESCRIPTION PAGE

crsp_shr_imp Converts Raw Shares to Imputed Shares to a CRSP Array page 174
crsp_shr_reimp Converts Raw Shares to Imputed Shares in Place page 175
crsp_shr_num Returns Shares Outstanding on a Given Date page 179
crsp_shr_map Maps The Imputed Shares Array to a Time Series page 179
crsp_shr_raw Converts Imputed Shares to Raw Shares page 177

crsp_shr imp Converts Raw Shares to Imputed Shares

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp_shr imp (CRSP_STK STRUCT *stk, CRSP_ARRAY *impshrs,int unigflag, int skipflag, int
firstflag)

general imputed CRSP stock shares function: given a standard stock structure with header and events structures, a pre-initialized crRsp_
ARRAY is loaded with shares observations, including those imputed from distribution events. CRSPAccess stock databases are delivered
with imputed shares already loaded.

There are two options: the first is a flag that supports collapsing duplicate events so there is only one share observation on a given date;
the second supports screening of certain types of distributions such as rights from affecting the shares outstanding results. This only uses
ex-date of distributions.

CRSP_STK_STRUCT *stk —source data must have EVENTS loaded

CRSP_ARRAY *impshrs —array that will be loaded. It must exist with enough space to store completed array of share events

int unigflag — flag for dates with multiple observations 0 — collapse structure so only the last observation on a date is left in the
structure. Raw shares observations take precedence over derived ones 1 — allow multiple shares events on the same day. The last will be
used by crsp_shr map

int skipflag — flag for skipping certain types of dists 1 —ignore facshr fromrights 0 —use all facshrs

int firstflag — flag for creating a dummy first observation 0 — do not create a dummy first observation 1 — copy first share structure up to
begdt if available.

CRSP_SUCCESS: if shares array successfully loaded,
CRSP_FAIL:if errorin parameters or structures

The impshrs array is loaded with imputed shares structures and num is set to the number of shares observations found. shrflg is set
with the following conventions: > 0 distribution event # (index-1 into di st s array of facshr) 0 raw shares observation -1 implied 1st
shrs observation (if di st with facshr precedes all raw shares observations, the first shrflg is —1 and the second > 0. -2 implied leading
shares observation, where second is copied forward and shrsdt set to begdt. A value of 2 indicates an observation generated from a
name change event. The shares outstanding for effective observation on the date of the name change is copied to the new observation and
the observation is marked with a share flag of 2.

The impshrs array must have arrtype CRP_STK_SHARE_NUMand subtype STK_SHARES_IMP

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 174

crsp_shr reimp Converts Raw Shares to Imputed Shares in Place

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp shr imp (CRSP_STK STRUCT *stk, int skipflag)

This function is similar to CRSP_SHR_IMP, but converts raw shares array to imputed shares in place instead of toa CRsP_ARRAY as the
CRSP_SHR_IMP does. Stock structure must loaded with header and events structures.

CRSP_STK_STRUCT *stk — source data must have EVENTS loaded

int skipflag — flag for skipping certain types of distributions

0: ignore facshr from rights

1: use all factors to adjust shares

2:The shares outstanding for effective observation on the date of the name change is copied to the new observation

CRSP_SUCCESS: if shares array successfully loaded,
CRSP_FAIL: if error in parameters or structures

The shares array is loaded with imputed shares structures and num is set to the number of shares observations found.
shrflg is set to one digit number with the following conventions:

0: raw shares observation

1: shares observation implied by distribution events

2: shares observation implied by names change events.

Shares must be loaded. The subflag of shares_arr must reflect whether raw (CRsP_SHARES Raw NUM=20) or imputed (CRsP_
SHARES_IMP NUM=0)shares are currently loaded.

crsp_shr numReturns Shares Outstanding on a Given Date

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

int crsp_shr_num (CRSP_STK STRUCT *stk, int date, int skipflag, CRSP_STK_ SHARE *share)

returns the shares outstanding on a given date. There is an optional parameter that can return the actual observation date of the shares
outstanding result. Uses crsp_shr imp to build a static array of imputed shares. If the PERMNO is the same, the array is not rebuilt.

CRSP_STK_STRUCT *stk — source data must have EVENTS and HEADER loaded

int date —yymmdd or yyyymmdd date to find shares out

int skipflag — flag for skipping certain types of dists 1 —ignore facshr fromrights 0 — use all facshrs
CRSP_STK_SHARE *shares_obs — sharesinfo of actual observation used if set to NuLL will not be loaded

CRSP_SUCCESS: number of shares outstanding effective on date, 0 if no shares structures or date out of data range
CrRsSp_FAIL:if errorin parameters or structures

If the fourth parameter is passed, it is loaded with the information from the effective shares event.

crsp_shr map Maps The Imputed Shares Array to a Time Series

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp_shr map (CRSP_STK STRUCT *stk, CRSP_TIMESERIES *shr_ ts, int begind, int endind,
int skipflag)

maps the imputed shares to a time series. Uses crsp_shr_imp toload an imputed shares events array if necessary, then maps the
observations by finding the effective shares outstanding for each date in the calendar.

CRSP_STK_STRUCT *stk — stock structure loaded with HEADER and EVENTS
CRSP_TIMESERIES *shr_ts — pre-initialized time series that will be loaded. Must have array allocated at least up to endind and
calendar set.

int begind, endind - range ofindexes into calendar that will be loaded to shrs
int skipflag — flag for skipping certain types of dists 1 —ignore facshr fromrights 0 — use facshr loaded with shares

CRSP_SUCCESS: (integer) if shares successfully loaded
CRSP_FAIL: if error in parameters or structures

shrs time series is loaded. arr is filled with shares outstanding values and beg and end are set. If there are no shares, structures beg and
end are set to 0; otherwise they inherit parameters begind and endind.

The shr_ts time series must have arrtype CRSP_INTEGER NUMand subtype CRSP_SHARES IMP NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 175

crsp_shr raw Converts Imputed Shares Into Raw Shares Observations

PROTOTYPE: int crsp shr raw (CRSP_ARRAY *shr arr)

DESCRIPTION: converts imputed shares outstanding events in raw shares. Imputed shares are observations directly derived from CRSP distribution events.
These are removed from the shares outstanding observation array.

ARGUMENTS: CRSP_ARRAY *shr arr - CRSP_ARRAY of imputed shares already loaded

RETURN VALUES: CRSP_SUCCESS: if shares successfully modified
CRSP_FAIL:if errorin parameters or structures

SIDE EFFECTS: Imputed shares array is converted to raw shares, from subtype STK SHARES IMP10 STK SHARES RAW

SUBSET FUNCTIONS

These functions are used to perform subsetting of stock data based on exchange, share type, NASDAQ market listing, or
when-issued status.

FUNCTION DESCRIPTION PAGE

crsp_stk_subset_all calls the indicated restriction functions page 176
crsp_stk_subset_exch restricts a stock structure by exchange page 181
crsp_stk_subset_shrcd restricts a stock structure by share code page 195
crsp_stk_subset range restricts a stock structure by date range page 178
crsp_stk_subset_nmsind | restricts a stock structure by NASDAQ National Market status page 187
crsp_stk_subset wi restricts a stock structure by when-issued status page 179
crsp_stk_subset freq maps data with a new frequency into a new stock structure page 189
crsp_stk_subset_parload | |oads a structure of subset parameters (a CRSP_UNIV_PARAM_LOAD structure) used by other subset functions page 181
crsp_stk_gen_sum_nasdin | symmarizes NASDAQ market maker count page 181

crsp_stk subset all Calls the Indicated Restriction Functions

PROTOTYPE: int crsp stk subset all (CRSP_STK STRUCT *stk, int crspnum, int setid, CRSP_UNIV_PARAM LOAD

*subpar, char *stat)

DESCRIPTION: Calls other stock restriction functions based on a parameter structure loaded with desired subsetting options.

ARGUMENTS: CRSP_STK_STRUCT *stk — stock structure to restrict

int crspnum - database handle returned by crsp stk open.

int setid - setidentifier used in call to open and read the stock structure.

CRSP_UNIV_PARAM LOAD *subpar — pointer to structure containing restriction parameters. See crsp_stk_subset parload
on page 181 for details of this structure.

char *stat - pointerto location to store two-letter code indicating the return status of the restriction. The codes are:

DR if restricted or eliminated because of date restriction

EX if restricted or eliminated because of exchange restriction

sH if restricted or eliminated because of share code restriction

nw if restricted or eliminated because of NMS code restriction

w1 if restricted or eliminated because of when-issued type 1 restriction
w2 if restricted or eliminated because of when-issued type 2 restriction
w3 if restricted or eliminated because of when-issued type 3 restriction
ok if return 1 and no header variables changed

o# ifreturn 1 and header variables have changed

RETURN VALUES: 1: if stock structure successfully restricted and valid data remains
0: if success but issue is totally erased by some restriction
CRsSP_FAIL:if errorin parameters or processing

SIDE EFFECTS: The stk structure is modified if partially restricted by one of the subset functions. Price time series data may be loaded if needed to identify
ranges of data to delete. The stat character string will be set to a string based on the changes made to the security data.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 176

PRECONDITIONS: The subpar structure must be loaded with the parameters specifying the restrictions to make. The st k structure must be opened with at
least header, events, and price modules, and header and events modules must be loaded. The stat pointer must point to at least three
bytes of allocated memory.

crsp_ stk subset exch Restricts Stock Data by Exchange Code

PROTOTYPE: int crsp stk subset exch (CRSP_STK STRUCT *stk, int crspnum, int setid, int nameflag, int

shareflag, int wantexch, int subflag)

DESCRIPTION: Restricts stock data based on exchange code.

This function uses the Exchange Code in the name structures to decide which exchange the issue is listed on, at what time. The wanted
exchanges are specified with a binary code: 1=NYSE, 2=NYSEMKT, 4=NASDAQ, 8=ARCA. When-issued time periods with 3 prefixes are
treated as the base exchange for purposes of this function. Suspends and halts are treated as the previous exchange. wanted exchange is
the exchange(s) that data will be restricted to.

This restricts by delist date before using the names. It moves price data back to the last delist structure if prices exist after delist. It moves
delist date back to prices if prices end before delisting. It adjusts delistings — it creates a 500 delist if there is any invalid name after the last
valid name and before the old delist date.

ARGUMENTS: CRSP_STK STRUCT *stk — stock structure to restrict
int crspnum—database handle returned by crsp_stk_open.
int setid - setidentifier used in call to open and read the stock structure.
int nameflag — code that determines how name records are handled in the restricted structure.
0 = keep all name structures
1 = delete name structures out of range
int shareflag — code that determines how shares outstanding observations out of range are handled: 0 = keep no shares observations
out of range
1 = keep shares out of range that are applicable to the range
2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first name structure for the issue with a valid exchange
int wantexch — code of exchanges to keep. The values below can be added together to select multiple exchanges.
1=NYSE
2 =NYSEMKT
4 = NASDAQ
8=ARCA
int subflag — subset flag
0 = subset data during range
1 =if ever not valid, delete entire issue 2 = if ever valid make no restrictions

RETURN VALUES: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never on valid exchanges
CRSP_FAIL:if errorin parameters or processing

SIDE EFFECTS: The stk structure is modified according to flags if partially restricted. Price time series data may be loaded if needed to identify ranges of
data to delete.

PRECONDITIONS: The stk structure must be opened with at least header, events, and price modules, and header and events modules must be loaded.

crsp_ stk subset shrcd Restricts Stock Data by Share Code

PROTOTYPE: int crsp stk subset shrcd (CRSP_STK STRUCT *stk, CRSP UNIV SHRCD *scs, int nameflag, int
shareflag, int subflag)

DESCRIPTION: Restricts stock data based on share code.

This function uses the shrcd in the name structures to decide the issue’s share code over time. The share code is a two-digit number where
each digit separately contains information classifying the type of share. The function allows specification of one or more valid first digits and
one or more valid second digits in deciding which share codes are valid.

This function adjusts delistings. It creates a 500 delist if there is any invalid name after the last valid name and before the old delist date.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 177

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

CRSP_STK_STRUCT *stk — pointer to stock structure to restrict
CRSP_UNIV_SHRCD *scs - pointerto share code restriction structure. There are two required fields in the structure that must be set
to define the restriction. The fields are:
fstdig — bit map of valid first digits of share code. If the n'th hit of £stdigis a1, the share code n* is considered valid. Bit positions
used in the hit map are the right-most 10 bits, numbered left to right, beginning at 0.
secdig - bit map of valid second digits of share code. If the n'th bit of secdigisal, the share code *n is considered valid. Bit
positions used in the bit map are the right-most 10 bits, numbered left to right, beginning at 0.
int nameflag — code that determines how name records are handled in the restricted structure.

0 = keep all name structures

1 = delete name structures out of range
int shareflag — code that determines how shares outstanding observations out of range are handled:

0 = keep no shares observations out of range

1 = keep shares out of range that are applicable to the range

2 =keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first valid exchcd name structure for the issue
int subflag — subset flag

0 = subset data during range

1 =if ever not valid, delete entire issue

2 =if ever valid make no restrictions

CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never had valid share code
CRSP_FAIL:if errorin parameters or processing

The stk structure is modified according to flags if partially restricted.

The stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

crsp_stk_subset_range Restricts Stock Data by Date Range

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

int crsp stk subset range (CRSP_STK STRUCT *stk, int begdata, int enddata, int nameflag, int
shareflag)

Restricts stock data based on date ranges.

CRSP_STK_STRUCT *stk — pointer to stock structure to restrict
int begdata — beginning date in YYYYMMDD format of restricted data.
int enddata —ending date in YYYYMMDD format of restricted data.
int nameflag — code that determines how name records are handled in the restricted structure:
0 = keep all name structures
1 = delete name structures out of range
int shareflag — code that determines how shares outstanding observations out of range are handled:
0 = keep no shares observations out of range
1 = keep shares out of range that are applicable to the range
2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first valid exchcd name structure for the issue

CRSP_sUCCESs: if included and stock structure successfully restricted
CRSP_NOT_FOUND: if excluded because never had data within range
CRsPp_FAIL:if errorin parameters or processing

The stk structure is modified according to flags if partially restricted.

The stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 178

crsp_stk subset nmsind Restricts Stock Data by NASDAQ Market

PROTOTYPE: int crsp stk subset nmsind (CRSP_STK STRUCT *stk, int crspnum, int setid, int nmsflag, int
shareflag, int subflag)

DESCRIPTION: Restricts stock data based on NASDAQ market listing.

This function uses Exchange Code and NASDAQ National Market Indicator to decide whether the issue is listed on NASDAQ, and if so, which
NASDAQ market it is listed on. Only NASDAQ issues are affected by this function.

The NASDAQ National Market and SmallCap designations were introduced in 1992. The NASDAQ National Market, originally called the
National Market System, was introduced in 1984. Before June 15, 1992, issues not listed on the National Market System were not required
to report trades.

NASDAQ introduced a 3-tier market initiative in July 2006. As a result, the CRSP NASDAQ National Market Indicator (NMSIND) coding
scheme was changed. After July 1, 2006, SmallCap is renamed to Capital Market. National Market is split into two: Global Market and Global
Select Market.

ARGUMENTS: CRSP_STK_STRUCT *stk — stock structure to restrict.
int crspnum - database handle returned by crsp stk open.
int setid - setidentifier used in call to open and read the stock structure.
int nmsflag — code used to specify valid NASDAQ markets:
1 = erase data if nmsind is not 2, 5 or 6 (keep National Market and Global and Global Select Markets only)
2 =erase data if nmsind is 2, 5 or 6 (keep SmallCap and Capital Market only)
3 =erase data if nmsind is 1 (keep all NASDAQ markets with price reporting)
4 = erase data if nmsind is not 1 (keep SmallCap before June 15, 1992)
5 = erase data if nmsind is not 2 or 6 (keep National Market and Global Select Market)
6 = erase data if nmsind is not 2 or 5 (keep National Market and Global Market only)
7 = erase data if nmsind is not 6 (keep Global Select Market only)
int shareflag — code that determines how shares outstanding observations out of range are handled: 0 = keep no shares observations
out of range
1 = keep shares out of range that are applicable to the range
2 = keep shares out of range that are applicable to range only if there are no shares in the range, this shares structure precedes
the range, and the range begins with the first valid exchcd name structure for the issue
int subflag — subset flag
0 = subset data during range
1 =if ever not valid, delete entire issue 2 = if ever valid make no restrictions

RETURN VALUES: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never on valid exchanges
CRSP_FAIL: if errorin parameters or processing

SIDE EFFECTS: The stk structure is modified according to flags if partially restricted. Price time series data may be loaded if needed to identify ranges of
data to delete.
PRECONDITIONS: The stk structure must be opened with at least header, events, and price modules, and header and events modules must be loaded.

crsp_stk_ subset_wi Restricts Stock Data by When-Issued Status

. int crsp stk subset wi (CRSP STK STRUCT *stk, int wiflag, int shareflag)
PROTOTYPE: _stk_ _ _STK_

DESCRIPTION: Restricts stock data based on when-issued status of an issue.

CRSP classifies when-issued trading into three categories:

Type 1 = when-issued trading for new issues before regular-way trading.

Type 2 = ex-distribution — simultaneous trading of post-distribution shares before the distribution is official.

Type 3 = when-issued trading during a reorganization or bankruptcy proceedings when the market expects the security to return to regular
status.

On type 3 cases, names are not erased, but modified. NASDAQ 5th character V's are dropped and the exchange code has 30 subtracted.
They cannot be dropped because they are usually accompanied by a CUSIP change. Only type 3 cases are present on CRSP subscriber files.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 179

ARGUMENTS: CRSP_STK STRUCT *stk — pointer to stock structure to restrict
int wiflag — code that determines which restrictions are made. Possible codes are:
1 =ignore type 1 when-issued cases, erase range, erase name structures
2 =ignore type 1 when-issued cases, erase range, keep name structures
3 =ignore type 2 when-issued cases, delete entire issue
4 =ignore type 3 when-issued cases, erase range, keep name structures
5 =ignore type 3 when-issued cases, keep range, erase name structure
6 =ignore type 3 when-issued cases, erase range, erase name structure
int shareflag — code that determines how shares outstanding observations out of range are handled:
0 = keep no shares observations out of range,
1 = keep shares out of range that are applicable to the range

RETURN VALUES: CRSP_SUCCESS: if stock structure successfully restricted and valid data remains
CRSP_NOT_FOUND: if excluded because never had valid data within range
CRSP_FATIL:iferrorin parameters or processing

SIDE EFFECTS: The stk structure is modified according to flags if partially restricted.

PRECONDITIONS: The stk structure must be opened with at least header and events modules, and header and events modules must be loaded.

crsp_stk subset fregqConverts Stock Data to a Different Time Series Frequency

PROTOTYPE: int crsp stk subset freqg (CRSP_STK STRUCT *dstk, CRSP_STK STRUCT *mstk, CRSP_UNIV_ SUM

*summ)

DESCRIPTION: Copies stock data for one security into a new structure with converted time series calendar frequencies. The rules used are based on an
input structure of summary specifications. Event data are copied as is.

ARGUMENTS: CRSP_STK_STRUCT *dstk — pointer to input stock structure
CRSP_STK STRUCT *mstk — pointer to output stock structure
CRSP_UNIV SUM *summ - pointerto structure with summary rules for conversion. The following fields in the summary structure are
used:
sum_prc — specifications for loading Closing Price or Bid/Ask Average
0 = last price or bid/ask average of source in period
1 = average price or hid/ask average of source over period
2 = median price or bid/ask average of source over period.
3 =no prices are loaded
4 =nonmissing price or hid/ask average on the day closest to the last date of the period, within the range of the target period.
sum_sp — specifications for loading Bid or Low and Ask or High 0 = last bid or low and last ask or high
1 =lowest bid or low and highest ask or high
2 =lowest price or bid/ask average and highest price or bid/ask average
3 =no bid or low or ask or high data
sum_vol — specifications for loading Volume
0 = last volume in period
1 =sum of all volumes in period divided by the sum_volume factor constant.
2 = average of volumes in period
3 = median of volumes in period 4 = no volumes
sum_ret — specifications for loading returns
0 =no returns loaded
1 =compound Total Returns in period
2 = compound Total Returns and Returns without Dividends in period
sum_spread — specifications for loading spread or other secondary time series
0 = spread on last day of period, calculated from bid and ask prices if last date has no trading price
1 =load no spread, alternate price, bid, or ask time series
2 = set Spread, Bid, and Ask based on last day of period, Number of Trades to total number of trades in period, and Price
Alternate to last nonmissing price or bid-ask average in period
3 = set Price Alternate to last nonmissing price in period, and Number of Trades to the Price Alternate Date.
4 = set Bid and Ask to the last value in the period, and set the Number of Trades to the sum of trades in the period.

RETURN VALUES: number of periods in the resultant price time series for the converted security
CRSP_FAIL: if errorin parameters or processing

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 180

SIDE EFFECTS: The mstk structure is loaded with converted data.

PRECONDITIONS: The dstk and mstk structures must be opened with at least header, events, and prices modules, and at least header, events, and prices
modules must be loaded in the input stock structure. The summary structure must be loaded with valid specifications. If adjusted results are
desired, the input stock structure must be adjusted before calling this function.

crsp_stk subset parload Loads Subsetting Parameters from a File

PROTOTYPE: int crsp stk subset parload (CRSP UNIV_PARAM LOAD *subpar, char *parfile)

DESCRIPTION: Loads a subsetting parameter structure from an input file containing subsetting options. See below for the available options and format of
the input file.

ARGUMENTS: CRSP_UNIV_PARAM LOAD *subpar - pointer tosubset parameter structure to be loaded.

char *parfile — pointer to string containing the path of the parameter input file. The input file must contain text with one or more rows
of specifications. Each row must contain one parameter keyword and a corresponding value, separated by spaces. (see Parameter Options
Specifications for crsp_stk_subset utility program CUPL Guide, for description of Parameter options file)

RETURN VALUES: CRSP_SUCCESS: if parameters successfully loaded
CRSP_FAIL:if errorin parameters or processing

SIDE EFFECTS: The subpar structure is loaded with parameter data. The input file is opened, loaded, and closed.

PRECONDITIONS: The input file must exist in the proper format. The subpar pointer must point to an allocated CRsp_UNIV_PARAM LOAD structure.

CRSPAccess C Stock General Data Utility Functions

These functions are used to make general data summaries of stock data.

crsp_stk_gen sum nasdin Summarizes NASDAQ Information Events

. int crsp stk gen sum nasdin (CRSP ARRAY *nasdin arr, int pct)
PROTOTYPE: _stk_gen_sum_. _ _

DESCRIPTION: Summarizes NASDAQ Information histories by eliminating events when the only change is the number of market makers and the change is
smaller than a certain amount. The limit of change is passed as an integer percentage.

ARGUMENTS: CRSP_ARRAY *nasdin_arr — pointer to NASDAQ Information array to restrict.
int pct — minimum percentage change in Market Maker Count compared to previous before observation is kept.

RETURN VALUES: CRSP_SUCCESS: if array successfully summarized
CRSP_FAIL:if errorin parameters

SIDE EFFECTS: The nasdin_arr structure is modified according to the percentage parameter. The kept rows are shifted up and the num counter is
adjusted to reflect the remaining number of observations.
PRECONDITIONS: The nasdin_arr array must be allocated with arrt ype =55 and loaded data.

crsp_stk_gen hdr fromnam Resets Header Identification Information

PROTOTYPE: int crsp_ stk _gen hdr fromnam (CRSP_STK STRUCT *stk)
DESCRIPTION: Resets header identification information in a stock structure using the names array.
ARGUMENTS: CRSP_STK_STRUCT *stk — pointer to stock structure to modify
RETURN VALUES: CRSP_succCESS: if stock structure successfully summarized
CRSP_FAIL: if error in parameters or structure not loaded
SIDE EFFECTS: The stock structure header structure is modified by the names array
PRECONDITIONS: The stock structure must be allocated, opened with at least headers and events, and loaded with at least headers and events.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 181

http://www.crsp.com/products/documentation/crspstksubset-0
http://www.crsp.com/products/documentation/crspstksubset-0

CRSPAccess C Stock Delete Range Data Utility Functions

These functions are used to delete ranges of stock data.

FUNCTION DESCRIPTION PAGE

crsp_stk_delrng all Delete ranges of data from stock structure page 200
crsp_stk_delrng names Delete ranges of data from names array page 182
crsp_stk_delrng_dists Delete ranges of data from distribution array page 192
crsp_stk_delrng_nasdin Delete ranges of data from NASDAQ Information array page 183
crsp_stk_delrng groups Delete ranges of data from groups array page 184
crsp_stk_delrng_delists Delete ranges of data from delisting array page 183
crsp_stk_delrng_shares Delete ranges of data from shares array page 184
crsp_stk_delrng resetdt Reset the header beginning and ending dates page 184

crsp_ stk delrng all Deletes Ranges of Stock Data

PROTOTYPE: int crsp stk delrng all (CRSP_STK STRUCT *stk, int beg date, int end date,

int namflg, int shrflg, int ndiflg)

int data beg,

DESCRIPTION: Deletes ranges of data from a stock structure by calling other delete range functions.

ARGUMENTS: CRSP_STK STRUCT *stk — pointer to stock structure to restrict

int beg_date — beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date —ending date of delete range, in YYYYMMDD format. end_date is not deleted.
int data_beg —first date of prices before restriction, in YYYYMMDD format

int namflg — code to determine how name history is modified by restrictions

0 = names events are not deleted
1 = names events are to be deleted, and data exists after the last name
2 =names events are to be deleted, and data does not exist after the last name

int shrflg — code to determine how shares observations are modified by restrictions

0 = delete any shares observations in the range
1 = keep any shares observations in the range that apply outside the range

int ndiflg — code to determine how the NASDAQ Information history is modified by restrictions

0 =no NASDAQ Information event deletions
1 = NASDAQ Information events can be deleted

RETURN VALUES: 0 = if there are no data after the deletion

1 =if there are events data after the deletion

2 =if there are time series data after the deletion

3 =if there are time series and events data after the deletion
CRSP_FAIL:if errorin parameters

SIDE EFFECTS: The stk structure is modified according to the other parameters.

PRECONDITIONS: The stk structure must be allocated and loaded with at least header, events, and price data.

crsp_stk delrng names Deletes Ranges of Stock Names Data

PROTOTYPE: int crsp stk delrng names

(CRSP_ARRAY *names_arr, int beg date, int end date, int namflg)

DESCRIPTION: Deletes ranges of stock names data

ARGUMENTS: CRSP_ARRAY *names_arr — pointer to names array to restrict

int beg_date —beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date —ending date of delete range, in YYYYMMDD format. end_date is not deleted.
int namflg — code to determine how name history is modified by restrictions

0 = names events are not deleted
1 =names events are to be deleted, and data exists after the last name
2 =names events are to be deleted, and data does not exist after the last name

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 182

RETURN VALUES: 0 = if there are no data after the deletion
1 =if there are names data after the deletion

CRSP_FAIL:iferrorin parameters

SIDE EFFECTS: The names_arr array is modified according to the other parameters.

PRECONDITIONS: The names_arr array must be allocated and loaded with ar rt ype = 54.

crsp_ stk delrng dists Deletes Ranges of Stock Distribution Data

PROTOTYPE: int crsp stk delrng dists (CRSP_ARRAY *dists_arr, CRSP_ARRAY *delist arr, int beg date, int
end_date)
DESCRIPTION: Deletes ranges of stock distribution data. If the delisting date is in the range to delete, all final distributions are also removed. Ex-Distribution

date of distributions is used in restrictions.

ARGUMENTS: CRSP_ARRAY “dists_arr — pointer to loaded distributions array to restrict

CRSP_ARRAY *delist_arr — pointer toloaded delisting array

int beg_date — beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date —ending date of delete range, in YYYYMMDD format. end_date is not deleted.

RETURN VALUES: 0 = if there are no distributions data after the deletion
1 =if there are distributions data after the deletion
CRSP_FAIL:if errorin parameters

SIDE EFFECTS: The dists_arr array is modified according to the other parameters.

PRECONDITIONS: The dists_arr array must be allocated and loaded with arrt ype =52. The de1ist_arr array must be allocated and loaded with
arrtype =54

crsp_ stk delrng delists Deletes Ranges of Stock Delisting Data

PROTOTYPE: int crsp stk delrng delists (CRSP_ARRAY *delist arr, int beg date, int end date)

DESCRIPTION: Deletes ranges of stock delisting data. If no delisting events remain, one is added and coded as active.

ARGUMENTS: CRSP_ARRAY *delist arr — pointer toloaded de11sting array to modify.

int beg_date — beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date —ending date of delete range, in YYYYMMDD format. end_date is not deleted.
RETURN VALUES: 1=ifthere is de1isting data after the deletion

CRSP_FAIL:if errorin parameters

SIDE EFFECTS: The delist_arr arrayis modified according to the other parameters.
PRECONDITIONS: The delist arr array must be allocated and loaded with arrt ype = 54

crsp_stk delrng nasdin Deletes Ranges of Stock NASDAQ Information Data

PROTOTYPE: int crsp stk delrng nasdin (CRSP_ARRAY *nasdin arr, int beg date, int end date)

DESCRIPTION: Deletes ranges of NASDAQ Information data.

ARGUMENTS: CRSP_ARRAY *nasdin_arr - pointertoloaded NASDAQ Information array to restrict.
int beg_date —beginning date of delete range, in YYYYMMDD format. beg _date is not deleted.
int end date —ending date of delete range, in YYYYMMDD format. end_date is not deleted.

RETURN VALUES: 0 = if there is no NASDAQ Information data after the deletion
1 =if there is NASDAQ Information data after the deletion
CRSP_FAIL: if error in parameters

SIDE EFFECTS: The nasdin_arr array is modified according to the other parameters.
PRECONDITIONS: The nasdin_arr array must be allocated and loaded with arrt ype = 55.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 183

crsp_stk_delrng shares Deletes Ranges of Stock Shares Outstanding Data

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp stk delrng shares (CRSP_ARRAY *shares arr, int beg date, int end date, int data_
beg int keepfilg)

Deletes ranges of shares outstanding observation data.

CRSP_ARRAY *shares_arr — pointertoloaded shares array to restrict

int beg_date — beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.

int end date —ending date of delete range, in YYYYMMDD format. end_date is not deleted.

int data_beg —first date of prices before restriction, in YYYYMMDD format

int keepflg:
0 will delete all shares within delete range based on observation date only — the first will be kept if it applies to outside the range
1 will keep any observations that apply to data before and after the delete range

0 = if there are no shares data after the deletion
1 =if there are shares data after the deletion
CRSP_FAIL:if errorin parameters

The shares_arr array is modified according to the other parameters. The shares array is modified by removing rows to beginning and end
and splitting or setting existing rows to shares outstanding = 0 when a range is removed not on an edge. This may change the observation
dates based on the subset dates. All adjacent shares outstanding 0 gaps are consolidated.

The shares_arr array must be allocated and loaded with arrt ype = 53. The function expects input of shares loaded with shsenddts
(shares end dates) set.

crsp_stk_delrng groups Deletes Ranges of Stock Group

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp stk delrng groups (CRSP_ARRAY **groups_arr, int grouptypes, int beg date, int end
date)

Deletes ranges of stock group data for all types.

CRSP_ARRAY **groups_arr - pointertoarray of pointers to loaded group arrays to restrict
int grouptypes — the number of group arrays in the array of pointers

int beg_date —beginning date of delete range, in YYYYMMDD format. beg_date is not deleted.
int end_date —ending date of delete range, in YYYYMMDD format. end_date is not deleted.

0 = if there are no group data after the deletion
1 =if there are group data after the deletion
CRSP_FAIL:if errorin parameters

Allthe group arr arrays are modified according to the other parameters.

The group arr arrays must be allocated and loaded with arrtype =57.

crsp_stk delrng resetdt Resets Header Date Ranges from Time Series

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

int crsp stk delrng resetdt (CRSP_STK STRUCT *stk)

Resets header begdt and enddt fields from available time series in the stock structure.

CRSP_STK_STRUCT *stk — pointer to stock structure

0 = if there are no time series data and ranges are set to 0
1 =if there are time series data after the deletion

The stk structure begdt and enddt are modified.

The stk structure must be allocated with at least header data opened. The ranges will only be set based on the time series loaded in the
stock structure.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 184

CRSPAccess C Stock Valid Data Utility Functions

These functions are used to determine whether data are valid for different filtering criteria.

FUNCTION DESCRIPTION PAGE

crsp_stk_valid_exchcd Determines if exchange code is valid page 185
crsp_stk _valid nmsind Determines if NASDAQ National Market Indicator is valid page 185
crsp_stk_valid_shrcd Determines if Share Code is valid page 193
crsp_stk_valid shrecd 1d Setsupacrsp_uNTV_SHRCD structure for checking valid share codes page 186

crsp_stk valid exchcd Determines if Exchange Code is Valid

PROTOTYPE: int crsp stk valid exchecd (int exhave, int exwant)

DESCRIPTION: Determines if a given exchange code is valid based on a set of wanted exchanges. When-issued trading is not differentiated from regular-
way trading.

ARGUMENTS: int exhave — Exchange Code to validate. Codes are standard CRSP stock Exchange Codes:
1=NYSE
2=NYSEMKT
3=NASDAQ
4=ARCA
31=NYSE when-issued
32=NYSEMKT when-issued
33=NASDAQ when-issued
34=ARCA when-issued
int exwant —acceptable Exchange Code or codes. If multiple exchanges are valid, e xwant is the sum of the individual codes below:
1=NYSE
2=NYSEMKT
4=NASDAQ
8=ARCA

RETURN VALUES: 0 = if exhave is valid according to exwant
-1 =if exhave is not valid according to exwant

SIDE EFFECTS: none
PRECONDITIONS: none

crsp_stk valid nmsind Determines if NASDAQ National Market Indicator is Valid

PROTOTYPE: int crsp_stk valid exchcd (int nmscode, int nmsind)

DESCRIPTION: Determines if a given NASDAQ National Market Indicator code is valid based on a set of valid codes.

ARGUMENTS: int nmscode — acceptable NASDAQ National Market Indicator Code. Codes are:
1 =invalid if NASDAQ National Market Indicator Code is not 2, 5 or 6 (only National Market and Global and Global Select Markets are valid)
2 =invalid if NASDAQ National Market Indicator Code is 2, 5 or 6 (only SmallCap and Capital Market are valid)
3 =invalid if NASDAQ National Market Indicator Code is 1 (all NASDAQ markets with price reporting are valid)
4 = invalid if NASDAQ National Market Indicator Code is not 1 (only SmallCap before June 15, 1992 is valid)
5 =invalid if NASDAQ National Market Indicator Code is not 2 or 6 (only National Market and Global Select Market are valid)
6 = invalid if NASDAQ National Market Indicator Code is not 2 or 5 (only National Market and Global Market are valid) 7 = invalid
if NASDAQ National Market Indicator Code is not 6 (only Global Select Market is valid)
int nmsind —actual NASDAQ National Market Indicator to validate.

RETURN VALUES: 0 = if nms ind is valid according to nmscode

-1 =if nmsind is not valid according to nmscode
SIDE EFFECTS: none
PRECONDITIONS: none

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 185

crsp_stk _valid shrcd Determines if Share Code is Valid

PROTOTYPE: int crsp stk valid shrcd (CRSP_UNIV_SHRCD *scs, int shrcd)

DESCRIPTION: Determines if a given share code is valid based on a map of acceptable first and second digits of the CRSP Share Code.

ARGUMENTS: CRSP_UNIV_ SHRCD *scs —loaded structure containing information of valid Share Codes. Desired codes are loaded as bit maps into
two fields in the structure, £stdig for the first Share Code digit, and scddig for the second Share Code digit. The bit map fields are loaded
so that the right-most 10 bits n to n+9 are set. If the nth bit is set to 1 then the Share Code digit n is valid. If the nth bit is set to 0 then the
Share code digit n is invalid. See the function crsp_stk_valid shrcd_1dtoload this structure.

int shrcd — actual Share Code to validate.

RETURN VALUES: 0 =if shrcdis valid according to the scs structure
-1=if shrcdis not valid according to the scs structure

SIDE EFFECTS: none

PRECONDITIONS: none

crsp stk wvalid shrcd 1d Loads a Structure Used to Specify Valid Share Codes

PROTOTYPE: int crsp stk valid_shrcd (CRSP_UNIV_SHRCD *scs, int sc_code, char *leftdig, char *rightdig)

DESCRIPTION: This function sets upa cRsp_UNIV_SHRcD structure used by crsp stk valid_shred. Itis passed a pointer to the structure,
a code of possible subsets, and two strings of flags to specify subsets by digits. Certain codes are supported automatically. These are
described below.

ARGUMENTS: CRSP_UNIV SHRCD *scs - pointer to structure to load with valid share code criteria
int sc_code —code describing a standard or user-defined set of restrictions. Available codes are:
CRSP_SUB_SCNY (=1)—CRSP NYSE and NYSEMKT standard restrictions; first digit 1,2,3,4,7 allowed, all second digits
allowed except 6 and 7
CRSP_SUB_SCNQ (=2) —CRSP NASDAQ standard restrictions; same but also exclude second digit 2 and 5
CRSP_SUB_SCCAP (=3) —Cap-Based Portfolios restrictions; same as 1, but also exclude first digit 3 and second digit 2,4,5,8, and 9
CRSP_SUB_SCSIC (=4)—CRSP Total Return Indexes; same but also include first digit of 9.
CRSP_SUB_SCFIL (=5) —Restrictions specified by user. See the following parameters.
char *leftdig - 10-digit character string made of 0’s and 1's specifying which left digits of the Share Code are valid. If the n'th
position in the string (starting from 0) is a 1, then a Share Code with a left digit of n is valid. leftdig is ignored unless sc_code is 5.
char *rightdig— 10-digit character string made of 0’s and 1's specifying which right digits of the Share Code are valid. If the n” th
position in the string (starting from 0) is a 1, then a Share Code with a right digit of n is valid. rightdig is ignored unless sc_code is 5.
for example, to allow only share codes of 10, 11, and 30, and 31, set 1eftdigt0“010100000” and rightdigto “1100000000”

RETURN VALUES: 0 =if shrcdis valid according to the scs structure

-1 =if shrcdis not valid according to the scs structure
SIDE EFFECTS: none
PRECONDITIONS: none

Translation Functions

These functions translate stock data in one or more time series to another. The different time series can be based on
different calendars.

FUNCTION DESCRIPTION PAGE

crsp_trans_comp_returns Compounds returns from one time series to another page 187
crsp_trans_last Translates Time Series Based On Last Value in Range page 190
crsp_trans_first Translates Time Series Based On First Value in Range page 187
crsp_trans_max Translates Time Series Based On Maximum Value in Range page 198
crsp_trans_min Translates Time Series Based On Minimum Value in Range page 188
crsp_trans_average Translates Time Series Based On Average Value in Range page 189
crsp_trans_median Translates Time Series Based On Median Value in Range page 187

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 186

FUNCTION DESCRIPTION PAGE

crsp_trans_total Translates Time Series Based On Total Value in Range page 189
crsp_trans_last_closest Translates Time Series Based On Closest Nonmissing Value in Range page 200
crsp_trans_last_previous | Translates Time Series Based On Last Nonmissing Value in Range page 195
crsp_trans_level Loads a Target Time Series With Index Level Prices page 192
crsp_trans_cumret Loads a Target Time Series With Cumulative Returns page 191
crsp_trans_port Maps Portfolio Assignments To a New Time Series page 191
crsp_trans_stat Maps Portfolio Statistics To a New Time Series page 195
crsp_trans_cap Loads a Target Time Series With Capitalization Data page 192
crsp_trans_gen_prc General Translation Price Function page 192

crsp_ trans comp returns Compounds Returns From One Time Series to Another

PROTOTYPE: int crsp trans comp returns (CRSP_TIMESERIES *src ts, CRSP_TIMESERIES *trg ts, int par flag)

DESCRIPTION: loads a target time series from a source time series by copying the compounded returns over each restricted period according to the
calendar file.

ARGUMENTS: CRSP TIMESERIES *src_ts — Source time series
CRSP_TIMESERIES *trg_ts — target time series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 =not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_sUCCESS: if successfully loaded and space allocated
CRSP_FAIL:if errorin parameters or loading process

PRECONDITIONS: src_tsand trg tsarrtypeis CRSP_FLOAT NuMand subtypeis CRSP_RETURN NUM

crsp_trans_last Translates Time Series Based on Last Value in Range

PROTOTYPE: int crsp_trans_last (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg ts, int par_flag)

DESCRIPTION: loads a target time series from a source time series by copying the last price or volume over each restricted period according to the calendar
file.

ARGUMENTS: CRSP_TIMESERIES *src_ts —source time series
CRSP_TIMESERIES *trg ts —targettime series
int par_ flag— determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 = not allow missing values at ending of target range
3 = not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

PRECONDITIONS: Ifthe src_tsarrtypeis CRSP_FLOAT NUMthesubtype mustbe CRSP_ PRICE NUMOrCRSP_PRICE ADJ NUMOF CRSP
LEVEL NUM.

Ifthe src_tsarrtypeis CRSP_INTEGER NUM, the subtype mustbe CRSP_ VOLUME NUMOrCRSP_VOLUME ADJ NUM Of
CRSP_COUNT NUM.

Ifthe src_tsarrtypeiS CRSP_DOUBLE NUM the subtype mustbe CRSP. WEIGHT NUMOr CRSP_CAP_NUM.

The src_tsand trg tsmusthave the same arrtype and subtype.

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 187

crsp_trans_first Translates Time Series Based on First Value in Range

PROTOTYPE: int crsp trans_first (CRSP_TIMESERIES *src ts, CRSP_TIMESERIES *trg ts, int par flag)

DESCRIPTION: loads a target time series from a source time series by copying th.e last price or volume over each restricted period according to the calendar
file.

ARGUMENTS: CRSP_TIMESERIES *src_ts —source time series

CRSP_TIMESERIES *trg ts —targettime series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 =not allow missing values at beginning of target range
2 = not allow missing values at ending of target range
3 = not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_SUCCESS: if successfully loaded
CRSP_FATIL:if error in parameters or loading process

PRECONDITIONS: Ifthe src tsarrtypeis CRSP_FLOAT NUM, the subtype mustbe CRSP_PRICE NUM
Ifthe src_tsarrtypeis CRSP_INTEGER_ NUM, the subtype mustbe CRSP_VOLUME NUM
The src_tsand trg_ts musthave the same arrtype and subtype

crsp trans_max Translates Time Series Based on Maximum Value in Range

PROTOTYPE: int crsp trans max (CRSP_TIMESERIES *src ts, CRSP TIMESERIES *trg ts, int par flag)

DESCRIPTION: loads a target time series from a source time series by copying the maximum price or volume over each restricted period according to the
calendar file.

ARGUMENTS: CRSP_TIMESERIES *src_ts —source time series

CRSP_TIMESERIES *trg_ts — target time series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 =not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_success: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

PRECONDITONS: Ifthe src_tsarrtypeis CRSP_FLOAT NUM, the subtype mustbe CRSP_PRICE NUM
Ifthe src_tsarrtypeis CRSP_INTEGER NUM, the subtype mustbe CRSP_VOLUME NUM
The src_tsand trg ts musthave the same arrtype and subtype

crsp_trans_ min Translates Time Series Based on Minimum Value in Range

PROTOTYPE: int crsp trans min (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg ts, int par_flag)

DESCRIPTION: loads a target time series from a source time series by copying the minimum price or volume over each restricted period according to the
calendar file.

ARGUMENTS: CRSP_TIMESERIES *src_ts —source time series

CRSP_TIMESERIES *trg_ts — target time series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 =not allow missing values at beginning of target range
2 = not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_succEss: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

PRECONDITONS: Ifthe src_tsarrtypeis CRSP_FLOAT NUM, the subtype mustbe CRSP_PRICE NUM
Ifthe src_tsarrtypeiSCRSP_INTEGER NUV, the subtype mustbe CRSP_VOLUME NUM
The src_tsand trg ts musthave the same arrtype and subtype

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 188

crsp trans average Translates Time Series Based on Average Value in Range

PROTOTYPE: int crsp trans_average (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg ts, int par_ flag)

DESCRIPTION: loads a target time series from a source time series by copying the average price or volume over each restricted period according to the
calendar file.

ARGUMENTS: CRSP_TIMESERIES *src_ts —source time series

CRSP_TIMESERIES *trg_ts — target time series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 =not allow missing values at beginning of target range
2 = not allow missing values at ending of target range
3 = not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_success: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

PRECONDITIONS: Ifthe src_tsarrtypeis CRSP_FLOAT NUM, the subtype mustbe CRSP_PRICE NUM
Ifthe src_tsarrtypeiSCRSP_INTEGER NUV, the subtype mustbe CRSP_VOLUME NUM
The src_tsand trg ts musthave the same arrtype and subtype

crsp_trans_median Translates Time Series Based on Median Value in Range

PROTOTYPE: int crsp trans median (CRSP_TIMESERIES *src ts, CRSP TIMESERIES *trg ts, int par flag)

DESCRIPTION: loads a target time series from a source time series by copying the median price or volume over each restricted period according to the
calendar file.

ARGUMENTS: CRSP_TIMESERIES *src_ts —source time series

CRSP_TIMESERIES *trg ts —targettime series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 = not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

PRECONDITIONS: Ifthe src_tsarrtypeiSCRSP FLOAT NUV, the subtype mustbe CRSP PRICE NUM
Ifthe src_tsarrtypeiS CRSP_INTEGER NUM, the subtype mustbe CRSP_ VOLUME NUM
The src_tsand trg_ts musthave the same arrtype and subtype

SIDE EFFECTS: Possible performance hit if large time series

crsp_trans_total Translates Time Series Based on Total Value in Range

PROTOTYPE: int crsp trans_ total (CRSP_TIMESERIES *src ts, CRSP_TIMESERIES *trg ts, int par flag)

DESCRIPTION: loads a target time series from a source time series, totalling data when converting to different calendars. If the source periods are shorter
than the target periods, values in all source periods within a target period are summed before loading. If the source periods are longer than
target periods, values of the source periods are averaged across all target periods, and the same value is loaded to all target periods in that
range.

ARGUMENTS: CRSP TIMESERIES *src_ts — Source time series
CRSP_TIMESERIES *trg ts —targettime series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 =not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

RETURN VALUES: CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 189

PRECONDITIONS:

The src_ts arrtype mustbe CRSP_FLOAT NUMOrCRSP_INTEGER NUM

Ifitis cRsP_FLOAT NuM, the subtype mustbe CRSP_PRICE NUM

Ifitis CRSP_INTEGER NUM, the subtype must be one of CRSP_ VOLUME NUM, CRSP_VOLUME_ADJ_NUM, Of CRSP_COUNT NUM
The target arrtype mustbe CRSP_INTEGER NUM, CRSP_FLOAT NUM, Of CRSP_DOUBLE_NUM

crsp_trans_ last_closest Translates Time Series Based on Closest Nonmissing Value

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp_trans_last_closest (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg_ ts, CRSP_ARRAY *dists, int dlylim,
int par_ﬂag)

loads a target time series from a source time series by copying the closest non-missing to last price (price over each restricted period
according to the calendar file). This adjusts the price if there are any distributions between it and month- end so that the return will be
calculated properly. Passed a limit of days to use before giving up. If ties, preceding data gets precedence. Will not go outside of current or
next period. Also sets the begin and end.

CRSP_TIMESERIES *src_ts — source time series
CRSP_TIMESERIES *trg_ ts —targettime series CRSP_ARRAY *dists — CRSP_ARRAY of distributions int dlylim — limit of date
periods to use before giving up
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 =not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Target, price flag, and last date time series are loaded and their ranges are set

Ifthe src_tsarrtypeis CRSP_FLOAT NUV, the subtype mustbe CRSP_PRICE NUM
Ifthe src_tsarrtypeis CRSP_INTEGER NUM, the subtype mustbe CRSP_VOLUME NUM
The src_tsand trg ts musthave the same arrtype and subtype

crsp_trans_last_ previous Translates Time Series Based on Last Nonmissing Value in Range

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp_trans_last_previous (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg ts,CRSP_TIMESERIES *prcflag
ts, CRSP_TIMESERIES *lastdt_ts, int par flag)

loads a target time series from a source time series by copying the previous non-missing to last price over each restricted period according to
the calendar file. Also loads the prcflag and lastdt time series according to the case and the date of the non-missing value found. Will not go
outside of current period.

CRSP_TIMESERIES *src ts —source time series
CRSP_TIMESERIES *trg ts —targettime series
CRSP_TIMESERIES *prcflag ts — price flag time series. Each period is set to -1 if no non-zero price if a period- end price is found,
and 1 if an earlier price in the period is found.
CRSP_TIMESERIES *lastdt ts —lastdatetime series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 =not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

Ifthe src_tsarrtypeis CRSP_FLOAT NUN, the subtype mustbe CRSP_PRICE NUM
Ifthe src_tsarrtypeiSCRSP_INTEGER NUY, the subtype mustbe CRSP_VOLUME NUM
The src_tsand trg tsmusthave the same arrtype and subtype

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 190

crsp_trans_level Loads a Target Time Series with Index Levels

PROTOTYPE:

DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

int crsp trans_level (CRSP_TIMESERIES *src ts, CRSP_TIMESERIES *trg ts, int basedt, float

baseamt)

loads a target time series with index level prices from a source time series with returns based on a base date and base amount for that date.

CRSP_TIMESERIES *src_ts — source time series of returns

CRSP_TIMESERIES *trg_ts —target time series of prices

int basedt — base date, YYYYMMDD date where levels are anchored. Level on this date is set to baseamt and other levels are set by
successively compounding returns from the starting point.

float baseamt —base amount, if = 0 the baseamt = source on basedt. Target time series will contain baseamt on basedt.

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

target time series is loaded with levels. subtype of targetis set to cRsp_ LEVEL NumM

src can be same as t rg. Normally target subt ype mustbe CRsp_LEVEL NUMbutif src=trgmustbe CRSP_RETURN NUM.
src_tsand trg ts musthave the same calendar.

crsp trans_ cumret Loads a Target Time Series with Cumulative Returns

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp trans_cumret (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg ts, int basedt)

loads a target time series with cumulative returns from a source time series with level prices based on a base date.

CRSP_TIMESERIES *src_ts — source time series of reruns
CRSP_TIMESERIES *trg ts —targettime series of prices
int basedt — base date

CRSP_SUCCESS: if successfully loaded
Crsp_FAIL:if errorin parameters or loading process

Ifthe src_tsarrtypeis CRSP_RETURN_ NUM the subtype must be CRSP_RETURN CUM NUM
Ifthe src_tsarrtypeis CRSP_LEVEL NUM the subtype mustbe CRSP_RETURN NUM

crsp trans_port Maps Portfolio Assignments to a New Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp trans_port (CRSP_TIMESERIES *src ts, CRSP_TIMESERIES *trg ts, int par flag)

loads a target time series from a source time series by copying the last portfolio number over each restricted period according to the
calendar file.

CRSP_TIMESERIES *src_ts —source time series
CRSP_TIMESERIES *trg ts —targettime series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 =not allow missing values at beginning of target range
2 = not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:iferrorin parameters or loading process

The src_tsarrtypeiSCRSP_STK PORT_ NUM
The trg_tsarrtypeis CRSP_INTEGER NUMand the subtype mustbe CRSP_PORT PORT NUM

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC

PAGE 191

crsp_trans_stat Maps Portfolio Statistics to a New Time Series

PROTOTYPE:
DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp trans_stat (CRSP_TIMESERIES *src_ts, CRSP_TIMESERIES *trg ts, int par flag)

loads a target time series from a source time series by copying the last portfolio statistic number over each restricted period according to the
calendar file.

CRSP_TIMESERIES *src_ts — source time series
CRSP_TIMESERIES *trg_ts — target time series
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 =not allow missing values at beginning of target range
2 = not allow missing values at ending of target range
3 = not allow missing values at beginning and ending of target range

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

The src_tsarrtypeiSCRSP_STK_PORT NUM
The trg tsarrtypeis CRSP_DOUBLE NUMand the subtype mustbe CRSP_PORT STAT NUM

crsp trans_cap Loads a Target Time Series with Capitalization Data

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

PRECONDITIONS:

int crsp_trans cap (CRSP_TIMESERIES *prc ts, CRSP TIMESERIES *shr ts, CRSP TIMESERIES *cap
ts, int flags)

loads a target time series with capitalization data from two source time series — one with prices and the other with shares — by multiplying
the two values over each period according to the calendar file.

CRSP_TIMESERIES *prc_ts —input prices time series

CRSP_TIMESERIES *shr ts —inputshares time series

CRSP_TIMESERIES *cap_ts —outputcapitalization time series

int flags — flags passed to the function:

CRSP_ACTUAL means cap from the source is moved to the same period on target cap[i] = prc[i] * shr[i]
CRSP_EFFECTIVE means cap from the source is moved to the next period on target cap(i+1] = prc[i] * SHR[I]

CRSP_sUCCESS: if successfully loaded
CRsp_FAIL:if errorin parameters or loading process

Iftheprc ts subtypeisCRSP_PRICE ADJ NUMthe shr ts subtype mustbe CRSP_SHARES ADJ NUM
Iftheprc ts subtypeis CRSP_PRICE NUMthe shr ts subtype mustbe CRSP_SHARES IMP NUM

The cap tsarrtypeisCRSP_DOUBLE NUMandthe subtype iSCRSP_CAP_NUM

Theprc tsshr tsand cap_ts must have the same calendar

crsp_trans_gen_prc General Translation Price Function

PROTOTYPE:

DESCRIPTION:

ARGUMENTS:

RETURN VALUES:

int crsp trans_gen prc (CRSP_TIMESERIES *srcprc_ts, CRSP_TIMESERIES *trgprc_ts, CRSP_STK_
STRUCT *stkptr, int case flag, int adj flag, int par flag)

loads a target time series from a source time series by linking between the two calendars and copying the price values to the target time
series. Uses other translation functions to adjust, use last or last nonmissing price in range. General translation price function, used for prc,
ask, bid, askhi, bidlo, adjprc, adjask, adjbid, adjaskhi, adjbidlo

CRSP_TIMESERIES *srcprc_ts — Source price time series
CRSP_TIMESERIES *trgprc_ ts —targetprice time series
CRSP_STK_STRUCT *stkptr — stock structure pointer
int case_flag - last value or previous nonmissing price in range (0, 1)
int adj_flag — adjust or not (1, 0)
int par_flag — determines how missing values affect beg and end of target:
0 = allow missing values at beginning and ending of target range
1 = not allow missing values at beginning of target range
2 =not allow missing values at ending of target range
3 =not allow missing values at beginning and ending of target range

CRSP_SUCCESS: if successfully loaded
CRSP_FAIL:if errorin parameters or loading process

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESSINC PAGE 192

CHAPTER 6: LEGACY SET ACCESS IN FORTRAN

FORTRAN-95 DATA STRUCTURES

FORTRAN-95 Programming provides complete support for CRSP databases, including direct access on PERMNO, CUSIP
and other header variables, and full support of all data items. INCLUDE files containing TYPE definitions, an object library
to support linking, and sample programs illustrating access methods are available.

DATA ORGANIZATION FOR FORTRAN-95 PROGRAMMING

The basic levels of a CRSPAccess database are the database, set type, set id, module, object, and array. They are defined
as follows:

Database (crspDB) is the directory containing the database files. A crspDB is identified by its database path.

Set Type is a predefined type of financial data. Each set type has its own defined set of data structures, specialized
access functions, and keys. CRSPAccess databases support stock (STK) and index (IND) set types. A CRSPDB can
include more than one set type.

Set Identifier (SETID) is a defined subset of a set type. sET1Ds of the same set type use the same access functions,
structures, and keys, but have different characteristics within those structures. For example, daily stock sets use the
same data structure as monthly stock sets, but time series are associated with different calendars. Multiple sET1Ds of
the same set type can be present in one CRSPDB.

Modules are the groupings of data found in the data files in a crRsppB. Multiple data items can be present in a module.
Data are retrieved from storage on disk at the module level, and access functions retrieve data items for keys based on
selected modules. Modules correspond to physical data files.

Objects are the fundamental data types defined for each set type. There are three fundamental object types: time
series (CRSP_TIMESERIES), arrays (CRSP_ARRAY), and headers (CRsp_Row) . Objects contain header information
such as counts, ranges, or associated calendars (CRsp_caL) plus arrays of data for zero or more observations. Some
set types support arrays of objects of a single type. In this case, the number of available objects is determined by the
SETID, and each of the objects in the list has independent counts, ranges, or associated calendars.

Arrays are attached to each object. Each array contains a set of observations and is the basic level of program- ming
access. An observation can be a simple data type such as an integer from an array of volumes, or a complex struc-
ture such as one record from name history. When there is an array of objects, there is a corresponding array of arrays
within the data.

DATA OBJECTS

There are four basic types of information stored in CRSP databases. Each is associated with a CRSP object structure.

Header Information. These are identifiers with no implied time component. Header data contain the most current
CRSPAccess information stored in the databases.

Event Arrays. Arrays can represent status changes, sporadic events, or observations. The time of the event and rel-
evant information is stored for each observation. There is a count of the number of observations for each type of event
data.

Time Series Arrays. An observation is available for each period in an associated calendar. Beginning and ending valid
data are available for each type of time series data. Data are stored for each period in the range — missing values are
stored as placeholders if information is not available for a period.

Calendar Arrays. Each time series corresponds to an array of relevant dates. This calendar array is used in conjunction

PAGE 192

with the time series arrays to attach dates to observations.

An observation can be a simple value or contain multiple components such as codes and amounts. Time series, except
Portfolios, are based on calendars which share the frequency of the database. In a monthly database, the time series are
based on a month-end trading date calendar. In a daily database, the time series are based on a daily trading date calendar
that excludes market holidays. Portfolio calendars are dependent on the rebalancing methodology of the specific portfolio
type. All calendars are attached automatically to each requested time series object when the database is opened.

There are four base CRSPAccess FORTRAN-95 structures called objects used in CRSPDBs. The following table contains
each of the objects in bold upper-case, followed by the components, lower-case and indented, which each object type
contains. All data items are defined in terms of the following objects:

OBJECT OR FIELD USAGE DATATYPE

objtype object type code identifies the structure as a cRsp_ARRAY, always =3 INTEGER

arrtype array type code defines the structure in the array. Base FORTRAN-95 types or CRSP-defined structures each have INTEGER
associated codes defined in the constants header file

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type | INTEGER
fields.

maxarr maximum number of array elements containing valid data INTEGER

num number of array elements containing valid data INTEGER

dummy data secondary subtype code INTEGER

CRSP_ROW Structure for storing header data

objtype object type code identifies the structure asa crRsp_Rrow, always =5 INTEGER

arrtype array type code defines the structure in the array. Base FORTRAN-95 types or CRSP-defined structures each have INTEGER
associated codes defined in the constants header file

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type INTEGER
fields.

objtype object type code identifies the structure asa CRSP_TIMESERIES, always = 2 INTEGER

arrtype array type code defines the structure in the array. Base FORTRAN-95 types or CRSP-defined structures each have INTEGER
associated codes defined in the constants header file

subtype data subtype code defines a subcategory of array data. Subtypes further differentiate arrays with common array type INTEGER
fields.

maxarr maximum number of array elements INTEGER

beg first array index having valid data for the current record. (0 if no valid range.) INTEGER

end last array index having valid data for the current record. (0 if no valid range.) INTEGER

caltype calendar time period description code describes the type of time periods. Calendar Type (caltype) is always 2, INTEGER
indicating time periods are described in the Calendar Trading Date (ca1dt) array by the last trading date in the period.

cal calendar associated with time series is a pointer to the calendar associated with the time series array. The calendar CRSP_CAL,
includes the matching period- ending dates for each array index. POINTER

objtype object type code identifies the structure asa crsp_car, always =1 INTEGER

calid calendar identification number is an identifier assigned to each specific calendar by CRSP INTEGER

maxarr maximum number of trading periods allocated for the calendar INTEGER

loadflag calendar type availability flag is a code indicating the types of calendar arrays loaded. Currently = 2 for calendar INTEGER
trading date (ca1dt)only

ndays number of valid dates in calendar (index of last valid date in ca1dt) INTEGER

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 193

OBJECT OR FIELD USAGE DATATYPE

name the calendar name in text CHAR[80]
callist calendar period grouping identifiers reserved for array of alternate grouping identifiers for calendar periods *
caldt calendar trading date is an array of calendar period ending dates, stored in CCYYMMDD format. Calendars start at *

element 1 and end at element number of days (ndays)
calmap used to store array of first and last calendar period array elements in a calendar linked to elements in this calendar CRSP_CAL_MAP *
basecal used to point to a calendar linked in calmap CRSP_CAL *

SET STRUCTURES AND USAGE

Stock and index access functions initialize and load data to FORTRAN-95 top-level defined set structures. Top- level
structures are built from general object and array structure definitions and contain object and array pointers that have
memory allocated to them by access open functions.

Two set types and six set identifiers are currently supported for stock and index data. The identifier must be specified when
opening or accessing data from the set.

DATA SETTYPE SET IDENTIFIERS FREQUENCY

CRSP Stock Data STK 10 STK_DAILY Daily
20 STK_MONTHLY Monthly

CRSP Indexes Data IND 400 MONTHLY_INDEX_GROUPS Monthly Groups (in CRSP index product only)
420 MONTHLY_INDEX_SERIES Monthly Series
440 DAILY_INDEX_GROUPS Daily Groups (in CRSP index product only)
460 DAILY_INDEX_SERIES Daily Series

Each set structure has three types of pointer definitions.

e Module pointers to crsp_oBJECT ELEMENT linked lists are needed internally to keep track of the objects in a module.
These have the suffix _obj and can be ignored by ordinary programming.

¢ Object pointers define a CRsSp_ ARRAY, CRSP_ROW, Of CRSP_ TIMESERIES oObject type. A suffix, arr, ts,or rowisap-
pended to the variable name. Valid range variables num, beg, and end are accessed from these variables.

e Array pointers define a data item array. The array has the same rank as the object but without the suffix. It is a pointer
to the array element of the object and is used for general access to the data item.

If a module has multiple types of objects, a group structure is created with definitions for those objects and is included in
the main structure.

If a module has a variable number of objects of one type, an integer variable keeps track of the actual number. These
variables end with the suffix types and are based on the set type.

Each of the top-level structures contains three standard elements:

e PERMNO - the actual key loaded

® loadflag, a binary flag matching the set wanted parameters indicating which pointers have been allocated.
See the open function for the set for more information about wanted parameters.

® setcode, a constant identifying the type of set (1=sTK, 3=1ND)

For example, the TYPE crsp_ stk item has a CRsSp_TIMESERIES oObject named prc_ts containing an array named prc.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 194

FORTRAN-95 LANGUAGE DATA OBJECTS FOR CRSP STOCK DATA

Each TYpE (crsp_stk) item contains a fixed set of possible objects. These objects contain the header information required to use the CRSP data structures, as well
as the data arrays. Data elements are described in the FORTRAN-95 Data Structure Table under the array name.

Time series beg and end are both O if there are no data. Otherwise beg > 0, beg <= end, and end <= maxarr.

The TYPE (crsp_stk) contains an array of portfolio time series. Each component contains the portfolio statistic and assignment data for one portfolio type. Each
component can have an individual range and calendar. The number of Portfolio Types is found in the port types variable.

NAME OBJECT VALID DATA RANGE

Stock Header Structure header_row stk % stkhdr

Security Name History names_arr stk % names arr(i), i from 1 to stk % num names

Distribution History Array dists_arr stk % dists_arr(i), i from 1 to stk $ num dists

Shares Structure Array shares_arr stk % shares arr(i), i from 1 to stk % num shares

Delisting Structure Array delist arr stk % delist arr(i), i from 1 to stk % num delist

NASDAQ Structure Array nasdin_arr stk % nasdin arr(i), i from 1 to stk % num nasdin

Portfolio Statistics and Assignments port_ts() stk % port_ts(i) % port(j), i from 1 to stk % porttypes, j from stk % port beg 0 stk % port_end
Array of Group Arrays group_arr() stk % group arr(i) % group(j), i from 1 to grouptypes, j from 1 to stk % num groups
Closing Price or Bid/Ask Average prc_ts stk % prc(i), from stk % prc beg 0 stk % prc_end

Holding Period Total Return ret_ts stk % ret(i), from stk % ret beg t0 stk % ret end

Bid or Low bidlo_ts stk % bidlo(i), from stk % bidlo beg t0 stk $ bidlo_end

Ask or High askhi_ts stk % askhi(i), from stk % askhi beg 0 stk % askhi end

NASDAQ Closing Bid bid ts stk % bid(i), from stk % bid beg t0 stk % bid end

NASDAQ Closing Ask ask_ts stk % ask(i), from stk % ask beg t0 stk % ask end

Return Without Dividends retx ts stk % retx(i), from stk % retx beg t0 stk % retx end

Alternate Price altprc_ts stk % altprcdt (i), from stk % altprcdt beg t0 stk % altprcdt end
Open Price openprc_ts stk % openprc (i), from stk % openprc_beg t0 stk % openprc_end
Month End Bid/Ask Spread spread_ts stk % spread(i), from stk % spread beg t0 stk % spread end
Exchange Price exchprec_ts stk % exchprc(i), from stk % exchprc beg t0 stk % exchprc_end
Volume Traded vol ts stk % vol(i), from stk % vol beg t0 stk % vol end

NASDAQ Number of Trades or Alternate Price Date | numtrd ts stk % numtrd(i), from stk % numtrd beg {0 stk % numtrd end
Alternate Price Date altpredt_ts stk % altprc(i), from stk % altprc beg t0 stk % altprc_end

FORTRAN-95 LANGUAGE DATA STRUCTURE FOR CRSP STOCK DATA

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 195

All CRSP-defined data type structures have names in all capitals beginning with crsp_ and are immediately followed by the definitions in the next level of
indentation

Index and Date Ranges for all elements in a structure are the same as for the structure itself. There are three structure levels indicated by the indentation in the
mnemonic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates
data grouped in modules. See the CRSPAccess Stock Users Guide for data item definitions.

All character strings, indicated by character (#), are NULL terminated. The number of characters — 1 is the maximum string length allowed. Actual maxi- mums
may be lower. The top level stk structure is an example used by CRSP Stock sample programs. Other names can be used, and multiple CRsP_STK_STRUCTS can be
declared in a program. See the crsp_sSTk open access function for initializing a stock structure.

DATA USAGE - DATA USAGE - FULL INDEX RANGE - FULL

MNEMONIC DATATYPE SHORTCUT VERSION INDEX RANGE - SHORTCUT VERSION DATE USAGE

stk_data Master Stock Structure s ehEm | o

Header Data Stock Header Structure

hcusip CUSIP - Header char[16] stk % stkhdr %
hcusip

permno PERMNO int stk % stkhdr %
permno

permco PERMCO int stk % stkhdr %
permco

issuno NASDAQ Issue Number int stk % stkhdr %
issuno

compno NASDAQ Company Number | int stk % stkhdr %
compno

hexcd Exchange Code - Header int stk % stkhdr %
hexcd

hsiccd Standard Industrial int stk % stkhdr %

Classification (SIC) Code - hsiced
Header

hshrcd Share Code - Header int stk % stkhdr %
hshrcd

hnamecd Name Code - Header int stk % stkhdr %
hnamecd

begdt Begin of Stock Data int stk % stkhdr %
begdt

enddt End of Stock Data int stk % stkhdr %
enddt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 196

DATA USAGE -

DATA USAGE - FULL

INDEX RANGE - FULL

MNEMONIC DATATYPE SHORTCUT VERSION INDEX RANGE - SHORTCUT VERSION DATE USAGE
dlstcd Delisting Code - Header int stk % stkhdr %
dlstcd
htick Ticker Symbol - Header char[16] stk % stkhdr %
htick
hnaics North American Industry char[8] stk % stkhdr %
Classification System hnaics
(NAICS) - Header
hcomnam Company Name - Header char[36] stk % stkhdr %
hcomnam
htsymbol Trading Ticker Symbol - char[12] stk % stkhdr %
Header htsymbol
hentryed Country Code - Header char[4] stk % stkhdr %
hcntrycd
primexch Primary Exchange - Header | char([1] stk % stkhdr %
hprimexch
hsubexch Sub-Exchange - Header char[1] stk % stkhdr %
hsubexch
trdstat Trading Status - Header char([1] stk % stkhdr %
htrdstat
hsecstat Security Status - Header char([1] stk % stkhdr %
hsecstat
hshrtype Share Type - Header char[1] stk % stkhdr %
shrtype
hissuercd Issuer Code - Header char[1] stk % stkhdr %
hissuercd
hinccd Incorporation Code - char[1] stk % stkhdr %
Header hinced
hits Intermarket Trading System | char[1] stk % stkhdr % hits
Indicator - Header
hdenom Trading Denomination - char[1] stk % stkhdr %
Header hdenom
heligcd Eligibility Code - Header char[1] stk % stkhdr %
heligcd
hconved Convertible Code - Header | char[1] stk % stkhdr %
hconved
hnameflag Name Flag - Header char([1] stk % stkhdr %

hnameflag

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 197

MNEMONIC

NAME

DATATYPE

DATA USAGE -

SHORTCUT

DATA USAGE - FULL
VERSION

INDEX RANGE - FULL

INDEX RANGE - SHORTCUT VERSION

DATE USAGE

Sub-Exchange

subexch

[

names (1) % subexch

hrating Interest Rate or Strike Price | real * stk % stkhdr %
- Header hrating
Name History Security Name History ibetweenland stk % ibetweenland stk % name effective from stk %
Data num_names num_names names (i) % namedt
to stk % names (i) %
nameenddt
namedt Name Effective Date int stk % names (i) % stk % names_arr %
namedt names (1) % namedt
nameenddt Last Date of Name int stk % names (i) % stk % names_arr
nameenddt % names (1) %
nameenddt
ncusip CUSIP char[16] stk % names (i) % stk % names_arr %
ncusip names (i) % ncusip
ticker Ticker Symbol char[8] stk % names (i) % stk % names_arr %
ticker names (1) % ticker
comnam Company Name char[36] stk % names (i) % stk % names arr %
comnam names (1) % comnam
shrcls Share Class char[4] stk % names (i) % stk % names_arr %
shrcls names (1) % shrcls
shrcd Share Code int stk % names (i) % stk % names arr %
shrcd names (1) % shrcd
exchcd Exchange Code int stk % names (i) % stk % names_arr %
exchcd names (1) % exchcd
siccd Standard Industrial int stk % names (i) % stk % names_arr %
Classification (SIC) Code siced names (i) % siced
naics North American Industry char (8) stk % names (i) % stk % names arr %
Classification System naics names (1) % naics
(NAICS) Code
tsymbol Trading Ticker Symbol char[12] stk % names (i) % stk % names_arr %
tsymbol names (i) % tsymbol
cntrycd Country Code char[4] stk % names (i) % stk % names_arr %
cntrycd names (i) % cntrycd
primexch Primary Exchange char[1] stk % names (i) % stk % names_arr %
primexch names (i) % primexch
subexch char[1] stk % names (i) % stk % names_arr %

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 198

DATA USAGE -

DATA USAGE - FULL

INDEX RANGE - FULL

MNEMONIC NAME DATATYPE ~ SHORTCUT VERSION INDEX RANGE - SHORTCUT VERSION DATE USAGE
trdstat Trading Status char[1] stk % names (i) % stk % names_arr %
trdstat names (1) % trdstat
secstat Security Status char([1] stk % names (i) % stk % names_arr %
secstat names (1) % secstat
shrtype Share Type char[1] stk % names (i) % stk % names_arr %
shrtype names (i) % shrtype
issuercd Issuer Code char[1] stk % names (i) % stk % names_arr %
issuercd names (1) % issuercd
inccd Incorporation Code char[1] stk % names (i) % stk % names_arr %
inccd names (1) % inccd
its Intermarket Trading System | char[1] stk % names (i) % stk % names_arr %
Indicator its names (i) % its
denom Trading Denomination char[1] stk % names (i) % stk % names_arr %
denom names (1) % denom
eligcd Eligibility Code char[1] stk % names (i) % stk % names_arr %
eligcd names (i) % eligcd
conved Convertible Code char([1] stk % names (i) % stk % names_arr %
convcd names (1) % convcd
nameflag Nameﬂag char[1] stk % names (i) % stk % names_arr %
nameflag names (i) % nameflag
cHaE Distribution History Array ibetweenland stk % ibetweenland stk % distribution effective on stk
num dists num dists % dists (i) % exdt
distcd Distribution Code int stk % dists(i) % stk % dists_arr %
distcd dists (i) % distcd
divamt Dividend Cash Amount real stk % dists(i) % stk % dists arr %
divamt dists (i) % divamt
facpr Factor to Adjust Price real stk % dists(i) % stk % dists arr %
facpr dists (i) % facpr
facshr Factor to Adjust Shares real stk % dists(i) % stk % dists_arr %
Outstanding facshr dists (i) % facshr
dclrdt Distribution Declaration int stk % dists (i) % stk % dists_arr %
Date dclrdt dists (i) % dclrdt
exdt Ex-Distribution Date int stk % dists(i) % stk % dists arr %
exdt dists (i) % exdt
rcrddt Record Date int stk % dists(i) % stk % dists_arr %
rcrddt dists (i) % rcrddt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 199

DATA USAGE -

DATA USAGE - FULL

INDEX RANGE - FULL

MNEMONIC NAME DATATYPE SHORTCUT VERSION INDEX RANGE - SHORTCUT VERSION DATE USAGE
paydt Payment Date int stk % dists(i) % stk % dists_arr %
paydt dists (i) % paydt
acperm Acquiring PERMNO int stk % dists*(i) % | stk % dists_arr %
acperm dists* (i) % acperm
accomp Acquiring PERMCO int stk % dists(i) % stk % dists_arr %
accomp dists (i) % accomp
shares Shares Structure Array ibetweenland stk % i betweeniandstk % shares observation effective
num_shares num_shares fromstk ¢ shares (i)
% shrsdt to stk
% shares[i] %
shrsenddt
shrout Shares Outstanding int stk % shares(i) % | stk % shares arr %
shrout shares (i) % shrout
shrsdt Shares Outstanding int stk % shares(i) % | stk % shares arr %
Observation Date shrsdt shares (i) % shrsdt
shrsenddt Shares Qutstanding int stk % shares(i) % | stk % shares_arr
Observation End Date shrsenddt % shares(i) %
shrsenddt
shrilg Shares Qutstanding int stk % shares(i) % | stk % shares arr %
Observation Flag shrflg shares (i) % shrflg
delist Delisting Structure Array i between1landstk % i betweeniandstk % delist observationon stk %
num delist num delist delist(i) % dlstdt
dlstdt Delisting Date int stk % delist(i) % | stk % delist arr %
dlstdt delist (i) % dlstdt
dlstcd Delisting Code int stk % delist (i) % | stk % delist arr %
dlstcd delist (i) % dlstcd
nwperm New PERMNO int stk % delist (i) % | stk % delist arr %
nwperm delist (i) % nwperm
nwcomp New PERMCO int stk % delist (i) % | stk % delist arr %
nwcomp delist (i) % nwcomp
nextdt Delisting Date of Next int stk % delist (i) % | stk % delist arr %
Available Information nextdt delist (i) % nextdt
dlamt Amount After Delisting real stk % delist(i) % | stk % delist arr %
dlamt delist (i) % dlamt
dlretx Delisting Return without real stk % delist(i) % | stk % delist arr %
Dividends dlretx delist (i) % dlretx
dlprc Delisting Price real stk % delist (i) % | stk % delist arr %
dlprc delist (i) % dlprc

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 200

DATA USAGE -

DATA USAGE - FULL

INDEX RANGE - FULL

MNEMONIC DATATYPE SHORTCUT VERSION INDEX RANGE - SHORTCUT VERSION DATE USAGE
dlpdt Delisting Payment Date int stk % delist (i) % | stk % delist arr %
dlpdt delist (i) % dlpdt
dlret Delisting Return real stk % delist (i) % | stk % delist arr %
dlret delist (i) % dlret
nasdin NASDAQ Structure Array i between1land stk % i between1and stk % Nasdaq status effective
num _nasdin num_nasdin fromstk % nasdin (i)
$ trtsdt to stk
% nasdin[i] %
trtsenddt
trtscd NASDAQ Traits Code int stk % nasdin(i) % | stk % nasdin arr %
trtscd nasdin(i) % trtscd
trtsdt NASDAQ Traits Date int stk % nasdin(i) % | stk % nasdin arr %
trtsdt nasdin (i) % trtsdt
trtsenddt NASDAQ Traits End Date int stk % nasdin(i) % | stk % nasdin arr
trtsenddt % nasdin(i) %
trtsenddt
nmsind NASDAQ National Market int stk % nasdin(i) % | stk % nasdin_arr %
Indicator nmsind nasdin (i) % nmsind
mmcnt Market Maker Count int stk % nasdin(i) % | stk % nasdin arr %
mmcnt nasdin (i) % mmcnt
nsdinx NASD Index Code int stk % nasdin(i) % | stk % nasdin arr %
nsdinx nasdin (i) % nsdinx
port Portfolio Statistics and j between 1 and stk % j between 1 and stk % value for period ending stk
Assignments porttypes, i between porttypes, i between % port_ts(j) % cal %
stk % port ts(j) % beg stk % port ts(j) % beg caldt (i)
and stk % port ts(j) and stk % port_ts(j)
% end % end
port Portfolio Assignment int stk % port(j,i) % | stk % port ts(j) %
Number port port (i) % port
stat Portfolio Statistic Value double stk % port(j,i) % | stk % port ts(j) %
precision | stat port (i) % stat
group Group Array j between 1 and stk % value for period ending stk
grouptypes, i between1and | $ group_arr(j) %
stk % group_arr(j) group (i) % grpenddt
% group_parms % num
grpdt Begin of Group Data int stk % group_arr(Jj)
% group (i) % grpdt

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 201

MNEMONIC

NAME

DATA USAGE -

DATATYPE SHORTCUT

DATA USAGE - FULL
VERSION

INDEX RANGE - FULL

INDEX RANGE - SHORTCUT VERSION

DATE USAGE

grpenddt End of Group Data int stk % group_arr(j)
% group (i) %
grpenddt
grpflag Group Flag of Associated int stk % group_arr(Jj)
Index % group (i) % grpflag
grpsubflag | Group Secondary Flag int stk % group_arr(3j)
% group (i) %
grpsubflag
Time Series Data Arrays
prc Price or Bid/Ask Average real * stk % prc(i) stk % prc_ts % i between stk % i between stk % valueondate stk %
prc (i) prc_beg and stk % prc_beg and stk % prc_ts % prc_parms
prc_end prc_end % cal $ caldt (i)
ret Holding Period Total Return | real * stk % ret(i) stk % ret ts % i between stk % i between stk % valueondate stk 3
ret (i) ret beg and stk % ret beg and stk % ret _ts % ret parms
ret end ret end % cal % caldt (i)
bidlo Bid or Low Price real * stk % bidlo(i) stk % bidlo ts % i between stk $ i between stk % valueondate stk 3
bidlo (1) bidlo beg and stk % |bidlo beg and stk $ |bidlo _ts % bidlo_
bidlo _end bidlo_end parms % cal %
caldt (1)
askhi Ask or High Price real * stk % askhi(i) stk % askhi ts % i between stk % i between stk % valueondate stk 3
askhi (i) askhi_beg and stk askhi_beg and stk % | askhi_ts % askhi_
askhi end askhi end parms % cal %
caldt (1)
bid Bid real * stk % bid(i) stk % bid ts % i between stk % i between stk % valueondate stk 3
bid (1) bid beg and stk % bid beg and stk % bid ts % bid parms
bid end bid end % cal % caldt (i)
ask Ask real * stk % ask(i) stk % ask_ts % i between stk ¢ i between stk o valueondate stk ¢
ask (1) ask beg and stk % ask beg and stk % ask_ts $ ask parms
ask_end ask_end % cal % caldt (i)
retx Return Without Dividends | real * stk % retx(i) stk % retx ts % i between stk & i between stk & valueondate stk 3
retx (i) retx beg and stk retx beg and stk % retx ts % retx
retx_end retx_end parms % cal %
caldt (i)

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 202

MNEMONIC

DATA USAGE -

DATA USAGE - FULL
VERSION

INDEX RANGE - SHORTCUT

INDEX RANGE - FULL
VERSION

DATE USAGE

openprc

Open Price (daily only)

stk % openprc_ts

openprc (i)

i between stk %
altprc _beg and stk %
altprc_end

i between stk %
openprc_beg and stk

o

% openprc_end

valueondate stk

% openprc_ts %

o

openprc_parms % cal

% caldt (i)

altprc

Price Alternate (monthly

stk % altprc_ts

altprc(i)

o°

i between stk %
altprc _beg and stk %
altprc_end

i between stk %
altprc _beg and stk %
altprc_end

valueondate stk %
altprc ts % altprc
parms % cal %

caldt (1)

spread

Spread Between Bid and

stk % spread_ts %

spread (i)

i between stk %
spread beg and stk %

spread_end

i between stk %
spread_beg and stk %

spread_end

valueondate stk 2
spread ts % spread
parms % cal %

caldt (1)

vol

stk % vol_ts %

vol (1)

i between stk %
vol beg and stk %

vol_end

i between stk %
vol beg and stk %

vol_end

valueondate stk ¢

vol _ts % vol_parms

% cal % caldt (i)

numtrd

NASDAQ Number of Trades

stk % numtrd ts

numtrd (1)

i between stk ¢
numtrd beg and stk %

numtrd end

i between stk %
numtrd_beg and stk %

numtrd end

valueondate stk %
numtrd_ts % numtrd
parms % cal $

caldt (i)

altprcdt

Alternate Price Date altpredt (i)

stk % altprcdt_ts

altprcdt (i)

i between %
altprcdt _end

i between stk %
altprcdt_beg and stk

°

% altprcdt end

valueondate stk ¢
altprcdt_ts %

altprcdt parms %
cal % caldt (i)

caldt

Calendar Trade Date

stk % caldt (i)

i between 1 and stk %
ndays

i between 1 and stk %
ndays

n/a

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 203

EXAMPLES OF FORTRAN-95 VARIABLE USAGE FOR CRSP STOCK DATA
These assume a FORTRAN-95 variable stk of TYPE (crsp stk)

CRSP Row/Header Data
Object Variable: (sub-TYPE) stk header
Data Structure: stk % stkhdr
Sample wrRiTE Statement:
WRITE (*, 1) stk % stkhdr $ permno, &
& stk % stkhdr % begdt, stk $ stkhdr $ enddt
1 FORMAT (1X, IS5, 1X, I8, 1X, I8)

CRSP Array/Distributions

Object Variable: (sub-TYPE) stk dist

Data Structure: stk ¢ stk dists arr % dists

Sample wrRiTE Statement:
DO 1 = 1, stk % dists arr % dists parms % num
WRITE (*,1) stk % dists arr % dists(i) % distcd, &
& stk % dists arr % dists(i) % exdt
1 FORMAT (1X, I4, 1X, I8)
END DO

CRSP Time Series/Prices
Object Variable: (sub-TYPE) stk prc ts
Data Structure: stk % stkprc ts
Sample wrRITE statement:

DO 1 = stk % stkprc ts % prc_ts % beg, &

& stk % stkprc ts % prc ts % end
WRITE (*, 1) stk % stkprc ts % prc(i), &
& stk % stkprc ts % prc ts % cal % caldt(i)

1 FORMAT (1X, F11.5, 1X, I8)
END DO

CRSP Array of Time Series/Portfolios
Object Variable: (sub-TYPE) stk port
Data Array: stk % stk port ts(j)
Thereare SIZE(stk % stkport ts) portfolios available; 5 above ranges from 1 to S1zE
(stk % stkport ts)

Sample wRITE statement: This statement prints the date and the assignment for each
yearintheissue’'srangefor stk % stkport ts(1),the NYSE/NYSEMKT/NASDAQ
capitalization deciles.

DO 1 = stk % stkport ts(l) % port ts % beg, stk % stkport ts(l)

port ts

WRITE (*,1) stk % stkport ts(l) % port ts % &

oo

o)

% end

& cal caldt (i), &
& stk stkport ts(l) % port(i) % port
1 FORMAT (1X, I8, 1X, I2)

CRSP Array of Group Arrays
Object Variable: (sub-TYPE) stk group arr
Data Array: stk % stkgroup arr(j) % group (i)
Thereare S1zE (stk % stkgroup arr)groupsavailable; 5 above is between 1 and
SIZE (stk % stkgroup_arrl
Sample WRITE statement:

This statement is executed only if the security has ever been included in the
S&P 500 uni- verse (group type 16).

J =16
IF (stk % stkgroup arr(16) % croup arr % num > 0) THEN
DO i = 1, stk % stkgroup arr(l6) % group arr % num
WRITE (*, 1) stk % stkgroup arr(j) % &
& group (i) % grpdt, stk % stkgroup arr(j) % &
& group (i) % grpeenddt, stk $ stkgroup arr(j) % &
& group (i) % grpflag, stk % stkgroup arr(j) % &
& group (i) % grpsubflag
1 FORMAT (1X, I8, 1X, I8, 1X, I2, 1X, I2)
END DO
END IF

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 204

FORTRAN-95 LANGUAGE DATA OBJECTS FOR CRSP INDEXES DATA

CRSP assigns a Permanent Index Identification Number (INDNO) to access the index data in FORTRAN-95 for individual series or portfolio groups. In the CRSP US
Stock Database, a subset of market series is available. Additional series and groups are available when you subscribe to the CRSP US Historical Indexes Database
and Security Portfolio Assignment Module. The index structure supports data for one series or group and includes header, rebalancing, and result information for one
or more portfolios comprising the index.

Each index structure contains a fixed set of possible objects. Objects contain the header information needed to use the CRSP data structures as well as the data
arrays. Data elements are described in the FORTRAN-95 Data Structure Table under the array name.

Time series beg and end are both equal to O if there are no data. Otherwise beg > 0, beg <= end, and end < maxarr. The Oth element of a time series array is
reserved for the missing value for that data type.

Multiple series in the index structure refers to portfolio subgroups. Each of these will have the same beg, end, and calendar. In a SERIES SETID, the multiple series
has a count of 1. In a GROUP SETID, the count of series is found in the corresponding xxxtypes variable.

NAME OBJECT OBJECT ARRAY NAME

Indexes HeaderObject indhdr_row ind % indhdr

Rebalancing Arrays rebal_arr() ind % rebal(j), j from 1 to ind % rebaltypes
List Arrays list_arr() ind $ list(j), j from 1 to ind % listtypes
Total Value Time Series totval ts() ind % totval(j), j from 1 to ind % indtypes
Total Count Time Series totent_ts() ind % totcnt(j), j from 1 to ind % indtypes
Used Value Time Series usdval _ts() ind % usdval(j), j from 1 to ind % indtypes
Used Count Time Series usdent_ts () ind % usdent(j), j from 1 to ind % indtypes
Total Return Time Series tret_ts() ind % tret(j), j from 1 t0 ind % indtypes
Capital Appreciation Time Series aret_ts() ind % aret(j), 3 from 1 to ind ¢ indtypes
Income Return Time Series iret_ts() ind % iret(j), j from 1 t0 ind % indtypes
Total Return Index Level Time Series tind_ts() ind % tind(j), 3 from 1 to ind ¢ indtypes
Capital Appreciation Index Level Time Series aind_ts() ind % aind(j), j from 1 to ind % indtypes
Income Return Index Level Time Series iind_ts() ind % iind(j), 3 from 1 to ind ¢ indtypes

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 205

FORTRAN-95 LANGUAGE DATA STRUCTURE FOR CRSP INDEXES DATA

All CRSP-defined data types have names in all capitals beginning with crsp_ and are immediately followed by the definitions in the next indented level.

Index and date ranges for all elements in a structure are the same as for the structure itself. There are four structure levels indicated by the indentation in the Mne-
monic field. Pointers at any level can be used in a program. The top level contains all other items and is used in all access functions. The second level indicates
data grouped in modules. See the Data Description Guide for data item definitions.

All character strings, indicated by char [#], are null terminated. The number of characters - 1 is the maximum string length allowed. Actual maximums may be
lower. The top level ind structure is an example used by CRSP Indexes sample programs. Other names can be used, and multiple CRSP_IND STRUCTs may be

declared in a program.

MNEMONIC DATA TYPE DATA USAGE - DATA USAGE - FULL INDEX RANGE - INDEX RANGE - FULL DATE USAGE
SHORTCUT VERSION SHORTCUT VERSION
ind_data Master Indexes Structure CRSP_IND ind
indhdr Indexes Header Object
indno INDNO int ind % indhdr % indno
indco INDCO int ind % indhdr % indco
primflag Index anary Link int ind % indhdr %
primflag
portnum Portfolio Number if Subset int ind % indhdr %
Series portnum
indname Index Name char([80] ind % indhdr %
indname
groupname |ndexGr0up Name char[80] ind $ indhdr %
groupname
method Index Methodology CRSP_IND_METHOD ind % indhdr %
Description Structure method
methcode Index Method Type Code int ind % indhdr %
method % methcode
primtype Index Primary Methodology | int ind % indhdr %
Type method % primtype
subtype |ndexSec0ndary int ind $ indhdr %
Methodology Group method % subtype
wgttype Index Reweighting Type Flag | +nt ind % indhdr %
method % wgttype
wgtflag Index Reweighting Timing int ind % indhdr %
F|ag method % wgtflag
flags Index Exception Handling CRSP_IND_ FLAGS ind % indhdr % flags
Flags

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 206

MNEMONIC

DATATYPE

DATA USAGE -

DATA USAGE - FULL

INDEX RANGE - INDEX RANGE - FULL

SHORTCUT

VERSION

flagcode Index Basic Exception Types | 10t ind % indhdr % flags
Code % flagcode
addflag Index New Issues Flag int ind % indhdr % flags
% addflag
delflag Index Ineligible Issues Flag int ind % indhdr % flags
% delflag
delretflag Return of Delisted Issues F|ag int ind % indhdr % flags
% delretflag
missflag Index Missing Data Flag int ind % indhdr % flags
% missflag
partuniv |ndexSubsetScreening CRSP_UNIV_PARAM ind % indhdr %
Structure partuniv
partunivcode Universe Subset Types Code | int ind % indhdr %
in a Partition Restriction partuniv % univcode
begdt Partition Restriction int ind % indhdr %
BegnmngDam partuniv % begdt
enddt Partition Restriction End Date | it ind % indhdr %
partuniv % enddt
wantexch Valid Exchange Codes in int ind % indhdr %
the Universe in a Partition partuniv % wantexch
Restriction
wantnms Valid NASDAQ Market Groups | +nt ind % indhdr %
in the Universe in a Partition partuniv % wantnms
Restriction
wantwi Valid When-Issued Securities | 1nt ind % indhdr %
in the Universe in a Partition partuniv % wantwi
Restriction
wantinc Valid Incorporation of int ind % indhdr %
Securities in the Universe in a partuniv % wantinc
Partition Restriction
shrcd Share Code Screen Structure | CRSP_UNIV_SHRCD ind % indhdr %
in a Partition Restriction partuniv % shred
sccode Share Code Groupings int ind % indhdr %
for Subsets in a Partition partuniv % shred %
Restriction sccode
fstdig Valid First Digit of Share Code | int ind % indhdr %

in a Partition Restriction

o o

partuniv % shrcd %

fstdig

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 207

MNEMONIC DATATYPE DATA USAGE - DATA USAGE - FULL INDEX RANGE - INDEX RANGE - FULL DATE USAGE

SHORTCUT VERSION SHORTCUT VERSION
secdig Valid Second Digit of Share int ind % indhdr %
Code in a Partition Restriction partuniv % shred %
secdig
induniv Partition Subset Screening CRSP_UNIV_PARAM ind % indhdr %
Structure induniv
indunivcode Universe Subset Types Code | int ind % indhdr %
in an Index Restriction induniv % univcode
begdt Restriction Begin Date int ind % indhdr %
induniv % begdt
enddt Restriction End Date int ind % indhdr %
induniv % enddt
wantexch Valid Exchange Codes in int ind % indhdr %
the Universe in an Index induniv % wantexch
Restriction
wantnms Valid NASDAQ Market Groups | int ind % indhdr %
in the Universe in an Index induniv % wantnms
Restriction
wantwi Valid When-Issued Securities | 1nt ind % indhdr %
in the Universe in an Index induniv % wantwi
Restriction
wantinc Valid Incorporation of int ind % indhdr %
Securities in the Universe in induniv % wantinc
an Index Restriction
shrcd Share Code Screen Structure | CRSP_UNIV_SHRCD ind % indhdr %
in an Index Restriction induniv % shred
sccode Share Code Groupings int ind % indhdr %
for Subsets in an Index induniv % shred %
Restriction sccode
fstdig Valid First Digit of Share Code | int ind % indhdr %
in an Index Restriction induniv % shred %
fstdig
secdig Valid Second Digit of Share | int ind % indhdr %
Code in an Index Restriction induniv % shred %
secdig
rules Portfolio Building Rules CRSP_IND_RULES ind % indhdr % rules
Structure
rulecode Index Basic Rule Types Code | *nt ind % indhdr % rules
% rulecode

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 208

MNEMONIC

DATATYPE

DATA USAGE -

DATA USAGE - FULL

INDEX RANGE -

INDEX RANGE - FULL

DATE USAGE

SHORTCUT

VERSION

SHORTCUT

VERSION

Count Used as of Rebalancing

rebal(j,1i) %

usdcnt

buyfnct Index Function Code for Buy | int ind % indhdr % rules
Rules % buyfnct
sellfnct |ndex Function CodeforSe” int ind % indhdr % rules
Rules % sellfnct
statfnct Index Function Code for int ind % indhdr % rules
Generating Statistics ¢ statfnct
groupflag Index Statistic Grouping Code | *nt ind % indhdr % rules
% groupflag
assign Related ASS|gnment CRSP_IND ASSIGN ind % indhdr %
Information assign
assigncode |ndex Bas|cAss|gnment int ind % indhdr %
TypesCode assign % assigncode
asperm INDNO of Associated Index | #nt ind % indhdr %
assign % asperm
asport Portfolio Number in int ind % indhdr %
Associated Index assign % asport
rebalcal Calendar Identification int ind % indhdr %
Number of Rebalancing assign % rebal cal
Calendar
assigncal Calendarldentmcatlon int ind % indhdr %
Number of Assignment assign % assigncal
Calendar
calccal Calendar Identification int ind % indhdr %
Number of Calculations assign % calccal
Calendar
rebal Array of Rebalancing Arrays j between 1 and ind data valid from ind
% rebaltypes, i % rebal (j,i) %
between 1 and ind % rbbegdt {0 ind %
ind rebal arr (j) rebal (j,i) %
% num rbenddt
rbbegdt Index Rebalancing Begin Date | int ind % rebal %
rebal(j,1i) % rbbegdt
rbenddt Index Rebalancing End Date | int ind % rebal %
rebal (j,1) % rbenddt
usdcnt int ind % rebal

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN

PAGE 209

MNEMONIC DATATYPE DATA USAGE - DATA USAGE - FULL INDEX RANGE - INDEX RANGE - FULL DATE USAGE

SHORTCUT VERSION SHORTCUT VERSION
maxcnt Maximum Count During int ind % rebal %
Period rebal (7,1) %
maxcnt
totcnt Count Available as of int ind % rebal %
Rebalancing rebal(j, 1) %
totcnt
endcnt Count at End of Rebalancing | int ind % rebal %
Period rebal (j,1i) %
endcnt
minid Statistic Minimum Identifier | int ind % rebal %
rebal(j,1i) %
minid
maxid Statistic Maximum Identifier | int ind % rebal %
rebal(j,1i) %
maxid
minstat Statistic Minimum in Period | double ind % rebal %
precision rebal(j,1i) %
minstat
maxstat Statistic Maximum in Period | double ind % rebal %
precision rebal(j,1i) %
maxstat
medstat Statistic Median in Period double ind % rebal %
precision rebal(j,1i) %
medstat
avgstat Statistic Average in Period double ind % rebal %
precision rebal(j,1i) %
avgstat
list List Indexes Arrays jbetweeni1andind % | jbetweeniandind % | validfromind %
listtypes, i between | listtypes,ibetween | list(j,i) % begto
landind % ind_ landind % ind_ ind % list(j,i) %
list arr(j) % num |list arr(j) % num |enddt
list List Arrays int ind % list(j,i) % |ind % ind list
permno arr % list(j,1i) %
permno
permno Permanent Number of int ind % list(j,1i) % ind % ind list
Securities in Index List permno arr % list(j,1i) %
permno

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 210

MNEMONIC

DATATYPE

DATA USAGE -

SHORTCUT

DATA USAGE - FULL
VERSION

INDEX RANGE -
SHORTCUT

INDEX RANGE - FULL
VERSION

DATE USAGE

begdt First Date Included in List int ind % list(j,1i) % ind % ind list
begdt arr % list(j,1i) %
begdt
enddt Last Date Included in a List int ind % list(j,1i) % ind % ind list
enddt arr % list(j,1i) %
enddt
subind Index Subcategory Code int ind % list(j,i) % |ind % ind list_
subind arr % list(j,i) %
subind
weight Weight of an Issue double ind % list(j,i) % | ind % ind list
precision weight arr $ list(j,i) %
weight
Time Series Data Arrays
aind Index Capital Appreciation real * ind % aind(j, 1) ind % indaind_ts 4 between 1 and 3 between 1 and value ondate ind %
Index Level % aind(j, i) indtypes, i between indtypes, i between aind ts(j) % cal
ind % aind ts(j) ind % aind ts(j) % caldt (i)
% beg andind_data % begandind %
% aind _ts(j) % aind_ts(j) % end
end
aret Index Capital Appreciation real * ind % aret(3j, 1) ind % indaret_ts 3 between 1 and 3 between 1 and valueondate ind %
Return % aret (j, i) indtypes, i between indtypes, i between aret ts(j) % cal
ind % aret ts(j) ind % aret ts(j) S caldt (i)
% begandind data |% begandind %
% aret _ts(j) % aret ts(j) % end
end
iind Index Income Return Index real * ind % iind(j,1) ind % indiind_ts 3 between 1 and 3 between 1 and value ondate ind &
Level % iind (3, 1) indtypes, i between indtypes, i between iind ts(j) % cal
ind % iind ts(j) ind % iind ts(j) % caldt (i)
% begand ind data % begandind %
% 1ind _ts(j) % iind _ts(j) % end
end
iret Index Income Return real * ind % iret(3j, 1) ind % indiret_ts 3 between 1 and 3 between 1 and valueondate ind ¢
% iret (j, i) indtypes, i between indtypes, i between iret ts(j) % cal
ind % iret ts(j) ind % iret ts(j) S caldt (i)
% beg andind_data % begandind %
% iret ts(j) % iret ts(j) % end
end
CRSP PROGRAMER'S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 211

MNEMONIC DATATYPE DATA USAGE - DATA USAGE - FULL INDEX RANGE - INDEX RANGE - FULL DATE USAGE

SHORTCUT VERSION SHORTCUT VERSION
tind Index Total Return Index Level | real * ind % tind(3j, 1) ind % indtind_ts 5 between 1 and 5 between 1 and value ondate ind %
% tind(j, 1) indtypes, i between indtypes, i between tind ts(j) % cal
ind % tind_ts(3) ind % tind_ts(3) % caldt (i)
% beg andind data |% beg andind %
% tind ts(j) % tind ts(j) % end
end
tret Index Total Return real * ind % tret(j,1) ind % indtret_ts 3 between 1 and 3 between 1 and value on date ind %
$ tret(j, i) indtypes, i between indtypes, i between tret ts(j) % cal
ind % tret_ts(j) ind % tret_ts(j) o caZdt(i)
% begand ind data % begandind %
% tret ts(j) % tret ts(j) % end
end
usdent Index Used Count real * ind % usdent(j,i) |ind % indusdent_ | 4 between 1 and 5 between 1 and value ondate ind %
ts % usdcnt(j, 1) indtypes, i indtypes, i usdent ts(j) %
between ind % between ind % cal % caldt (i)
usdcnt_ts(j) % usdent_ts (J)
begand ind data % beg andind %
% usdcnt_ts(j) % usdcnt_ts(j) %
end end
totent Index Total Count real * ind % totent(j,1) |ind % indtotcnt_ | 5 between 1 and 3 between 1 and valueondate ind %
ts % totcnt(j,1i) indtypes, i indtypes, i totent ts(j) %
between ind % between ind % cal % caldt (i)
totcnt ts(j) % totent ts(3j)
begand ind data % begandind %
% totcnt ts(j) % totcnt ts(j) %
end end
usdval Index Used Value real * ind % usdval(j,i) |ind % indusdval_ 5 between 1 and 3 between 1 and value ondate ind &
ts % usdval (j,1) indtypes, i between indtypes, i between usdval ts(3j) %
ind % usdval_ ind % usdval_ cal % caldt (i)
ts(j) % beg ts(j) % begandind
and ind data % % usdval ts(j) %
usdval ts(j) % end
end
totval Index Total Value real * ind % totval(j,i) |ind % indtotval_ | 4 between 1 and 5 between 1 and value ondate ind %
ts % totval(j,1i) indtypes, i between indtypes, i between totval ts(j) %
ind % totval_ ind % totval_ cal % caldt (i)
ts(j) % beg ts(j) % begandind
and ind data % % totval ts(j) %
totval ts(j) % end
end

CRSP PROGRAMER’S GUIDE | LEGACY SET ACCESS IN FORTRAN PAGE 212

FORTRAN-95 STOCK SAMPLE PROGRAMS AND SUBROUTINES

SAMPLE PROGRAMS — *SAMP*.F90

The FORTRAN-95 sample programs provide examples of how to access the CRSPAccess stock file daily or monthly data
with universal stock access routines. The 14 stock & indexes sample programs give basic examples of the CRSP access
routines, and illustrate tasks while using the access and utility routines. To use a sample program, copy it to your directory
from the CRSP sample directory. Edit the program to meet your needs and compile, link, and run. See the CRSPAccess
Release Notes for FORTRAN-95 Supported Systems. All sample programs that call on an input file have one available in
the sample directory.

The sample programs are written to use either daily or monthly data. To switch between daily and monthly data, change
the setid from STK DAILY t0 STK MONTHLY.

STKSAMP1.F90 Reads all securities sequentially - STKSAMP 1. FO0 makes a sequential pass through the daily file in PERMNO order, retrieves
outputs a security list to a file Header data, and creates a company list containing CUSIP - Header, PERMNO, Company Name -
Header, Exchange Code - Header, SIC Code - Header, and beginning and ending dates the CRSP file
contains time series data for the security. The output is printed into a file called dcnames . dat.

STKSAMP2.F90 Reads an input file of historical cusips | STKSAMP2.F90 reads an historical CUSIP list, with CUSIPs in columns 1-8, from a user-created
- outputs current cusips to afile and file called hcusips . dat. It outputs a partial company list to the terminal, including all historical
writes header data to terminal window | CUSIPs found in the monthly file and their corresponding current CUSIPs, names, and last price for
each security. It also creates a file, cusips . dat, with the current CUSIPs.

STKSAMP2. F95 is particularly suited for updating CUSIP lists after some of the CUSIPs have
changed.

STKSAMP3.F90 Reads an input file of permnos - outputs | STKSAMP3. FOO reads desired PERMNOs from a user-created input file called permnos . dat
security identification & basic delist for daily data containing PERMNOs in columns 2-6. It looks for each of the PERMNOs in the indicated
information to a file database and data are retrieved for each PERMNO in the input file that exactly matches a security on
the file. The output file, out perm. dat contains PERMNO, name, and returns data for the last date,
date of price after delisting, and delisting return are printed for each stock found.

STKSAMP4.F90 Reads securities within arange of sic | STKSAMP4. FO0 makes a partial sequential pass through the monthly file by processing all stocks
codes - writes header and portfolio data | whose most recent SIC Code falls between 2000 and 2100. This range of current SIC codes can easily
to terminal window be changed to select different industry groups. It prints to the terminal a partial name11ist including

initial capitalization and portfolio assignment for each stock found.

STKSAMP5.F90 Reads an input file of historical cusips | STKSAMP5. FOO reads the daily database and extracts data using an input file of historical
- outputs header data, returns and CUSIPs with beginning and ending date ranges. The input file, ret inp . dat, has CUSIPs in positions
compound returns to a file 2-9, begin dates (YYYYMMDD) in positions 11-18 and end dates (YYYYMMDD) in positions 20-27.

The output file, returns . dat, will contain CUSIP - Header, PERMNO, Calendar dates, and the
Compound Return followed by returns for each security over the date range specified inthe ret inp.
dat file. Ifa CUSIP included in ret inp. dat is not in the CRSP database, the begin date and CUSIP
will print to the screen.

STKSAMP6.F90 Year-end capitalization & portfolio STKSAMPG6. FO0 makes a sequential pass through the daily file in PERMNO order, and outputs
assignments for current companies that | CUSIP - Header, PERMNO, year-end Capitalizations and decile Portfolio Assignments for all firms that

have traded 3 consecutive years are traded in the past three years to a file, mkt caps . dat.
written to a file

STKSAMP7.F90 Reads stock and indexes data - writes | STKSAMP7.F90 reads daily stock and indexes data by PERMNO from an input file, pe rmno
daily market indexes within a date date.dat which contains PERMNO in columns 2-6 and a start date in columns 8-15. The default
range to a file relative date range is 3 years before and after the start date specified in permno_date.dat. The
program writes PERMNO, Calendar Date, Company Name, Return without Dividends for the Stock and
Returns without Dividends for INDNO 100080, the NYSE/NYSEMKT/NASDAQ Value-Weighted Market
Index over a relative date range to an output file, permno_returns.dat.

To use this program with indexes not included in the Stock product, you must also subscribe to the
Indexes product.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 213

STKSAMP8.F90 Reads stock file for mergers within
a date range - outputs header and

distribution data to a file

STKSAMPS8. FOO0 reads the monthly stock database for mergers (delist code 2**) that delisted
between 19820101 and 19871231. For all securities found, PERMNO, the CUSIP - Header, Company
Name - Header, SIC Code - Header, Delisting Date, Delisting Return, and New PERMNO are written to
anoutput file, delist.dat.

STKSAMP9.F90 Reads stock file for spin-offs within
a date range - outputs header,
distribution data, and market

capitalization to a file

STKSAMPO. FO0 reads the daily stock database for spin-offs (distribution codes 3753 and 3763)
between 19871231 and 19891231. For each spinoff found, the PERMNO, Company Name at the
time of the spinoff, Distribution Declaration Date, Distribution Amount, and the capitalization portfolio
of the security during the year the spin-off occurred are printed to an output file, spinoff.dat.t

STKSAMP10.F90 Reads stock file for nasdaq bid, ask, &
number of trades data - outputs permno,
company name and nasdsaq time series

data to a file

STKSAMP10.F90 sequentially reads the daily stock database for NASDAQ time series data; Bid,
Ask and NASDAQ Number of Trades. Outputs PERMNO, Company Name corresponding to the calendar
date, and the NASDAQ time series data to an output file, nmsdata.dat. Note that NASDAQ Number

of Trades is a daily- only data item. To use this sample program with monthly data, remove NASDAQ
Number of Trades from the output.

LD ARSI Compare the returns of a company to a

specified index

The daily excess returns for a stock compared to an index are calculated over teh specified date range.
For each date, the Stock Return, the Index Return and the Negative or Positive Excess Return are
written to an output file, excess_return.dat, for the most recent 50 days.

MDA EC[UB Compare the returns of a company
to its peer group based on market

capitalization decile ranking

The returns of the portfolio to which a specified company belongs at each point in time are combined
into one-time series to create a peer group index. A time series of excess returns is calculated for the
company against this peer group index. The output file, portfolio_xs_ret.dat, is created and contains
for each date: Company Return, Index Return and Negative or Positive Excess Returns.

NN ERREC[0B Compare company returns based on

trade-only data

Returns are calculated using trade-only prices, with and without dividends. The output file, trade_
only_ret.dat, contains PERMNO, Calendar Date, Price, Trade-Only Price, Return without Dividends and
Return with Dividends.

INDSAMP1.F90

Reads indexes data for multiple indexes
- outputs desired data a file

INDNO INDEX NAME

1000040 CRSP NYSE/NYSEMKT Value-Weighted Market Index
1000041 CRSP NYSE/NYSEMKT Equal-Weighted Market Index
1000052 S&P 500 Composite Index

1000060 CRSP NASDAQ Value-Weighted Market Index

1000061 CRSP NASDAQ Equal-Weighted Market Index

1000503 NASDAQ Composite Index

1000080 CRSP NYSE/NYSEMKT/NASDAQ Value-Weighted Market Index
1000081 CRSP NYSE/NYSEMKT/NASDAQ Equal-Weighted Market Index
1000502 S&P 500 Composite Index

1000080 CRSP NYSE/NYSEMKT/NASDAQ Value-Weighted Market Index
1000081 CRSP NYSE/NYSEMKT/NASDAQ Equal-Weighted Market Index
1000092 CRSP NYSE/NYSEMKT/NASDAQ Market Capitalization Deciles
1000357 CRSP NYSE/NYSEMKT/NASDAQ Nationa Market Cap-Based Portfolios
1000700 CTI Treasury - CRSP 30 Year Bond Returns

1000709 Consumer Price Index

FORTRAN-95 INCLUDE FILES AND DATA STRUCTURES

crsp.inc defines all structures and constants used by the CRSP FORTRAN-95 access and utility functions, and the function
definitions. crsp.inc includes several other header files. The primary definitions needed for stock databases are in f95_
params.inc, f95_cal.inc, f95_datatypes.inc, f95_stock.inc, and f95_ind.inc.

The following list summarizes the individual stock and indexes include files that are included in crsp.inc. All ind- clude

files are kept in the crsp_INCLUDE directory.

HEADER FILE

Crsp_params.inc

DESCRIPTION

Contains all parameters used in FORTRAN-95 source programs.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN

PAGE 214

Crsp_data_types.inc | Declares all generic FORTRAN-95 TYPESs that are used to process CRSP stock and index data — exclusive of TYPE crsp_stk and TYPE crsp_ind,
together with theirimmediate SUB-TYPES

Crsp_cal.inc Contains all FORTRAN-95 data which reflect the CRSP calendar for stock and index data
Crsp_stk.inc Contains all data and pointers used to support manipulation of CRSP stock data.
Crsp_ind.inc Contains all data and pointers used to support manipulation of CRSP index data.

Crsp_for_unit.inc Provides the data structure for managing Fortran unit numbers during run-time execution of FORTRAN-95 programs

All_ind.inc Includes all FORTRAN-95 data TYPEs required to support manipulation of CRSP index data: crsp_params.inc, crsp_data_types.inc and crsp_ind.inc
All_stk.inc Includes all FORTRAN-95 data TYPES required to support manipulation of CRSP stock data: crsp_params.inc, crsp_data_types.inc and crsp_stk.inc
All_stk_ind.inc Includes all FORTRAN-95 data TYPESs required to support (simultaneous) manipulation of CRSP stock and index data: crsp_params.inc, crsp_

data_types.inc, crsp_stk.inc and crsp_ind.inc

CRSPACCESS FORTRAN-95 LIBRARY

The CRSPAccess FORTRAN-95 Library contains the Application Programming Interface (API) used to access and to process
CRSP stock and index data. The library is broken into sections based on the type of operations. The following major groups
are available. Each can be further subdivided into subgroups. Functions within subgroups are alphabetical. Each function
includes a function prototype, description, list of arguments, return values, side effects, and preconditions for use.

FORTRAN-95 LIBRARY CATEGORY DESCRIPTION PAGE

Stock Access Functions Functions used to load stock data from the database into structures page 215
Index Access Functions Functions used to load index data from the database into structures page 220
General Access Functions General calendar and access functions page 221
General Utility Functions Functions utility to process base CRSPAccess structures page 222

STOCK ACCESS FUNCTIONS

The following tables list the available functions to access CRSPAccess Stock Data. Standard usage is to employ an open
function, followed by successive reads and a close. Different databases and sets can be processed simulta- neously if there
is a matching structure defined for each one.

FUNCTION DESCRIPTION PAGE

stock_open Opens an Existing Stock Set in a CRSPAccess Database page 215
stk_read_permno Loads Wanted Stock Data Using CRSP PERMNO as the Key page 230
stk_read cusip Loads Wanted Stock Data Using Current CUSIP as the Key page 217
stk_read_permco Loads Wanted Stock Data Using CRSP PERMCO as the Key page 217
stk_read hcusip Loads Wanted Stock Data Using Historical CUSIP as the Key page 218
stk_read_siccd Loads Wanted Stock Data Using Historical SIC Code as the Key page 233
stk_read_ticker Loads Wanted Stock Data Using Current Ticker Symbol as the Key page 219
stock_close Closes a Stock Set page 219

stock_open Opens an Existing Stock Set in a CRSPAccess Database

PROTOTYPE:

DESCRIPTION:

wanted, status)

stock_open (TYPE (crsp_stk)stk, TYPE (name_string), POINTER:: user_ path, crspnum, setid,

opens an existing stock set in a CRSPAccess Database

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN

ARGUMENTS: stk TYPE (crsp_stk) - data object to be allocated and loaded.

user path TYPE (name_string) - directory path to user’'s CRSPAccess data; if NULL, default CRSPAccess data are used
crspnum — returned value associated with stock set which is opened; used in future data retrievals

setid - the setidentifier

10 — Daily CRSP Stock Database - STK_DAILY

20 — Monthly CRSP Stock Database - sTk_MONTHLY

wanted — composite mask indicating which modules will be used. The list below shows the wanted values for the stock modules. The
wanted values may be summed, or summary wanted values may be used to open multiple modules. Only modules that are specified by the
wanted parameter have memory allocated in st k, and only those modules can be accessed in further data retrieval functions from the
database. Note that header data is the default wanted, and it is included with all other options.

Individual modules:

STK_HEAD header structure

STK_EVENTS names, dists, shares, delists, nasdin

STK_LOWS lows

STK_HIGHS highs

STK_PRICES close or bid/ask average

STK_RETURNS total returns

STK_VOLUMES volumes

STK_PORTS portfolios

STK_BIDS bids

STK_ASKS asks

STK_RETXS returns without dividends

STK_SPREADS spreads

STK_TRADES number of trades
or

STK_ALTPRCDTS alternate price date

STK_OPENPRCS Open prices

or

STK_ALTPRCS alternate prices

STK_GROUPS groups

Group of modules:

STK_INFOs header and event data

STK_DDATA price, high, low, volume and returns time series
STK_SDATA bids, asks, and number of trades time series

STK_STD header, events, prices, high, low, volume, returns, and ports
STK_ALL all modules

RETURN VALUES: status — returned value indicating success/failure (CRsp_SUCCESsS/CRsP_FAIL)of stock open ()

crspnum — (integer) if opened successfully. This crspnum is used in further data retrieval functions from the database.
CRSP_SUCCESS - successful invocation of stock_open ()

CRSP_FAIL — (integer) if error opening or loading files, if bad parameters, root already opened exclusively, stock set already opened rw,
wanted not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for
internal or stock structures.

SIDE EFFECTS: This will load root and stock initialization files if needed, open the root including loading the configuration structure and index structures to
memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the log
file. Files will be opened for all wanted modules, associated calendars will be loaded, and wanted stock structures will be allocated.

PRECONDITIONS: None. The root may already be open under a different set in - mode.

stk_read permno Loads Wanted Stock Data Using CRSP PERMNO as the Key

PROTOTYPE: stk_read permno (crspnum, stk, setid, permno, permno_select, wanted, status)

DESCRIPTION: loads wanted stock data fora PERMNO

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 216

ARGUMENTS: crspnum - crspdb rootidentifier previously established by stock open ()

stk - TYPE (crsp_ stk) dataobject to be loaded

setid —the set identifier used (10 - monthly stock data, 20 - daily stock data) sTk_pAILY / STK MONTHLY

permno — explicit PERMNO of data to load, or integer that will be loaded with the PERMNO key value found if positional permno_select
is used.

permno_select — constant to search for the PERMNO in *key, or positional constant:

CRSP_EXACT - match the specified key value exactly CRSP_FIRST — the first key in the database CRSP_PREV — the previous key
CRSP_LAST — the last key in the database CRSP_SAME — the same key CRSP_NEXT — the next key

wanted — mask of flags indicating which data modules to load. See stock _open () for module codes.

status - returned value indicating success/failure of stk_read permno ()

RETURN VALUES: CRsP_SUCCESS: if data loaded successfully

CRSP_NOT_FOUND: if explicit key value not found in root

CRsP_EOF: if end-of-file / end-of-data is encountered

CRSP_FATIL:if error with bad parameters, invalid or unopened cr spnum, error in read, impossible wanted

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in st k. The position to be used for the next positional read is reset
based on the key value found. If permno_select is a positional qualifier, the actual PERMNO found is loaded to permno. Data are
loaded only to wanted data structures within the range of valid data for the security.

PRECONDITIONS: The stock set must have been opened previously. c rspnum must have been returned from a previous stock_open () call. stk must
have been passed to a previous stock_open () call. wanted must be a subset of the wanted parameter passed to the stock
open () function.

stk _read cusip Loads Wanted Stock Data Using Current CUSIP as the Key

PROTOTYPE: stk _read cusip (crspnum, stkstk, setid, cusip, cusip_ select, wanted, status)

DESCRIPTION: loads wanted stock data for a security using the CUSIP Identifier - Header (ncusip) as the key

ARGUMENTS: crspnum- crspdb root identifier returned by stock_open ()

stk-TYPE (crsp_stk) dataobject to be loaded

setid - the setidentifier used (10 - monthly stock data, 20 - daily stock data) STk_DAILY / STK MONTHLY

cusip - CUSIP - Header to load, or TYPE (cusip_string) data that will be loaded with the CUSIP found if a positional cusip
select isused.

cusip_select - qualify matching conditions of key value searches:

CRSP_EXACT - accept only an exact match

CRSP_BACK - find greatest prior key value if no exact match CRSP_FORWARD - find least following key value if no exact match or
positional constant:

CRSP_FIRST - the first key in the database CRSP_PREV — the previous key CRSP_LAST — the last key in the database CRSP_SAME — the
same key

CRSP_NEXT - the next key

wanted - mask of flags indicating which data modules to load. See stock_open () for module codes.

status - returned value indicating success/failure of stk_read cusip()

RETURN VALUES: CRSP_SUCCESS: if data loaded successfully

CRSP_NOT_FOUND: if explicit key value not found

crsp_EOF: if end-of-file / end-of-data is encountered

CRSP_FAIL: if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
cusIpindex

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location(s) in the stock structure. The position used for the next positional read is
reset based on the key value found. If cusip_flag is a positional qualifier, the actual CUSIP Identifier - Header found is loaded to cusip.
Data are loaded only to wanted data structures within the range of valid data for the security.

PRECONDITIONS: The stock set must be previously opened. The cr spnum must be returned from a previous stock_open () call. stk must have been
passed to a previous stock_open () call. wanted must be a subset of the wanted parameter passed to the stock_open () function.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 217

stk _read permco Loads Wanted Stock Data Using CRSP PERMCO as the Key

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

stk_read permco (crspnum, stk, setid, permco, permco_select, wanted, status)

loads wanted stock data for a security using PERMCO as the key

crspnum - crspdb rootidentifier established by stock_open()

stk - TYPE (crsp_stk) dataobject to be loaded

setid —the set identifier used (10 - monthly stock data, 20 - daily stock data) sTx_DAILY / STK MONTHLY

permco — PERMCO to load, or an integer that will be loaded with the key value found if a positional permco_select isused.
permco_select — positional qualifier or match qualifier — see stk _read cus

wanted — mask of flags indicating which data modules to load. See stock open for module codes.

status - returned value indicating success/failure of stk _read permco ()

CRSP_SUCCESS: if data loaded successfully

CRSP_NOT_ FOUND: if explicit key value not found

crsp_Eor: if end-of-file / end-of-data is encountered

Crsp_FAIL:if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid
PERMCO index

Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read is
reset based on the key value found. If permco select is a positional qualifier, the actual PErMcO found is loaded to permno. Data are
loaded only to wanted data structures within the range of valid data for the security.

The stock set must be previously opened. The cxrspnum must be returned from a previous stock_open () call. stk must have been
passed to a previous stock_open () call. wvanted must be a subset of the wanted parameter passed to the stock _open ()
function.

stk _read hcusip Loads Wanted Stock Data Using Historical CUSIP as the Key

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

stk_read hcusip (crspnum, stk, setid, hcusip, hcusip_select, wanted, status)

loads wanted stock data for a security using name history cus1p as the key

crspnum — crspdb root identifier established by stock open ()

stk - TYPE (crsp_stk) dataobject to be loaded

setid —the setidentifier used (10 - monthly stock data, 20 - daily stock data) sTx_DAILY / STK MONTHLY
hcusip - historical CUSIP identifier to load, or TYPE(cusip_string) data

hcusip_select — positional qualifier or match qualifier—see stk _read cusip ()

wanted — mask of flags indicating which data modules to load. See stock open () for module codes.

status - returned value indicating success/failure of stk_read hcusip ()

CRSP_SUCCESS: if data loaded successfully

CRSP_NOT FOUND: if explicit key value not found

crsp_Eor: if end-of-file / end-of-data is encountered

Crsp_FAIL:if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid CUSIP index value

Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read is
reset based on the key value found. If cusip flag is a positional qualifier, the actual historical CUSIP found is loaded to cusip. Data are
loaded only to wanted data structures within the range of valid data for the security.

The stock set must be previously opened. The crspnum must be returned from a previous stock _open () call. stk must have been
passed to a previous stock_open () call. wanted must be a subset of the wanted parameter passed to the stock_open () function.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN

PAGE 218

stk _read siccd Loads Wanted Stock Data Using Historical SIC Code as the Key

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

stk_read_siccd(crspnum, stk, setid, sicecd, sicecd_select, wanted, status)

loads wanted stock data for a security using name history Standard Industrial Classification (SIC) Code (siccd) as the key

crspnum — crspdb root identifier returned by stock open ()

stk - TYPE (crsp_stk) data object to be loaded

setid —the setidentifier used (10 - monthly stock data, 20 - daily stock data) sTk_DAILY / STK MONTHLY

siccd - siccdtoload, or an integer that will be loaded with the key value found if a positional siccd selectisused.
siccd select — positional qualifier or match qualifier— see stk read siccd ()

wanted — mask of flags indicating which data modules to load. See stock open () for module codes.

status - returned value indicating success/failure of stk_read siccd()

CRSP_SUCCEsS: if data loaded successfully

CRSP_NOT_ FOUND: if explicit key not found

crsp_EOF: if end-of-file / end-of-data is encountered

CRSP_FAIL: if error with bad parameters, invalid or unopened cxrspnum, error in read, impossible wanted, invalid siccd index value

Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read is
reset based on the key value found. If siccd flagis a positional qualifier, the actual SIC Code found is loaded to siccd. Data are loaded
only to wanted data structures within the range of valid data for the security.

The stock set must be previously opened. crspnum must be returned from a previous stock_open () call. stk must have been passed
toaprevious stock_open () call. wanted must be a subset of the wanted parameter passed to the stock_open () function.

stk read ticker Loadsthe Wanted Stock Data Using Current Ticker Symbol - Header as the Key

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:

PRECONDITIONS:

stk_read_ticker(crspnum, stk, setid, ticker, ticker_select, wanted, status)

loads wanted stock data for a security using Ticker - Header as the key

crspnum — crspdb root identifier established by stock open ()

stk - TYPE (crsp_stk) dataobject to be loaded

setid —the setidentifier used (10 - monthly stock data, 20 - daily stock data) sTx_DAILY / STK MONTHLY

ticker — pointer to Ticker Symbol - Header to load, or TYPE (ticker-string) data that will be loaded with the key found if a
positional ticker select isused.

ticker select — positional qualifier or match qualifier— see stk read ticker ()

wanted — mask of flags indicating which module data to load. See stock open () for module codes.

status - returned value indicating success/failure of stk_read ticker ()

CRSP_SUCCESS: if data loaded successfully

CRSP_NOT FOUND: if ticker not found

crsp_EOF: if end-of-file / end-of-data is encountered

Crsp_FAIL:if error with bad parameters, invalid or unopened crspnum, error in read, impossible wanted, invalid t i cker index

Data from the wanted modules will be loaded to the proper location in the stock structure. The position used for the next positional read
is reset based on the key found. If ticker flagisa positional qualifier, the actual header ticker found is loaded to t i cker. Data are
loaded only to wanted data structures within the range of valid data for the security.

The stock set must be previously opened. The crspnum must be returned from a previous stock_open () call. stk must have been
passed to a previous stock_open () call. wanted must be a subset of the wanted parameter passed to the stock_open ()
function.

stock close Closes a Stock Set

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

SIDE EFFECTS:

stock_close(crspnum, setid)

closes a stock set

crspnum — identifier of crsp database, as returned by stock _open ()
setid — stock set orignially associated with crspnum at invocation of stock_open ()

All stock module files are closed, memory allocated by them is freed. If these are the last modules open in the database, the root is also
closed.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN

PAGE 219

PRECONDITIONS: The crspnumand setid must be taken from a previous invocation of stock_open.

CALL SEQUENCE: Called by external programs, must be preceded by invocation of stock _open ().

INDEX ACCESS FUNCTIONS

The following tables list the available functions to access CRSPAccess indexes data. Standard usage is to use an open
function, followed by successive reads and a close. Different databases and sets can be processed simultaneously if there
is a matching structure defined for each one.

ACCESS FUNCTION DESCRIPTION PAGE

index_open Opens an Existing Index Set in an Existing CRSPAccess Database page 220
ind_read_indno Loads wanted Data For a CRSP INDNO page 236
index_close Closes an Indexes Set page 221

index open Opens an Index Set in an Existing CRSPAccess Database

PROTOTYPE: index_open(ind data, user_path, crspnum, setid, wanted, status)

DESCRIPTION: opens an index set in an existing crspdb. This opens database files, allocates needed memory to a structure, and initializes internal
structures so index data can be used.

ARGUMENTS: ind data - TYPE(crsp_ind) dataobject to be allocated and loaded

crspnum — returned value assocaited with index set which is opened; used in future data retrievals

setid — the set identifier

400 = monthly index groups - MONTHLY INDEX GROUPS

420 = monthly index series - MONTHLY INDEX SERIES

440 =daily index groups - DAILY INDEX GROUPS

460 =daily index series - DATLY INDEX SERIES

wanted — mask indicating which modules will be used. The list below shows the wanted values for the index modules. The wanted
values may be summed, or summary wanted values may be used to open multiple modules. Only modules that are selected in the wanted

parameter have memory allocated in the index structure and only those modules can be accessed in further access functions to the
database.

IND HEAD header structure and index description
IND REBALS 2rebalancing information for index groups
IND_LISTS issue lists

IND_USDCNTS portfolio used counts

IND_TOTCNTS portfolio total eligible counts

IND USDVALS portfolio used weights

IND TOTVALS portfolio eligible weights

IND TRETURNS total returns
IND_ARETURNS capital appreciation returns
IND IRETURNS income returns

IND_TLEVELS total return index levels
IND ALEVELS capital appreciation index levels
IND ILEVELS income return index levels

Symbols are available for common groups of modules. IND ALL selects all the index data.
IND INFO=IND HEAD+ IND REBALS+IND LISTS

IND_RETURNS=IND TRETURNS+ IND ARETURNS+IND IRETURNS

IND LEVELS=IND TLEVELS+ IND ALEVELS+IND ILEVELS

IND COUNTS=IND USDCNTS+ IND TOTCNTS+IND USDVALS+IND TOTVALS
IND RESULTS=IND HEAD+ IND USDCNTS+IND USDVALS+IND TRETURNS
IND ARESULTS=IND HEAD+ IND USDCNTS+IND USDVALS+IND ARETURNS
IND IRESULTS=IND HEAD+ IND USDCNTS+IND USDVALS+IND IRETURNS
IND_STD=IND HEAD+ IND COUNTS+IND TRETURNS+IND ARETURNS

IND ALL=IND INFO+ IND RETURNS+IND LEVELS+IND COUNTS

status — returned value indicating success/failure of index open ()

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 220

RETURN VALUES: CRSP_SUCCESS: successful invoation of index open ()

CrsP_FAIL:if error opening or loading files, if bad parameters, root already opened exclusively, index set already opened rw, wanted
not a subset of set’s modules, set does not exist in root, set already opened and structure allocated, error allocating memory for internal or
index structures.

index open Opens an Index Set in an Existing CRSPAccess Database

PROTOTYPE: index_open(ind data, user_path, crspnum, setid, wanted, status)

SIDE EFFECTS: This will load root and index initialization files if needed, open the root including loading the configuration structure and index structures to
memory, opening the address file, and if necessary allocating memory to file buffers, loading the free list, and logging information to the log
file. Files will be opened for all wanted modules. Associated calendars will be loaded. wanted index structures will be allocated.

PRECONDITIONS: None; the root may already be open. If a new index structure is passed additional fields may be allocated.

ind_read_indno Loads Wanted Index Data For a CRSP INDNO

PROTOTYPE: ind_read_indno(crspnum, ind data, setid, indno, indno_select, wanted, status)

DESCRIPTION: loads wanted index data for an INDNO

ARGUMENTS: crspnum — crspdb root identifier returned by index_open ()

ind data—TYPE (crsp_ind) dataobject to be allocated and loaded

setid —the setidentifier used in index open ()

indno — explicit INDNO of data to load, or integer that will be loaded with the key value found if a positional
indno_flagisused.

indno_select —constant to search for the INDNO in key, or positional constant:

CRSP_EXACT - match specified key value exactly CRSP_FIRST — the first key in the database CRSP_PREV — the previous key
CRSP_LAST — the last key in the database CRSP_SAME — the same key CRSP_NEXT — the next key

wanted — mask of flags indicating which module data to load. See index_open () for module codes.

status — returned value indicating success/failure of ind read indno ()

RETURN VALUES: CRSP_SUCCESS: if data loaded successfully

CRSP_NOT_FOUND: if explicit key value not found in database

crsp_EoF: if end-of-file / end-of-data is encountered

Crsp_FAIL:if error with bad parameters, invalid or unopened crspnumand setid, errorin read, impossible wanted

SIDE EFFECTS: Data from the wanted modules will be loaded to the proper location in the index structure. The position used for the next positional read is
reset based on the key found. If indno_select is a positional qualifier, the actual 1nDNO found is loaded to indno. Data are loaded
only to wanted data structures within the range of valid data for the index.

PRECONDITIONS: The index set must be previously opened. The crspnum must be returned from a previous index_open () call. ind_data must have
been passed to a previous index_open () call. wanted must be a subset of the wanted parameter passed to the index_open ()
function.

index close Closes an Index Set

PROTOTYPE: index close (crspnum, setid)

DESCRIPTION: close an index set

ARGUMENTS: crspnum — identifier of the CRSP database, as returned by index_open ()
setid —identifier of the index set code to close, as used in the open

SIDE EFFECTS: All index module files are closed, and memory allocated by them in the index structure is freed. If these are the last modules open in the
database, the root is also closed.

PRECONDITIONS: The crspnumand setid must be taken from a previous ind_open () call.

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 221

GENERAL ACCESS FUNCTIONS

The CRSPAccess general access functions include error functions and portable file operation functions.

crsp_allocate_unit Allocates Unused Unit for FORTRAN-95-95 I/O

PROTOTYPE: crsp_allocate unit()
DESCRIPTION: Allocates a unique integer value in the range 10-79 for use in FORTRAN-95-95 I/0
ARGUMENTS: none
RETURN VALUES: integer unit number not previously allcoated;
-1 - if nounallocated units available
SIDE EFFECTS: none
PRECONDITIONS: none

crsp _deallocate unit Deallocates Unit Allocated by crsp allocate unit ()

PROTOTYPE: crsp_deallocate_unit(unit)

DESCRIPTION: deallocates integer unit number allocated by crsp_allocate unit ()

ARGUMENTS: unit: integer unit number allocated by crsp_allocate unit ()

RETURN VALUES: none

SIDE EFFECTS: none

PRECONDITIONS: none

crsp free all units Deallocates All Units Currently Allocated by crsp_allcoate unit ()

PROTOTYPE: crsp_free_ all_units

DESCRIPTION: deallocates all units currently allocated by crsp_allocate unit ()

ARGUMENTS: none

RETURN VALUES: none

SIDE EFFECTS: none

PRECONDITIONS: none

GENERAL UTILITY FUNCTIONS

The utility functions operate on the base CRSPAccess data structures and are not specific to a type of data. They include
operations on calendars CRSP object structures and general utilities.

Calendar Utility Functions

These functions are used to manipulate calendar data in CRSPAccess databases.

cal_index Finds CRSP Calendar Index of Date

PROTOTYPE: cal_index (cal, date)

DESCRIPTION: Finds CRSP Calendar Index of Date

ARGUMENTS: cal - TYPE (crsp_cal) calendar object
date - YYYYMMDD format date whose indexin cal % caldt is desired

RETURN VALUES: index of YYYYMMDD argumentin cal % caldt, or zeroif out of range

SIDE EFFECTS: matches forward to next valid date in ca1l ¢ caldt if YYYYMMDD argument not found

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 222

date_ index Finds CRSP Calendar Index of Date

PROTOTYPE: date_index (cal, date, option)

DESCRIPTION: Finds CRSP Calendar Index of Date

ARGUMENTS: cal - TYPE(crsp cal) calendar object

option--1,0, 1: match backwared, exact, forward

date - YYYYMMDD format date whose indexin cal % caldt is desired

RETURN VALUES: index of YYYYMMDD argumentin cal % caldt, or zero if not found

SIDE EFFECTS: none

stk _usdate Index of Calendar Trading Date

PROTOTYPE: stk_usdate(stk, datein, dateout, position)

DESCRIPTION: Index of Calendar Trading Date

ARGUMENTS: stk - TYPE(crsp_stk)must have been used in prior invocation of stk_open ()

datein - YYYYMMDD format date
dateout - YYYYMMDD formate date, to be loaded
position-integerindexvalueinactive stk % caldt()

RETURN VALUES: dateout is loaded with the next trading date greater than or equal to date1in position is the index of dateoutin stk ¢ caldt ()
SIDE EFFECTS: none

CRSPAccess Stock Utility Functions

These functions can be used to access stock data.
FUNCTION DESCRIPTION PAGE
stk_comp_ret Compound Returns page 238
stk_curdis Finds Distributions Between Specified Dates page 224
stk_curnam Finds Name Data on Specified Date page 224
stk_curndi Finds Effective NASDAQ Information Structure on Specified Date page 224
stk_curshr Finds Shares Outstanding on Specified Date and Calendar Index page 224
stk_exrdat Restricts Real Array Data Between Selected Dates and by Exchange page 225
stk_exrinf Restricts Event Data Between Selected Dates and by Exchange page 225
stk_exrint Restricts Integer Array Data Between Selected Dates and by Exchange page 225
stk_loadba Loads Bid and Ask Data to Price Arrays page 225
stk_loadhl Loads Trade Only Data to Price Arrays page 242
stk_namrng Finds Calendar Index Ranges Corresponding to a Name Structure page 226
stk_valexc Determines if Exchange Code is Valid page 226
xs_ret_calc Calculates a Stock Excess Return Over an Index page 227
comp_ind_calc | Calculates a Composition Return page 227
stk_ret_calc Calculates a Return Based on Trade-Only Prices page 227

stk _comp ret Compound Returns
PROTOTYPE: compret=stk_compret (retv, begind, endind)
DESCRIPTION: Compound returns
ARGUMENTS: retv - array of REAL returns to be compounded

begind - initial index of range to be compounded
endind - terminal index of range to be compounded
CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 223

RETURN VALUES: REAL compound return over internal begind - endind

SIDE EFFECTS: none

PRECONDITIONS: retv must have DIMENSION (0:*); [stk % retisallocatedas (0:maxarr)]

stk _curdis Finds Distribtutions Between Specified Dates

PROTOTYPE: stk_curdis (stk, dist_ type, begdt, enddt)

DESCRIPTION: Finds distributions between two dates

ARGUMENTS: stk - TYPE (crsp_stk) data objectloaded
dist_type - integer distribution type required:
1 =declaration date

2 = ex-distribution date

3 =record date

4 = payment date

begdt - YYYYMMDD initial date

enddt - YYYYMMDD terminal date

RETURN VALUES: The sequential index values of the distributions in stk % dists which fall in the specifed range begdt - enddt.
-1-ifdist_type notinrange 1-4 orif begdt > enddt
0 - if no distributions exist (or if distributions in range begdt - enddt have been exhausted.)

SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with distribution data via invocation of stock read xxx ()

stk _curnam Finds Name Data on Specified Date

PROTOTYPE: curnam=stk_curnam (stk, date)

DESCRIPTION: Finds name data on specified date

ARGUMENTS: stk - TYPE (crsp_stk) dataobjectloaded
date-YYYYMMDD datein stk ¢ caldt

RETURN VALUES: indexin stk % names if record valid on date or current record if date follows date of latest name change
SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with names data via the invocation of stk_read_xxx ()

stk _curndi Finds Effective NASDAQ Information Structure on Specified Date

PROTOTYPE: stk_curndi (stk, date)
DESCRIPTION: Finds effective NASDAQ information structure on specified date
ARGUMENTS: stk - TYPE (crsp_stk) dataobject to be allocated and loaded
date - YYYYMMDD date inactive stk % caldt
RETURN VALUES: indexin stk % nasdin of record valid on date
0-if no nasdin datais available or date is outside the range of valid nasdin data
SIDE EFFECTS: none
PRECONDITIONS: stk must have been laoded with nasdin data via the invocation of stk_read xxx ()

stk_curshr Finds Shares Outstanding on Specified Date and Calendar Index

PROTOTYPE: shares=stk_curshr (stk, date)

DESCRIPTION: Finds shares outstanding on specified date and calendar index

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
date - YYYYMMDD date in active stk ¢ caldt

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 224

RETURN VALUES: number of shares outstandingin stk % shares of record valid on date
0 - if no shares data are available or if the date is outside the range of valid shares data

SIDE EFFECTS: none

PRECONDITIONS: stk must have been loded with shares data via the invocation of stk_read xxx ()

stk_exrdat Restricts Real Array Data Between Select Dates and by Exchange

PROTOTYPE: stk_exrdat (stk, excode, begind, endind, array, missval)

DESCRIPTION: Restricts REAT array data between select dates and by exchange

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded

excode - CRSP exchange code 1-7

begind - initial index for data validation

endind - terminal index for data validation

array - array of REAT data to be scanned and validated

misval - value to be substituted in array () fordaysin begind-endind range when the security is not trading on the specified
exchange

RETURN VALUES: adjusted array ()

SIDE EFFECTS: original valuesin array () may be superseded by misval

PRECONDITIONS: stk must have been loded with names data via the invocation of stk read xxx ()

stk _exrinf Restricts Event Data Between Selected Dates And by Exchange

PROTOTYPE: stk_exrinf (stk, excode)

DESCRIPTION: Restricts event data between selected dates and by exchange

ARGUMENTS: stk - TYPE (crsp_stk) dataobject to be allocated and loaded
excode - CRSP exchange code: 1-7

RETURN VALUES: event arrays are “compressed” to exclude periods when the security did not trade on the specified exchange

SIDE EFFECTS: parts of events arrays may be overwritten and lost

PRECONDITIONS: stk must have been loaded with events data via the invocation of stk _read xxx ()

stk _exrint Restricts Integer Array Data Between Selected Dates by Exchange

PROTOTYPE: stk_exrint (stk, excode, begind, endind, array, missval)

DESCRIPTION: Restricts integer array data between selected dates by exchange

ARGUMENTS: stk - TYPE (crsp_stk) dataobject to be allocated and loaded

excode - CRSP exchange code: 1-7

begind - initial index of data to be screened / reset endind - terminal index of data to be screened / reset array - integer array to be
screened / reset

misval - code to be used as replacement value in array when the security is not trading on the specified exchange

RETURN VALUES: adjusted array ()

SIDE EFFECTS: parts of array () data may be overwritten and lost

PRECONDITIONS: stk must have been loaded with names data via the invocation of stk_read_xxx ()

stk loadba Loads Bid and Ask Data to Price Arrays

PROTOTYPE: stk_loadba (stk)

DESCRIPTION: Loads bid and ask data to price arrays

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded

RETURN VALUES: Firstif stk % prc (i) isnon-negative, stk & prc(i),stk % bidlo(i),andstk % askhi (i) aresetto0.Then NMS bid
and ask data are loaded into bidlo and askhi. Finally resulting bid-ask averages are copied to the price field.

SIDE EFFECTS: prc(),bidlo(),and askhi () data may be overwritten and lost

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 225

PRECONDITIONS: stk must have been loaded with price, bid, and ask data via the invocation of stk_read xxx ()

stk _loadhl Loads Trade Only Data to Price Arrays

PROTOTYPE: stk_loadhl (stk)

DESCRIPTION: Loads trade only data to price arrays

ARGUMENTS: stk - TYPE (crsp_stk) dataobject loaded

RETURN VALUES: stk % prc, stk % bidlo,andstk askhi are resetwhen price (prc) represents an average of bid and ask. Data remain
unchanged only when high, low, and price represent valid trading data.

SIDE EFFECTS: prc(),bidlo (), and askhi () may be overwritten and lost

PRECONDITIONS: stk must have been loaded with price, bid and ask data via the invocation of stk _read xxx ()

stk _namrng Finds Calendar Index Ranges Corresponding to a Name Structure

PROTOTYPE: stk namrng (stk, ind, bind, eind)

DESCRIPTION: Finds calendar index ranges corresponding to a name structure

ARGUMENTS: stk - TYPE (crsp_stk) dataobject to be allocated and loaded

ind-indexof stk % names ()

bind-indexinstk ¢ caldt () corresponding to initial valid date of stk ¢ names (ind)
eind-index of stk_caldt () corresponding to terminal valid date of stk % names (ind)

RETURN VALUES: bind, eind
0 -ifindis notavalid indexin stk % names ()
SIDE EFFECTS: none
PRECONDITIONS: skt_data must have been loaded with names data via the invocation of stk_read xxx ()

stk_valexc Determines if Exchange Code is Valid

PROTOTYPE: valid=stk_valexc (exhave, exwant)

DESCRIPTION: Determines if a given exchange code is valid based on a set of wanted exchanges. When-issued trading is not differentiated from regular-
way trading.

ARGUMENTS: exhave — Exchange Code to validate. Codes are standard CRSP stock Exchange Codes:
1=NYSE

2=NYSEMKT

3=NASDAQ

4=ARCA

31=NYSE when-issued

32=NYSEMKT when-issued

33=NASDAQ when-issued

34=ARCA when-issued

exwant — acceptable Exchange Code or codes. If multiple exchanges are valid, exwant is the sum of the individual codes below:
1=NYSE

2=NYSEMKT

4=NASDAQ

8=ARCA

RETURN VALUES: .TRUE. — if exhave is valid according to exwant
.FALSE.—if isnotvalid according to exwant

SIDE EFFECTS: none

PRECONDITIONS: none

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 226

CRSPAccess Excess Return Functions

xs_ret_calc Calculates Stock Excess Return Over an Index

PROTOTYPE: xs_ret calc (ret_ts, indtret ts, xs_ret, MISSFLAG, STATUS)

DESCRIPTION: loadsinto TYPE (stk_ret ts) xs_ret the excess returns for each date in the supplied TIMESERIES: based on the intrinisic
“returns” data fromthe TYPE (stk_ret ts) subtypeof TYPE (crsp stk), versus the CRSP INDEX returns of the subtype TYPE
(ind_tret_ts)OfTYPE (crsp_ind)

ARGUMENTS: TYPE (stk _ret ts) ret_tslacomponentof TYPE (crsp stk)l

TYPE (ind tret ts) indtret ts[acomponentof TYPE (crsp ind)]

TYPE (stk ret ts) xs_ret[acomponentof TYPE (crsp stk)]

INTEGER MISSFLAG: one of

CRSP_KEEP: missing returns in ret_ts are copied to xs_ret, and indtret_ts returns are compounded across the gap,
CRSP_SMOOTH: first return following any gap is averaged geometrically so that the entire gap has a constant value, or
CRSP_IGNORE: missing returns in ret_ts are treated as zero, missing returns in indtret_ts generate a missing xs_ret data point
INTEGER STATUS: CRSP_SUCCESS Of CRSP_FAIL

RETURN VALUES: none, though sTATUS indicates success/failure of calculations

SIDE EFFECTS: data, including missing values — where appropriate — are loaded into xs_ret

PRECONDITIONS: ret_ts,indtret_ts,and xs_ret should have the same CRSP calendar

comp_ind calc Calculates a Composite Index Return

PROTOTYPE: comp_ind calc (ind, stk, port type, composite_ index return, status)

DESCRIPTION: loadsinto TYPE (stk_ret ts) comp_ind ret the “composite index” for the security, based on the specified portfolio type and
using, for each date, the index for the security’s portfolio decile on that date, thereby creating a TTMESERIES of index values which is not
a “standard” CRSP data item

ARGUMENTS: TYPE (crsp_ind) ind

TYPE (crsp_stk)

INTEGER port_type: the portfolio index to be used for generation of the composite index return

TYPE (stk_ret ts) composite index return:loaded with the values of the composite index
INTEGER STATUS: CRSP_SUCCESS Of CRSP_FAIL

RETURN VALUES: none, though sTATUS indicates success/failure of calculations

SIDE EFFECTS: composite index returns values are loaded into composite index return

PRECONDITIONS: ind and stk must have the same CRSP calendar

stk _ret calc Calculates a Stock Return based on Trade Only Prices

PROTOTYPE: stk _ret calc (stk_setid, stk wanted, stk, trade_only prc ts, alt prc_ts, trade_only ret ts,

trade_only retx ts, trade_only start, trade_only end, gap_window, valid exch)

DESCRIPTION: loadsinto TYPE (stk _ret ts) trade only ret tsand TYPE (stk ret ts) trade only retx ts the “returns
data” [with and without dividends, respectively] based on the user’s supplied values in TYPE (stk_prc_ts) trade only prc_ts
over the range of indexes bounded inclusively by the user’s values for “t rade only start”and“trade only end”;valuesare
computed in accordance with CRSP conventions for missing values over a maximum allowable interval indicated by “gap window” and
“on-"0r“off-" exchange trading

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 227

ARGUMENTS:

INTEGER stk_setid:the datasetidentifier of TYPE (crsp stk) used (below)

INTEGER stk_wanted: the CRSP identifier of the data loaded into TYPE (crsp_stk) stk (below)

TYPE (crsp_stk) stk

TYPE (stk prc_ts) trade only prc ts: TIMESERIES created from

TYPE (crsp_stk) bysettingtozeroallvalues for“stk ¢ prc_ts” which are negative (i.e., those NOT arising from a valid value for
“closing price”)

TYPE (stk prc_ts) alt prc: TIMESERIES tobe used tosupply “valid” values to supersede zero values presentin “trade
only prc_ts”

TYPE (stk ret ts) trade only ret ts: TIMESERIES tobeloaded with returns calculated from the trade- only- price
TIMESERIES

TYPE (stk ret ts) trade only retx ts: TIMESERIES tobeloaded with “returns without dividends” calculated from the
trade-only-price TTMESERTES

INTEGER trade only_ start:indexvalue indentifying the first data point for which trade-only returns are to be calculated
INTEGER trade only_ end:index value identifying the last data point for which trade-only returns are to be calculated

INTEGER gap_ window: permitted successive missing valuesin trade only prc without computed returns being set to missing
(zero is default)

INTEGER valid_exch: binary code specifying valid exchange(s):

1=NYSE, 2 = NYSEMKT, 4 = NASD, 8 = ARCA, 0 =all

RETURN VALUES:
SIDE EFFECTS:
PRECONDITIONS:

none

computed returns are loaded into trade only ret tsandtrade only retx ts

“stk” must contain data corresponding to “stk setid”and“stk wanted”;trade only prc_ts”mustcontain zero values
wherever stk % prc (k) is negative (i.e., represents “bid-asked” average)

CRSPAccess Print Utility Functions
The following functions are FORTRAN-95 print utiltiy functions.

FUNCTION DESCRIPTION PAGE
stk_outdat | Qutputs Price, Volume, and Return Data

stk_outdel | Qutputs Delisting Data

stk_outdis | Qutputs Distribution Data

stk_outhdr | Qutputs Header Data

stk _outint

Outputs Data for One Integer Array

stk_outnam

Outputs Name Data

stk _outndi

Outputs NASDAQ Information Data

stk_outnms

Outputs NASDAQ Time Series Data

stk _outone

Outputs Data for One Real Array

stk_outshr

Outputs Shares Data

stk outyr

Outputs Year and Portfolio Data

stk _outdat Outputs Price, Volume, and Return Data

PROTOTYPE:
DESCRIPTION:
ARGUMENTS:

RETURN VALUES:

SIDE EFFECTS:
PRECONDITIONS:

STK_OUTDAT (STK, UNIT, BIND, EIND, STEP)

Outputs price, volume, and return data

stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - FORTRAN-95 I/0 unit open for writing

bind-initialindexof stk ¢ prc () tobeused
eind-terminalindexof stk % prc () tobe used

step - “stride” increment for traversal of stk ¢ prc ()

records from stk ¢ bidlo(),stk % askhi(),stk % prc(),stk % vol,andstk %

unit

ret () are written to the file open on

none

stk must have been loaded with prc (), bidlo (), askhi (), vol (), and ret () viainvocation of stk _read xxx ()

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN

PAGE 228

stk_outdel Outputs Delisting Data

PROTOTYPE: STK_OUTDEL (STK, UNIT, FIRST, LAST)

DESCRIPTION: Outputs delisting data

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - FORTRAN-95 /0 unit open for writing

first - initial indexof stk $ delist () tobeused

last -terminalindexof stk % delist () tobe used

RETURN VALUES: records from stk % delist () are written to the file openonunit
SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with delisting records via invocation of stk _read xxx ()

stk _outdis Outputs Distribution Data
PROTOTYPE: STK_OUTDIS (STK, UNIT, FIRST, LAST)

DESCRIPTION: Outputs distribution data

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - FORTRAN-95 I/0 unit open for writing

first - initialindexof stk % dists () tobe used

last -terminalindexof stk % dists () tobeused

RETURN VALUES: records from stk % dists () are written to the file openon unit
SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with distribution data via invocation of stk read xxx ()

stk _outhdr Outputs Header Data
PROTOTYPE STK_OUTHDR (STK, UNIT)

DESCRIPTION: Outputs Header data

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - FORTRAN-95 I/0 unit open for writing
RETURN VALUES: HEADER data values are written to the file open on unit
SIDE EFFECTS: none
PRECONDITIONS: stk must have been loaded with header data via invocation of stk _read xxx ()

stk_outint Outputs Data for One Integer Array

PROTOTYPE: STK_OUTINT (STK, UNIT, TITLE, ARRAY, BIND, EIND, STEP)

DESCRIPTION: Outputs data for one integer array

ARGUMENTS: stk - TYPE (crsp_stk) dataobject to be allocated and loaded
unit - unit - FORTRAN-95 1/0 unit open for writing

title - TYPE (name string) character string

array - INTEGER array whose values are to be displayed

bind -initial index of array () to be used

eind-terminalindex of array () tobe used

step - “stride” increment for traversal of stk % array ()

RETURN VALUES: data from array () are written to the file open onunit
SIDE EFFECTS: none

PRECONDITIONS: stk % caldt () musthave valid data, generally read via invocation of stk_read xxx ()

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 229

stk _outnam Outputs Name Data

PROTOTYPE: STK_OUTNAM (STK, UNIT, FIRST, LAST)

DESCRIPTION: Outputs Name data

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - FORTRAN-95 /0 unit open for writing

first - initial index of stk % names () to be used

last -terminalindexof stk % names () tobe used

RETURN VALUES: records from stk % names () are written to the file openonunit
SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with names data via invocation of stk _read xxx ()

stk _outndi Outputs NASDAQ Information Data

PROTOTYPE: STK_OUTNDI (STK, UNIT, FIRST, LAST)

DESCRIPTION: Outputs NASDAQ information data

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - FORTRAN-95 I/0 unit open for writing

first - initial indexof stk $ nasdin () tobe used

last -terminalindexof stk % nasdin () tobe used

RETURN VALUES: records from stk % nasdin () are written to the file open on unit
SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with nasdin data via invocation of stk _read xxx ()

stk_outnms Outputs NASDAQ Time Series Data
PROTOTYPE: STK_OUTNMS (STK, UNIT, BIND, EIND, STEP)

DESCRIPTION: Outputs NASDAQ data

ARGUMENTS: stk - TYPE (crsp_stk) dataobject to be allocated and loaded

unit - FORTRAN-95 I/0 unit open for writing

bind-initialindexof stk ¢ bid(), stk % ask(),stk $ numtrd() tobeused
eind-terminalindexof stk % bid (), stk % ask(),stk % numtrd() tobe used
step - “stride” increment for traversal of stk % bid(),stk % ask(),stk % numtrd()

RETURN VALUES: records from stk % bid(),stk % ask(),stk % numtrd() arewritten to the file openonunit
SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with bid (), ask (), numtrd () dataviainvocation of stk_read xxx ()

stk_outone Outputs Data for One Real Array
PROTOTYPE: STK_OUTONE (STK, UNIT, TITLE, ARRAY, BIND, EIND, STEP)

DESCRIPTION: Outputs data for one real array

ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - unit - FORTRAN-95 1/0 unit open for writing

title - TYPE (name string) character string

array - array whose valies are to be displayed

bind -initial index of array () to be used

eind - terminal index of array () to be used

step - “stride” increment for traversal of array ()

RETURN VALUES: data from array () are written to the file open on unit
SIDE EFFECTS: none

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 230

PRECONDITIONS: stk % caldt () musthave valid data, generally read via invocation of stk_read xxx ()

stk _outshr Outputs Shares Data

PROTOTYPE: STK_OUTSHR (STK, UNIT, FIRST, LAST)

DESCRIPTION: Outputs shares data
ARGUMENTS: stk - TYPE (crsp_stk) data object to be allocated and loaded
unit - FORTRAN-95 /0 unit open for writing

first -initial indexof stk ¢ shares () tobe used

last -terminalindexof stk ¢ shares () tobe used

RETURN VALUES: records from stk % shares () are written to the file open on unit

SIDE EFFECTS: none

PRECONDITIONS: stk must have been loaded with shares data via invocation of stk _read xxx ()

stk _outyr Outputs Year and Portfolio Data
PROTOTYPE: STK_OUT_PORT (STK, UNIT, BIND, EIND, PORT NUM)

DESCRIPTION: Outputs year and portfolio data

ARGUMENTS: stk - TYPE (crsp_stk) dataobject to be allocated and loaded
unit - FORTRAN-95 I/0 unit open for writing

bind - initial index of portfolio data to be used

eind - terminal index of portfolio data to be used

port num-indexof stk % port ts() tobeused

RETURN VALUES: portfolio statistics - port and stat are written to the file openonunit

SIDE EFFECTS: none

PRECONDITIONS: stk must have been laoded with portfolio data via invocation of stk_read_xxx ()

CRSP PROGRAMER’S GUIDE | LEGACY ACCESS IN FORTRAN PAGE 231

	COverviewapter 1: 1
	Notational Conventions

	CItem-Based Access in Capter 2: 4
	Introduction
	CRSP C API Data Objects
	Supporting Information
	Generic Data Types

	Accessing CRSP Databases
	CRSP US Stock Database
	CRSP US Index Database
	CRSP/Compustat Merged Database

	Supporting Types
	Container Objects
	CRSP C API Data Types

	CItem-Based Access in Fortranapter 3: 28
	CRSP Fortran 95 API Data Objects
	Supporting Information
	Generic Data Types

	Accessing CRSP Databases
	CRSP US Stock Database
	CRSP US Index Database
	CRSP/Compustat Merged Database

	CRSP Fortran 95 API Functions
	Supporting Types
	Container Objects
	CRSP Fortran 95 API Data Types
	CRSP_VARSTRING_T Type

	CItem-Based Samplesapter 4: 72
	Building and Executing Programs
	Visual Studio 2010 - C Compiler Instructions

	CLegacy Set Access in Capter 5: 92
	CRSPAccess C Data Structures
	Data Organization for C Programming
	Data Objects
	Set Structures and Usage
	C Sample Programs
	CRSPAccess C Library

	CLegacy Set Access in Fortranapter 6: 198
	FORTRAN-95 Data Structures
	Data Organization for FORTRAN-95 Programming
	Data Objects
	Set Structures and Usage
	FORTRAN-95 Stock Sample Programs and Subroutines
	CRSPAccess FORTRAN-95 Library

